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Abstract

We study the complexity of learning mixtures of separated Gaussians with common unknown
bounded covariance matrix. Specifically, we focus on learning Gaussian mixture models (GMMs)
on Rd of the form P =

∑k
i=1 wiN (µi,Σi), where Σi = Σ ⪯ I and mini ̸=j ∥µi − µj∥2 ≥ kε for

some ε > 0. Known learning algorithms for this family of GMMs have complexity (dk)O(1/ε).
In this work, we prove that any Statistical Query (SQ) algorithm for this problem requires
complexity at least dΩ(1/ε). In the special case where the separation is on the order of k1/2,
we additionally obtain fine-grained SQ lower bounds with the correct exponent. Our SQ lower
bounds imply similar lower bounds for low-degree polynomial tests. Conceptually, our results
provide evidence that known algorithms for this problem are nearly best possible.
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1 Introduction

We study the classical problem of learning Gaussian mixture models (GMMs) in high dimensions.
This problem has a long history, starting with the early work of Pearson [Pea94] who introduced
the method of moments in this context. Over the past three decades, there has been a vast
literature on learning GMMs in both statistics and theoretical computer science [Das99, AK01,
VW02, AM05, FOS06, KSV08, BV08, MV10, BS10, SOAJ14, DK14, HP15, DHKK20, BDH+20,
DKK+22b, LM21, BDJ+22]. Here we focus on computational aspects of this problem with a focus
on information-computation tradeoffs in high dimensions.

The learning setup is as follows: We have access to i.i.d. samples from an unknown k-GMM on
Rd, P =

∑k
i=1wiN (µi,Σi), where wi ≥ 0 are the mixing weights satisfying

∑k
i=1wi = 1, µi ∈ Rd

are the unknown component means and Σi are the unknown component covariances. Roughly
speaking, there are two versions of the learning problem: (1) density estimation, where the goal
is to compute a hypothesis distribution H that is close to P in total variation distance, and (2)
parameter estimation1, where the goal is to approximate the target parameters wi,µi,Σi within
small error. While density estimation of k-GMMs on Rd is information-theoretically solvable with
poly(d, k) samples, parameter estimation may require 2Ω(k) samples (even in one dimension) if the
individual components are close to each other [MV10]. On the other hand, under the standard
separation assumption that the components are “nearly non-overlapping”, parameter estimation can
also be solved with poly(d, k) samples. Here we focus on families of instances satisfying appropriate
separation assumptions. Even though such instances can be learned with poly(d, k) samples, it is
by no means clear that a poly(d, k)-time learning algorithm exists. In other words, we explore the
relevant information-computation tradeoffs — inherent tradeoffs between the sample complexity and
the computational complexity of learning.

A number of recent works have established information-computation tradeoffs in the context of
learning GMMs. The first such result was given in [DKS17] and applied to the class of Statistical
Query (SQ) algorithms2. Specifically, [DKS17] constructed a hard family of GMMs (henceforth
informally termed as “parallel pancakes”) and showed that any SQ learner for this family requires
super-polynomial time. Interestingly, the class of parallel pancakes is learnable with O(k log d)
samples, while any SQ learning algorithm requires dΩ(k) time. It is worth noting that subsequent
work [BRST21, GVV22] established computational hardness for essentially the same class of instances,
under widely-believed cryptographic assumptions.

In this work, we focus on a simpler and well-studied family of GMMs for which significantly
faster learning algorithms are known. (We provide a detailed comparison between the family of
instances we consider and the parallel pancakes construction of [DKS17] in Section 1.2.) Specifically,
we consider GMMs of the form P =

∑k
i=1wiN (µi,Σi), satisfying (a) miniwi ≥ 0.9/k, (b) Σi ⪯ I,

and (c)∥µi −µj∥2 ≥ kε, for some ε > 0. Condition (a) posits that the component weights are nearly
uniform. (This first condition is relevant for the clustering/parameter estimation problems, as these
tasks require Ω(1/miniwi) samples.) Condition (b) says that each component covariance is unknown
and bounded above by the identity. Finally, condition (c) requires that the component means
are pairwise separated by at least kε, in ℓ2-distance. Here the parameter ε > 0 is assumed to be
sufficiently large so that kε ≫

√
log k. This assumption is required as, even for the uniform weights

and identity covariance case (i.e., when wi = 1/k and Σi = I for all i), the clustering problem can
be solved with poly(d, k) samples if and only if the pairwise mean separation is ∆ ≫

√
log k [RV17].

1A related task is that of clustering the sample based on the generating component. Once we have an accurate
clustering, assuming one exists, we can individually learn the individual component parameters.

2Via a recent reduction [BBH+21], these SQ lower bounds imply qualitatively similar low-degree testing lower
bounds.
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It is easy to see that the aforementioned family of GMMs is learnable using poly(d, k) samples
(ignoring computational considerations). Two independent works [HL18, KSS18] gave SoS-based
learning algorithms for this family of GMMs with sample complexity kO(1)dO(1/ε) and computational
complexity (dk)O(1/ε2). With a more careful analysis, the runtime can be further improved to
(dk)O(1/ε) [ST21, DKK+22a]. Note that for the important special case that the mean separation is
∆ ≫ logc(k), for some constant c ≥ 1/2, these algorithms have quasi-polynomial sample and time
complexities, namely (dk)O(log k).

A natural question is whether the aforementioned upper bounds are inherent or can be significantly
improved. Concretely, we address the following open problem:

Is there a poly(d, k)-time learning algorithm for separated GMMs
with bounded covariance components and mean separation ∆ = polylog(k)?

For the special case of spherical components, namely when each individual Gaussian has identity
covariance (i.e., Σi = I for all i), very recent work [LL22] made significant algorithmic progress on
this question. Specifically, they gave a poly(d, k) time learning algorithm that succeeds as long as
∆ ≫ log1/2+c(k), for any constant c > 0. The algorithm in [LL22] crucially leveraged the assumption
that the individual components are known (and equal to the identity). On the other hand, their
upper bound raised the hope that poly(d, k) complexity might be attainable even for unknown
bounded covariance components with similar mean separation.

In this work, we provide evidence that known learning algorithms [HL18, KSS18, ST21, DKK+22a]
for this subclass of GMMs are qualitatively best possible. Concretely, we prove an SQ lower bound
for this family of GMMs suggesting the following information-computation tradeoff: For mean
separation ∆ = kε, any (SQ) learning algorithm either requires 2d

Ω(1) time or uses at least dΩ(1/ε)

samples. In particular, this implies that the quasi-polynomial upper bounds for mean separation
of ∆ = polylog(k) are best possible for the class of SQ algorithms. Using known results [BBH+21],
this SQ lower bound implies a qualitatively similar low-degree testing lower bound.

We also provide an interesting implication for the special case of ε = 1/2. Specifically, we
establish an SQ lower bound suggesting that any efficient SQ algorithm under separation ∆ ≪ k1/2

requires nearly quadratically many samples (in the dimension d). On the other hand, O(kd) samples
suffice without computational limitations. Recent work [DKK+22b] developed an O(dk)-sample and
computationally efficient algorithm for learning bounded covariance distributions (and, consequently,
bounded covariance Gaussians) under separation Ω̃(k1/2). A natural open question is whether this
separation bound can be significantly improved while preserving sample near-optimality. Perhaps
surprisingly, we show that this is not possible for SQ algorithms: any efficient SQ algorithm that
works for separation Ck1/2, for a sufficiently small constant C, requires near-quadratically many
samples in d. This gap suggests that the algorithm of [DKK+22b] succeeds under the best possible
separation within the class of computationally efficient and sample near-optimal algorithms.

1.1 Our Results

Our main result is a Statistical Query lower bound of dΩ(1/ε) for learning the aforementioned subclass
of Gaussian mixtures with mean separation ∆ ≥ kε.

Before we formally state our contributions, we require basic background on the SQ model.

SQ Model Basics Before we state our main result, we recall the basics of the SQ model [Kea98,
FGR+13]. Instead of drawing samples from the input distribution, SQ algorithms are only permitted
query access to the distribution via the following oracle:
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Definition 1.1 (VSTAT Oracle). Let D be a distribution on Rd. A statistical query is a bounded
function q : Rd → [0, 1]. For u > 0, the VSTAT(u) oracle responds to the query q with a value v
such that |v − Ex∼D[q(x)]| ≤ τ , where τ = max{1/u,

√
Varx∼D[q(x)]/u}. We call τ the tolerance

of the statistical query.

An SQ lower bound for a learning problem Π is typically of the following form: any SQ algorithm
for Π must either make a large number of queries Q or at least one query with small tolerance
τ . When simulating a statistical query in the standard PAC model (by averaging i.i.d. samples to
approximate expectations), the number of samples needed for a τ -accurate query can be as high as
Ω(1/τ2). Thus, we can intuitively interpret an SQ lower bound as a tradeoff between runtime of
Ω(Q) or a sample complexity of Ω(1/τ2).

Main Result Our main SQ lower bound result for learning GMMs is stated informally below. A
more detailed formal version is provided in Theorem 3.1.

Theorem 1.2 (Main Result, Informal). For d, k ∈ Z+ sufficiently large and ε > 0 such that
kε ≫

√
log k, any SQ algorithm that correctly distinguishes between N (0, Id) and a k-GMM on Rd

with minimum mixing weight at least 0.99/k, common covariance Σ ⪯ Id for each component, and
pairwise mean separation ∆ ≥ kε, either makes 2d

Ω(1) statistical queries or requires at least one query
to VSTAT(dΩ(1/ε)).

As is typically the case, our SQ lower bound applies for the hypothesis testing problem of
distinguishing between the standard Gaussian and an unknown GMM in our family. Hardness for
testing a fortiori implies hardness for the corresponding learning problem (see Corollary 3.2).

A few additional remarks are in order. First notice that our SQ lower bound applies even for
the special case where the mixing weights are nearly uniform (within a factor of 2, say) and the
component covariances are the same, as long as they are unknown3. As it will become clear from our
construction, the common covariance matrix of each component has only two distinct eigenvalues:
each Gaussian component behaves like a standard Gaussian in all directions that are orthogonal to a
low-dimensional subspace, and along that subspace behaves like a spherical Gaussian with different
variance. Finally, we remark that our lower bound applies for a large range of the parameter ε > 0,
as long as kε is at least a sufficiently large constant multiple of

√
log k. Consequently, it implies that

the quasi-polynomial upper bounds for separation of polylog(k) are best possible for the class of SQ
algorithms.

The implications of our SQ lower bound to the low-degree polynomial testing model, via the
result of [BBH+21], are provided in Appendix D.

Quadratic SQ Lower Bound for Ω(
√
k) Separation Our second result concerns the special case

where the mean separation is proportional to k1/2, namely Ck1/2 for a sufficiently small universal
constant C (taking C = 1/3 suffices for our purposes). For this setting, we establish a nearly
quadratic tradeoff between the sample complexity of the learning problem and the sample complexity
of any efficient SQ algorithm for the problem. Specifically, we show the following:

Theorem 1.3 (Quadratic SQ Lower Bound, Informal). Let d, k ∈ Z+ with d sufficiently large and
2 ≤ k ≪ log d. Any SQ algorithm that correctly distinguishes between N (0, Id) and a k-GMM on Rd

with uniform weights, common covariance Σ ⪯ Id for each component, and pairwise mean separation
∆ ≥

√
k/3, either makes 2d

Ω(1) statistical queries or requires at least one query to VSTAT(d1.99).
3Recall that known algorithms do not require these assumptions. The runtime upper bound of (dk)O(1/ε) holds as

long as the minimum weight is at least 1/poly(k) and even if the component covariances are different.
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A more detailed formal version is provided in Theorem 4.1. The natural interpretation of the
above result is as follows: any SQ algorithm for this class of instances either uses Ω(d1.99) many
samples or requires at least 2d

Ω(1) many statistical queries (time). On the other hand, without
computational constraints, O(kd) samples information-theoretically suffice.

Using different techniques, [DDW21] established a low-degree testing lower bound for the k = 2
case with constant separation, suggesting a sample complexity tradeoff of Ω̃(d2).

1.2 Overview of Techniques

The best comparison to our results is the prior work of [DKS17]. Both works prove SQ lower bounds
for learning mixtures of separated, common covariance Gaussians. The major difference is that
the [DKS17] result requires large separation relative to the smallest eigenvalue of the covariance (or,
more accurately, relative to the quadratic form defined by the inverse covariance matrix), while our
result requires large separation relative to the largest eigenvalue. As we will see, this seemingly small
distinction leads to significant differences.

Underlying both SQ lower bound results is the hidden-direction non-Gaussian component analysis
construction of [DKS17] (or, in our case, the generalization to hidden subspaces given in [DKPZ21]).
The high-level idea is that if one can find a distribution A (defined in a small number of dimensions)
that matches its first t moments with the standard Gaussian, then distinguishing the standard
Gaussian from a distribution D that behaves like A along a hidden subspace and is standard Gaussian
in the orthogonal directions requires SQ complexity dΩ(t). This generic result has been leveraged to
establish SQ lower bounds for a wide range of high-dimensional statistical tasks, see, e.g., [DKS17,
DKS19, DKZ20, GGK20, DK22, DKPZ21, DKK+22c, DKS18, DKP+21, DKKZ20, CLL22]. The
main difficulty in each case is, of course, to construct the desired moment-matching distributions.

In our context, this means that for either result one needs to exhibit a distribution A, which is a
mixture of k separated Gaussians, so that A matches many moments with the standard Gaussian.
By letting A be a discrete distribution with support size k convolved with a narrow Gaussian, it
suffices to find a distribution A′ supported on k pairwise separated points so that A′ matches t
moments with a standard Gaussian.

At this point, the difference in the underlying separation assumptions becomes critical. In
the parallel pancakes construction of [DKS17], one only needs the points in the support of A′ to
have some minimal separation so that after convolving with a very narrow Gaussian, the resulting
components of A are still well separated in total variation distance. This fact allows them to use
Gaussian quadrature and construct a one-dimensional distribution A′ which matches its first t = 2k
moments with N (0, 1). This construction leads to an SQ lower bound of dΩ(k). It should be noted
that each unknown GMM in this old construction consists of k “skinny” Gaussians whose mean
vectors all lie in the same direction. Moreover, each pair of components will have total variation
distance very close to 1 and their mean vectors are separated by Ω(1/

√
k).

In our setting however, we require much stronger separation assumptions. In particular, we
require that the elements in the support of A′ be separated by some relatively large separation ∆
on the order of kε ≫

√
log(k). Unfortunately, it is provably impossible to find a moment-matching

construction with this kind of separation in one dimension. Intuitively, this holds because the
standard Gaussian G ∼ N (0, 1) is highly concentrated about the origin. If A′ behaves similarly to
G, it must also have most of its mass near the origin; but this is clearly impossible if the points of
its support are pairwise separated by ∆. More rigorously, one can show that the indicator function
of an interval can be reasonably well-approximated by a constant-degree polynomial with respect
to the Gaussian distribution (see, e.g, [DGJ+10]). This implies that any distribution over R that
matches constantly many moments with G must be relatively close to G in Kolmogorov distance,
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which is impossible for any discrete distribution with a widely separated support.
To circumvent this issue, we instead produce a distribution A′ over Rm, for some m on the order

of ∆2 (Proposition 3.3). Intuitively, this makes sense because Gaussian random points on Rm have
pairwise separation approximately

√
m = ∆; this motivates us to use points drawn from N (0, Im)

to construct the support of A′ (see Proposition 3.5, we will describe the construction in more detail
in the next paragraph). Unfortunately, this choice comes with a tradeoff. As the dimension of the
space of degree-t polynomials on Rm is approximately mt, we will need the support of A′ to be of
size roughly mt in order to have enough degrees of freedom to be able to match all of these moments.
In particular, this means that the parameter k needs to be on the order of ∆2t, and since we are
considering separation ∆ = kε, we need to choose t to be on the order of 1/ε. Thus, the resulting
SQ lower bound will be on the order of dΩ(t) = dΩ(1/ε). Note that we cannot hope to do better, as
the algorithms of [HL18, KSS18] can be formalized as SQ algorithms with similar complexity.

It remains to explain how to construct A′. We want a distribution over a small support that
matches t moments with the standard Gaussian over Rm and also has large pairwise separation of
its support points. The simple idea behind our construction is that picking a uniformly random set
of points as our support should both ensure the separation with high probability, and also produce a
set that is well-representative of a Gaussian. We achieve this as follows: we pick an appropriate
number of i.i.d. Gaussian random points in Rm and, using linear programming duality, show that
with high probability there exists a moment-matching distribution supported on these points (cf.
Proposition 3.5).

For the case of ε = 1/2 (which corresponds to pairwise mean separation of ∼
√
k), the above

analysis is suboptimal because it shows an SQ lower bound of dΩ(1/ε) with the constant inside the
big-Ω being rather large. In order to obtain a quadratic SQ lower bound for that case, we instead
provide an explicit distribution over Rm matching three moments with the standard Gaussian (cf.
Section 4).

2 Preliminaries

We record the preliminaries necessary for the main body of this paper. We provide additional
background in Appendix A.

2.1 Notation and Hermite Analysis

Basic Notation We use Z+ for positive integers and [n]
def
= {1, . . . , n}, Sd−1 for the d-dimensional

unit sphere, and ∥v∥2 for the ℓ2-norm of a vectors. We use Id to denote the d× d identity matrix.
For a matrix A, we use ∥A∥F and ∥A∥op to denote the Frobenius and spectral (or operator) norms
respectively. We use N (µ,Σ) to denote the Gaussian with mean µ and covariance matrix Σ. For a set
S, we use U(S) for the uniform distribution on S. We use ϕm(x) for the pdf of the standard Gaussian
in m-dimensions N (0, Im), and ϕ(x) the pdf of N (0, 1). Slightly abusing notation, we will use the
same letter for a distribution and its pdf, e.g., we will denote by P (x) the pdf of a distribution P .

Hermite Analysis We use hk for the normalized probabilist’s Hermite polynomials, which comprise
a complete orthogonal basis of all functions f : R → R with Ex∼N (0,1)[f

2(x)] < ∞. When using
multi-indices a ∈ Zd as subscripts, we refer to the multivariate Hermite polynomials.

Ornstein-Uhlenbeck Operator For a ρ > 0, we define the Gaussian noise (or Ornstein-
Uhlenbeck) operator Uρ as the operator that maps a distribution F on Rm to the distribution of the
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random variable ρx+
√
1− ρ2z, where x ∼ F and z ∼ N (0, Im) independently of x. A standard

property of the Uρ operator is that it operates diagonally with respect to Hermite polynomials, i.e.,
Ex∼UρF [ha(x)] = ρ|a|Ex∼F [ha(x)], where |a| =

∑
i ai.

2.2 Background on the Statistical Query Model

We record the definitions from the SQ framework of [FGR+13] that we will need: We define the
decision problem over distributions B(D, D) to be the hypothesis testing problem of distinguishing
between D and a member of the family of distributions D. We define the pairwise correlation
between two distributions as χD(D1, D2) =

∫
Rd D1(x)D2(x)/D(x) dx− 1. We say that a set of s

distributions D = {D1, . . . , Ds} is (γ, β)-correlated relative to a distribution D if |χD(Di, Dj)| ≤ γ
for all i ̸= j, and |χD(Di, Dj)| ≤ β for i = j.

Definition 2.1 (Statistical Query Dimension). Let β, γ > 0. Consider a decision problem B(D, D),
where D is a fixed distribution and D is a family of distributions. Define s to be the maximum integer
such that there exists a finite set of distributions DD ⊆ D such that DD is (γ, β)-correlated relative
to D and |DD| ≥ s. The Statistical Query dimension with pairwise correlations (γ, β) of B is defined
as s and denoted as SD(B, γ, β).

Lemma 2.2 (Corollary 3.12 in [FGR+13]). Let B(D, D) be a decision problem. For γ, β > 0, let
s = SD(B, γ, β). For any γ′ > 0, any SQ algorithm for B requires queries at least one query to
VSTAT(1/(3(γ + γ′))) or makes at least sγ′/(β − γ) queries.

Our construction will use distributions that coincide with a given distribution A in some
subspace, and are standard Gaussians in every orthogonal direction. We need the following result
from [DKPZ21] that upper bounds the correlation between two such distributions.

Lemma 2.3 (Corollary 2.4 in [DKPZ21]). Let A be a distribution over Rm such that the first t
moments of A match the corresponding moments of N (0, Im). Let G(x)=A(x)/ϕm(x) be the ratio
of the corresponding probability density functions. For matrices U,V ∈ Rm×d such that UU⊤ =
VV⊤ = Im, define PA,U and PA,V to be distributions over Rd with probability density functions
G(Ux)ϕd(x) and G(Vx)ϕd(x), respectively. Then, the following holds: |χN (0,Im)(PA,U, PA,V)| ≤
∥UV⊤∥t+1

op χ2(A,N (0, Im)).

Note that in the statement above, PA,V can be rewritten in the following form:

PA,V(x) = A(Vx)
ϕd(x)

ϕm(Vx)
= A(Vx)(2π)−

(d−m)
2 e−

1
2
∥x−V⊤Vx∥22 = A(Vx)ϕd−m (ProjV⊥(x)) , (1)

where ProjV⊥(x) = x−V⊤Vx is the projection of x to the subspace that is perpendicular to the
subspace V spanned by the rows of V. Therefore, Equation (1) demonstrates that PA,V coincides
with the distribution A in the subspace spanned by the rows of V and is standard Gaussian in the
orthogonal complement.

3 Main Result: Proof of Theorem 1.2

In this section, we prove the following more detailed version of our main result (Theorem 1.2). Before
moving to the proof, we state the implications of the above to the hardness of the corresponding
density estimation problem in Corollary 3.2.
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Theorem 3.1 (SQ Lower Bound: Hypothesis Testing Hardness). Let d, k ∈ Z+, ε > 0 and C be
a sufficiently large absolute constant. Assume that k > (C/ε)1/ε, d > kCε, and kε > C

√
log k.

Consider the following hypothesis testing problem regarding a distribution P on Rd:

• (Null Hypothesis) P = N (0, Id).

• (Alternative Hypothesis) P belongs to a family P, every member of which is a mixture of Gaussians∑k
i=1wiN (µi,Σ) for unknown weights wi > 0.99/k, mean vectors with pairwise separation

∥µi − µj∥2 ≥ kε for all i ̸= j ∈ [k], and common covariance matrix Σ ⪯ Id. Moreover,
dTV(P,N (0, Id)) > 0.99 and dTV(P, P

′) > 0.99 for all distinct P, P ′ ∈ P.

Any algorithm with statistical query access to P that distinguishes correctly between the two cases
does one of the following: it performs 2d

Ω(1) statistical queries or uses at least one statistical query to
VSTAT(dΩ(1/ε)e−O(k2ε)).

Corollary 3.2 (SQ Lower Bound: Density Estimation Hardness). Under the assumptions of
Theorem 3.1 and the additional assumption kε <

√
log(d)/(Cε), let A be an SQ algorithm that given

access to a mixture of Gaussians P =
∑k

i=1wiN (µi,Σ) for some unknown weights wi > 0.99/k, mean
vectors µi ∈ Rd for i ∈ [k] with pairwise separation ∥µi − µj∥2 ≥ kε and common covariance matrix
Σ ⪯ Id, finds a distribution Q with dTV(P,Q) < 1/4. Then A necessarily does one of the following:
it performs 2d

Ω(1) statistical queries or uses at least one statistical query to VSTAT(dΩ(1/ε)e−O(k2ε)).

Proof. The reduction from the hypothesis testing problem of Theorem 3.1 to the corresponding
learning problem is fairly standard, see, e.g., Lemma 8.5 in [DK23]. To check the applicability of
that lemma, we note that dTV(P,N (0, Id)) > 0.99 > 2(τ + 1/4), where the inequality uses the
assumption kε <

√
log(d)/(Cε) for bounding the query tolerance τ by a constant.

The main ingredient towards proving Theorem 3.1 is Proposition 3.3, which establishes the
existence of a low-dimensional spherical k-GMM with well-separated means, that matches its first
Ω(1/ε) moments with the standard Gaussian. We prove this result in Section 3.1. In this section,
we show how Theorem 3.1 follows from Proposition 3.3.

Proposition 3.3. Let ε > 0, d, k ∈ Z+, c > 0 be a sufficiently small constant and C be a sufficiently
large constant. If k > (C/ε)1/ε, d > kCε, and kε > C

√
log k, there exists a distribution A over Rm

with m := k2ε that satisfies the following:

(i) A is a mixture of k spherical Gaussians in Rm with variance δ = ck−2.5/m in every direction
and minimum mixing weight at least 0.99/k.

(ii) A matches its first t = Θ(1/ε) moments with N (0, Im).

(iii) The means µi,µj of any two distinct components have separation ∥µi − µj∥2 ≥ kε.

(iv) For every U,V ∈ Rm×d with UU⊤ = VV⊤ = Id and ∥UV⊤∥F = O(d−
1
10 ), it holds

dTV(PA,U, PA,V) > 0.99. Moreover, for all V ∈ Rm×d it holds dTV(PA,V,N (0, Id)) > 0.99.

(v) χ2(A,N (0, Im) ≤ δ−m/2eO(m).

To prove Theorem 3.1, we create a family of distributions of the form of Equation (1) by embedding
the k-GMM onto many nearly orthogonal subspaces. The resulting distributions in Rd will be the
k-GMMs described in our main theorem’s statement. We then use the properties established in
Proposition 3.3 to argue that this family has a large SQ dimension, making it hard to learn.
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Proof of Theorem 3.1. Recall the definition of a decision problem over distributions (Definition A.2).
Consider the decision problem B(D, D), where D = N (0, Id) and D is defined to be the set of
distributions of the form PA,V as in Equation (1). We bound from below the SQ dimension
(Definition 2.1) of B(D, D). Let S be the set from the fact below.

Fact 3.4 (See, e.g., Lemma 17 in [DKPZ21] ). Let m, d ∈ N with m < d1/10. There exists a set S
of 2dΩ(1) matrices in Rm×d such that every U ∈ S satisfies UU⊤ = Im and every pair U,V ∈ S with
U ̸= V satisfies ∥UV⊤∥F ≤ O(d−1/10).

Let DD := {PA,V}V∈S . Using Fact 3.4 and Lemma 2.3, we have that for any distinct V,U ∈ S

|χN (0,Im)(PA,U, PA,V)| ≤
∥∥∥UV⊤

∥∥∥t+1

op
χ2(A,N (0, Im)) ≤ Ω(d)−(t+1)/10χ2(A,N (0, Im)) , (2)

where we used that ∥A∥op ≤ ∥A∥F for any matrix A. On the other hand, when V = U, we
have that |χN (0,Im)(PA,U, PA,V)| ≤ χ2(A,N (0, Im)). Thus, the family DD is (γ, β)-correlated with
γ = Ω(d)−(t+1)/10χ2(A,N (0, Im)) and β = χ2(A,N (0, Im)) with respect to D = N (0, Im). This
means that SD(B(D, D), γ, β) ≥ exp(dΩ(1)).

Recall that t = Θ(1/ε). Applying Lemma 2.2 with γ′ := γ = Ω(d)−(t+1)/10χ2(A,N (0, Im)), we
obtain that any SQ algorithm for Z requires at least exp(dΩ(1))d−O(t) = exp(dΩ(1))d−O(1/ε) calls to

VSTAT
(
dΩ(1/ε)/χ2(A,N (0, Im))

)
.

Finally, using Proposition 3.3, χ2(A,N (0, Im)) ≤ kO(1) exp(O(m)) = kO(1) exp(O(k2ε)) ≤ exp(O(k2ε)),
where we also used our assumption that kε is much bigger than

√
log k. The number of calls

exp(dΩ(1))d−O(1/ε) mentioned before can be bounded below by exp(dΩ(1)), using our assumptions
that d > kCε > (C/ε)C . This completes the proof of Theorem 3.1.

3.1 Moment Matching: Proof of Proposition 3.3

In Section 3.1.1, we provide the basis for Proposition 3.3, which shows the existence of a low-
dimensional discrete distribution using an LP-duality argument. Then, in Section 3.1.2, we complete
the proof of Proposition 3.3.

3.1.1 LP Duality Argument

We establish the following:

Proposition 3.5. Let C be a sufficiently large absolute constant. For any m, t ∈ Z+ with m > Ct2,
there exists a discrete distribution D on Rm with support supp(D) satisfying the following:

(i) |supp(D)| = m13t,

(ii) D gives mass at least 0.99/|supp(D)| to every point in its support,

(iii) D matches its first t moments with N (0, Im), i.e., Ex∼D[p(x)] = Ex∼N (0,I)[p(x)], for every
polynomial p : Rm → R of degree at most t,

(iv) 0.9
√
m ≤ ∥x∥2 ≤ 1.1

√
m for all x ∈ supp(D).

(v) for any distinct x,y ∈ supp(D) it holds ∥x− y∥2 ≥
√
m.
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Proof. Let a set S = {x1, . . . ,xN} of N = m13t points drawn from N (0, Im). We will show that with
non-trivial probability, taking D to be the uniform distribution over S satisfies the desired properties.
The proof is based on an LP duality argument. Proving Items (ii) and (iii) is equivalent to proving
that the linear program below (with unknowns {µi}i∈[N ]) admits a solution. Let α := 0.99/N , the
desired lower bound for all weights. The LP is the following:

Find: µ1, . . . , µN

s.t.:
∑
i∈[n]

µip(xi) = E
x∼N (0,Im)

[p(x)], for any at most t-degree polynomial p

µi ≥ α, for all i ∈ [N ]

(3)

Note that the first constraint for p being the constant polynomial p = 1 means that the µi’s form a valid
distribution. By standard LP duality, the above is feasible unless there exists a linear combination of
constraints that produces the contradiction 0 < −1. Concretely, we start by introducing multipliers,
also known as dual variables, for each constraint. For the final constraint, these will be some variables
βi ≥ 0 for i ∈ [N ]. Regarding the first constraint, a multiplier from R is assigned to every polynomial
with a degree of at most t. However, since the first constraint applies to all such polynomials and
the set is closed under multiplication, these dual variables can be absorbed into the polynomials
and will not be explicitly written. After multiplying and summing the constraints, we obtain∑

i∈[N ]

µi (−βi + p(xi)) ≤ E
x∼N (0,Im)

[p(x)]− α
∑
i∈[N ]

βi . (4)

To derive the dual LP, we set the coefficients of µi equal to zero and ask for the right-hand side
of Equation (4) to be negative. This means that the primal LP (3) is feasible unless LP (5) on
the left part below has a solution, where LP (5) is further equivalent to LP (6) on the right part:

Find: β1, . . . , βN ∈ R+,

p at most t-degree polynomial
s.t.: −βi + p(xi) = 0, ∀i ∈ [N ]

E
x∼N (0,Im)

[p(x)] < α
∑
i∈[N ]

βi

(5)

Find: p at most t-degree polynomial

s.t.: p(xi) ≥ 0, ∀i ∈ [N ]

E
x∼N (0,Im)

[p(x)] < α ·N· E
x∼U(S)

[p(x)]

(6)

For verifying the equivalence of the two LPs it suffices to note that
∑

i∈[N ] βi =
∑

i∈[N ] p(xi) =

N Ex∼U(S)[p(x)]. By scaling (homogeneity), we can assume in the above that Ex∼N (0,Im)[p
2(x)] = 1.

Recall that the points x1, . . . ,xN are samples from N (0, Im). Since we are proving the proposition
via a probabilistic argument, it remains to show that with non-trivial probability these points will be
such that LP (6) is infeasible (and thus LP (3) is feasible). We prove this by contradiction: Assume
that LP (6) is feasible. Let U(S) be the uniform distribution over S. We show that, in fact, U(S)
approximates the first four moments of any polynomial with a degree at most t (the proof is given
in Appendix B.1). Formally, we show the following:

Claim 3.6. Let a set S = {x1, . . . ,xN} of i.i.d. samples xi ∼ N (0, Im). If N > 10m12t/η2, then
with probability at least 0.6, for any polynomial p : Rm → R of degree at most t it holds

(i) Ex∼U(S)[p(x)] ≤ Ex∼N (0,Im)[p(x)] + η,

(ii) Ex∼U(S)[p
2(x)] ≥ Ex∼N (0,Im)[p

2(x)]− η, and
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(iii) Ex∼U(S)[p
4(x)] ≤ Ex∼N (0,Im)[p

4(x)] + η.

For our case, we assumed that LP (6) is feasible, thus Ex∼N (0,Im)[p(x)] < aN Ex∼U(S)[p(x)].
We use Claim 3.6 with accuracy η = 3−t/200, so the sample complexity from that claim be-
comes 40000 · 9tm12t. Since we assumed that m > 6000, the number of samples that we use is
N = m13t > 40000 · 9tm12t and thus satisfies the requirement of the claim. The claim thus yields

E
x∼U(S)

[p(x)] ≤ E
x∼N (0,Im)

[p(x)] + η < aN E
x∼U(S)

[p(x)] + η ,

which means that

E
x∼U(S)

[p(x)] <
η

1− aN
≤ 3−t/200

1− 0.99
=

3−t

2
. (7)

On the other hand, for every t ≥ 1 we have that

E
x∼U(S)

[p(x)] ≥
Ex∼U(S)[p

2(x)]3/2√
Ex∼U(S)[p4(x)]

≥ (1− η)3/2√
Ex∼N (0,Im)[p4(x)] + η

≥ 0.7√
32t + 3−t/2

≥ 3−t

2
, (8)

where the penultimate inequality uses Gaussian hypercontractivity (Fact A.7). Comparing Equa-
tions (7) and (8) we have obtained a contradiction.

We now show the lower bound of Item (iv). Using the concentration of the norm of a Gaussian
vector (Fact A.5 with β =

√
m/10), we have that

Pr
x1,...,xN∼N (0,Im)

[∃i : |∥xi∥2 −
√
m| < 0.1

√
m] ≤ 2Ne−m/1600 = 2m13te−m/1600 < 0.1 , (9)

where we used that t <
√
m/16000 < m/1600−ln(20)

13 lnm for m > 30000.
Regarding Item (v), it is a standard property of the Gaussian all pairs of points are nearly-

orthogonal with high probability (Fact A.6 with α = 0.1),

Pr
x1,...,xN∼N (0,Im)

[∃i ̸= j : |⟨xi,xj⟩| > m−0.1] ≤ N2e−m0.8/5 ≤ m26te−m0.8/5 < 0.1 , (10)

where the last inequality uses that t <
√
m/16000 < m0.8/5−ln(10)

26 lnm for m > 30000. Conditioning on
the two bad events of Equations (9) and (10) not happening, we have that for any distinct i, j ∈ [N ],
it holds ∥xi − xj∥22 = ∥xi∥22 + ∥xj∥22 − 2⟨xi,xj⟩ ≥ 1.62m− 2m−0.1 ≥ m, for m > 2.

3.1.2 Proof of Proposition 3.3

We use the following throughout the proof: Let D be the distribution from Proposition 3.5 with
parameters m = k2ε, and t = 1/(26ε) (note that because of our assumption k > (C/ε)1/ε the
requirement of Proposition 3.5 is satisfied and thus the proposition is applicable). Let A = Uρ(D),
where Uρ denotes the Ornstein-Uhlenbeck operator. We choose ρ =

√
1− δ and δ = ck−2.5/m for a

sufficiently small positive constant c. We prove each part of Proposition 3.3 separately.

Proof of Item (i) The fact that A is a mixture of Gaussians with each component having variance
δ in each direction follows immediately by the definition of A as the distribution D after Gaussian
smoothing via the Ornstein-Uhlenbeck operator with parameter ρ =

√
1− δ. We can also check that

the number of components is k: by Proposition 3.5 we have that the number of components is m13t.
Recall that we have further selected m = k2ε. Thus, the number of components is m13t = k26εt.
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This is equal to k by our choice of t = 1/(26ε). The fact that we have mass 0.99/k for each Gaussian
component follows from Item (ii) of Proposition 3.5.

Proof of Item (ii) For any a ∈ Nm with |a| ≤ t, we have

E
x∼Uρ(D)

[ha(x)] = ρ|a| E
x∼D

[ha(x)] = ρ|a| E
x∼N (0,Im)

[ha(x)] = E
x∼N (0,Im)

[ha(x)] ,

where the first equality uses Fact A.1, the next one uses Item (iii) of Proposition 3.5, and the last one
is due to the property of Hermite polynomials Ex∼N (0,I)[ha(x)] = 1 if |a| = 0 and zero otherwise.

Proof of Item (iii) Using Item (v) of Proposition 3.5 combined with our choice m = k2ε and the
fact that the Ornstein-Uhlenbeck operator scales all the means by a factor of ρ =

√
1− δ > 1/2, we

will have that the pairwise means separation in our construction is at least ρkε > kε/2.

Proof of Item (iv) We start with some notation. Denote by V the subspace spanned by
{v1, . . . ,vm}, and U = span{u1, . . . ,um}. Extend the set v1, . . . ,vm to an orthonormal basis
v1, . . . ,vm,vm+1, . . . ,v2m of the vector space spanned by the vectors {v1, . . . ,vm,u1, . . . ,um}. Fur-
thermore, let the vectors v1, . . . ,v2m . . . ,vd be the extension to an orthonormal basis of the entire
Rd. Consider the matrices RV1 = [v1 . . .vm]⊤ (note that RV1 coincides with V in this notation),
RV2 = [vm+1 . . .v2m]⊤, and RV3 = [v2m+1 . . .vd]

⊤. Let RV = [R⊤
V1

R⊤
V2

R⊤
V3

]⊤.
We also define a similar notation regarding U. Namely, extend the set u1, . . . ,um to an

orthonormal basis u1, . . . ,um,um+1, . . . ,u2m of the vector space spanned by the vectors {v1, . . . ,vm,
u1, . . . ,um}. Let u1, . . . ,u2m . . . ,ud be its extension to an orthonormal basis of the entire Rd.
Define the matrices RU1 = [u1 . . .um]⊤, RU2 = [um+1 . . .u2m]⊤, and RU3 = [u2m+1 . . .ud]

⊤. Let
RU = [R⊤

U1
R⊤

U2
R⊤

U3
]⊤. Since RU3 and RV3 are meant to be orthonormal bases of the same space,

we pick RU3 = RV3 .
We now focus on our integral:

IV,U
def
=

∫
z∈Rd

min{PA,V(z), PA,U(z)}dz , (11)

where PA,V and PA,U are defined as in Equation (1) (where recall that ϕk denotes the pdf of
the k-dimensional standard Gaussian). Using that definition for PA,V and the notation that we
introduced earlier, we write

PA,V(z) = A(Vz)ϕd−m (ProjV⊥(z))

= A(Vz)ϕd−m

(
[R⊤

V2
R⊤

V3
]⊤z
)

= A(Vz)ϕm (RV2z)ϕd−2m (RV3z) ,

where in the last equality we separated the standard Gaussian into two components. Using a similar
rewriting for PA,U(z) along with RU3 = RV3 (see first paragraphs), our integral becomes

IV,U =

∫
z∈Rd

min{A(Vz)ϕm (RV2z)ϕd−2m (RV3z) , A(Uz)ϕm (RU2z)ϕd−2m (RV3z)}dz .

We rotate the space using the unitary matrix R⊤
V. Hence, Equation (11) becomes

IV,U =

∫
z∈Rd

min{A(VR⊤
Vz)ϕm(RV2R

⊤
Vz)ϕd−2m(RV2R

⊤
Vz),

A(UR⊤
Vz)ϕm

(
RU2R

⊤
Vz
)
ϕd−2m

(
RV3R

⊤
Vz
)
}dz . (12)
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By definition of these matrices, it holds that VR⊤
V = [Im×m 0m×(d−m)]. Similarly it holds RV2R

⊤
V =

[0m×m Im×m 0m×(d−2m)], and RV3R
⊤
V = [0(d−2m)×2m I(d−2m) ×(d−2m)]. Using the notation x1...k =

(x1, . . . , xk) to denote the first k coordinates of a vector x ∈ Rd with d ≥ k, we have that VR⊤
Vz =

z1...m, and similarly RV2R
⊤
Vz = zm+1...2m, RV3R

⊤
Vz = z2m+1...d. Using that simplification and

renaming x = z1...m, y = zm+1...2m, w = z2m+1...d, the first part of the min operator in Equation (12)
can be rewritten as A(VR⊤

Vz)ϕm(RV2R
⊤
Vz)ϕd−2m(RV2R

⊤
Vz) = A(x)ϕm(y)ϕd−2m(w). Using similar

reasoning for the second part of the min, we have that

IV,U =

∫
min{A(x)ϕm(y)ϕd−2m(w),

A(UR⊤
V1

x+UR⊤
V2

y)ϕm(RU2R
⊤
V1

x+RU2R
⊤
V2

y)ϕd−2m(w)}dxdydw

=

∫
z∈Rd

min{A(x)ϕm(y), A(UR⊤
V1

x+UR⊤
V2

y)ϕm(RU2R
⊤
V1

x+RU2R
⊤
V2

y)}dxdy , (13)

where the last line takes ϕd−2m(w) as a common factor and uses that its integral with respect to w
equals to one. We now do the following change of integration variables:[

x
x′

]
=

[
I 0

UR⊤
V1

UR⊤
V2

] [
x
y

]
.

The Jacobian of the inverse transformation is 1/ det(URV
⊤
2 ), where we used the fact that det(A−1) =

1/ det(A) as well as the fact that (due to the identity block of the matrix) the determinant ends up
being only that of the bottom right block.

Performing this change of variables in Equation (13) and using the pointwise upper bound
ϕm(·) ≤ (2π)−m/2 ≤ 1, we obtain

IV,U ≤ 1

det(URV
⊤
2 )

∫
x∈Rm

∫
x′∈Rm

min{A(x), A(x′)}dxdx′ . (14)

We now claim that this determinant is close to one because V and U are nearly-orthogonal, and
thus the singular values of the matrix URV

⊤
2 are all close to one. The requirement d > mC below

holds by assumption.

Claim 3.7. If d > mC for a sufficiently large absolute constant C, then det(URV
⊤
2 ) ≥ 1/2.

Proof. To prove this claim, we show that the singular values of the matrix URV
⊤
2 are close to 1.

Recall that we have assumed that UU⊤ = VV⊤ = Id and ∥UV⊤∥F ≲ d−1/10. We have that

m = ∥U∥2F = ∥URV
⊤∥2F ≤ ∥URV

⊤
1 ∥2F + ∥URV

⊤
2 ∥2F

= ∥UV⊤∥2F + ∥URV
⊤
2 ∥2F ≤ Cd−1/5 + ∥URV

⊤
2 ∥2F ,

where C is some absolute positive constant. Hence, we have that ∥URV
⊤
2 ∥2F ≥ m−Cd−1/5. Moreover,

we also have that ∥URV
⊤
2 ∥op ≤ 1, which means that the maximum singular value of URV

⊤
2 is at

most 1. Assume that the minimum singular value of URV
⊤
2 is σmin. Then, we have that

m− 1 + σ2
min ≥ ∥URV

⊤
2 ∥2F ≥ m− Cd−1/5 .

Hence, σ2
min ≥ 1−Cd−1/5, and therefore all the singular values of URV

⊤
2 are at least (1−Cd−1/5)1/2.

Therefore, we have det(URV
⊤
2 ) ≥ (1−Cd−1/5)m/2 ≥ 1−C(m/2)d−1/5 ≥ 1/2 for d > (Cm)5 (which

is true by assumption). This completes the proof of Claim 3.7.
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We are now ready to further bound our integral IV,U. First, by writing the distribution A as a
mixture

∑
i∈[k] λiAi(x), we can break IV,U into contributions from every pair of components. We

have the following series of inequalities (see below for step-by-step explanations):

IV,U ≲
∫∫

x,x′∈Rm

min{A(x), A(x′)}dxdx′

=

∫∫
x,x′∈Rm

min

∑
i∈[k]

λiAi(x),
∑
j∈[k]

λjAj(x
′)

dxdx′

≤
∑

i,j∈[k]

∫∫
x,x′∈Rm

min{λiAi(x), λjAj(x
′)}dxdx′ (15)

≤
∑

i,j∈[k]

∫∫
x,x′∈Rm

max{λi, λj}min{Ai(x), Aj(x
′)}dxdx′

≤
∑

i,j∈[k]

∫∫
x,x′∈Rm

λimin{Ai(x), Aj(x
′)}dxdx′ +

∑
i,j∈[k]

∫∫
x,x′∈Rm

λj min{Ai(x), Aj(x
′)}dxdx′ (16)

= k
∑

i,j∈[k]

∫∫
x,x′∈Rm

(λi/k)min{Ai(x), Aj(x
′)}dxdx′+

∑
i,j∈[k]

∫∫
x,x′∈Rm

(λj/k)min{Ai(x), Aj(x
′)}dxdx′

≤ 2k max
i,j∈[k]

∫∫
x,x′∈Rm

min{Ai(x), Aj(x
′)}dxdx′ , (17)

where Equation (15) uses that min(a + b, c) ≤ min(a, c) + min(b, c), Equation (16) uses that
max(a, b) ≤ a + b, and for the last step one can view the double summation in the first term of
the penultimate line as an expectation over the random choice of the indices i, j according to the
distribution that selects j uniformly at random from [k] and makes i equal to ℓ with probability λℓ.
A similar argument can be used for the second term of the penultimate line. Since the expectation
is always smaller than the maximum value, the last line follows.

Recall that each component Ai of the mixture distribution A is by definition Gaussian with
variance δ := ck−2.5/m in all directions. Let R := C ′√δm log(1/δ) for a sufficiently large constant
C ′ so that: Prz∼N (0,2δIm)[∥z∥2 > R] ≤ δ. This can be seen as follows:

Pr
z∼N (0,2δIm)

[∥z∥2 > R] = Pr
z∼N (0,2δIm)

[∥z∥2 > C ′√δm log(1/δ)]

≤ Pr
z∼N (0,2δIm)

[∥z∥2 −
√
δm > (C ′/2)

√
δ log(1/δ)] (18)

≤ 2 exp

(
−(C ′/2)2δ log(1/δ)

32δ

)
≤ δ , (19)

where Equation (18) uses the fact that C ′√δm log(1/δ) −
√
δm =

√
δm(C ′√log(1/δ) − 1) ≥

(C ′/2)
√

δm log(1/δ) ≥ (C ′/2)
√

δ log(1/δ) with the penultimate step being true because C ′ large
enough and δ < 0.1. The last step in Equation (19) uses Fact A.5 with β = (C ′/2)

√
δ log(1/δ).

We can thus break the integral appearing in Equation (17) into parts based on whether x and x′

fall within or outside a ball of radius R around the mean of the component (recall that R is the
radius used in Equation (19)). For each individual integral, we will use Equation (19) to bound the
mass of the distribution outside of the ball and bound the mass inside the ball by the volume of that
ball. Then, by bounding above that volume and after some algebra, we can bound all terms by the
following (the calculations are deferred to Appendix B.2):

13



Claim 3.8. IV,U ≤ Cmkδ0.4m for a sufficiently large absolute constant C.

The total variation distance is thus dTV(PA,U, PA,V) = 1 −
∫
z∈Rd min{PA,V(z), PA,V(z)}dz ≥

1−Cmkδ0.4m ≥ 0.99, where the last step uses that δ = ck−2.5/m for an appropriately small constant
c > 0. The remaining part of the claim that dTV(PA,V,N (0, Id)) > 0.99 can be handled with similar
arguments, and is deferred to Claim B.2 in the Appendix.

Proof of Item (v) We first focus on a single component Ai, which is a spherical Gaussian with mean
µi = (µi,1, . . . , µi,m) and variance δ in each direction. Because both Ai and the standard Gaussian
are product distributions in m dimensions, the integral in the definition of the χ2(Ai,N (0, Im) is
separable and we can use Fact A.9 for each coordinate. Concretely, let ϕ denote the pdf of N (0, 1):

1 + χ2(Ai,N (0, Im)) =

∫
x∈Rm

A2
i (x)

ϕ(x1) · · ·ϕ(xm)
dx =

m∏
j=1

∫
xj∈R

1
2πδ exp

(
− (xj−µi,j)

2

δ

)
ϕ(xj)

dxj

=

m∏
j=1

(1 + χ2(N (µi,j , δ),N (0, 1)) =
1

(δ(2− δ))m/2
exp

(
∥µi∥22
2− δ

)
≤ δ−m/2e1.21m ,

where the last line uses that δ < 1 and ∥µi∥2 ≤ 1.1
√
m by Item (iv) of Proposition 3.3. Denote by

wi the weights in the mixture A =
∑k

i=1wiAi. Also, by using ϕm(x) to denote the pdf of N (0, Im)
we have that

1 + χ2(A,N (0, Im)) =
k∑

i=1

k∑
j=1

wiwj

∫
x∈Rm

Ai(x)Aj(x)

ϕm(x)
dx

≤
k∑

i=1

k∑
j=1

wiwj

√∫
x∈Rm

Ai(x)2

ϕ(x)
dx

∫
x∈Rm

Aj(x)2

ϕm(x)
dx

=
k∑

i=1

k∑
j=1

wiwj

√
(1 + χ2(Ai,N (0, Im))) (1 + χ2(Aj ,N (0, Im)))

≤ δ−m/2e1.21m
k∑

i=1

k∑
j=1

wiwj = δ−m/2e1.21m ,

where the second line uses the Cauchy-Schwartz inequality, and the last line uses the upper bound
for 1 + χ2(Ai,N (0, Im)) that we showed in the beginning. This completes the proof.

4 Beating Separation of Ω(
√
k) : Proof of Theorem 1.3

In this section, we prove the following result which is the formal version of Theorem 1.3.

Theorem 4.1 (Quadratic SQ Lower Bound for Separation ∼ k1/2). Let C > 0 be a sufficiently large
absolute constant. Let d, k ∈ Z+ and c ∈ (0, 2/9) with d > (1/c)C/c, 2 ≤ k ≤ (c/C) log d . Consider
the following hypothesis testing problem regarding a distribution P on Rd:

• (Null Hypothesis) P = N (0, Id).
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• (Alternative Hypothesis) P belongs to a family P, every member of which is a mixture of Gaus-
sians

∑k
i=1wiN (µi,Σ) with uniform weights wi = 1/k, mean vectors with pairwise separation

∥µi − µj∥2 ≥
√
k/3 for all i ̸= j ∈ [k], and common covariance matrix Σ ⪯ Id. Moreover,

dTV(P,N (0, Id)) > 0.99 and dTV(P, P
′) > 0.99 for all distinct P, P ′ ∈ P.

Any algorithm with statistical query access to P that distinguishes correctly between the two cases,
does one of the following: it performs 2Ω(d2c) statistical queries, or it uses at least one statistical
query to VSTAT(Ω(d2−9c)).

We start with a brief overview of the new ideas required for the proof.
First, it is instructive to explain why Theorem 3.1 and its proof do not suffice for our purposes.

In particular, to use Theorem 3.1 in order to obtain an SQ lower bound of 2dΩ(1) queries vs a query
to VSTAT(d2), we need to set the parameter ε (where the separation is ∆ = kε) sufficiently small.
This is because in that theorem, ε appears inside a big-Ω notation in the query tolerance and a
closer examination of our proofs reveals that the hidden constant in that big-Ω is rather large (in the
order of hundreds). Thus, Theorem 3.1 cannot yield a super-linear SQ lower bound for the ε = 1/2
case, which corresponds to pairwise separation of ∼

√
k.

In more detail, the constant factor in front of ε in Theorem 3.1 is large for two reasons: (i) The
number of Gaussian components in our construction (c.f. Proposition 3.3) was k26εt, meaning that
we had to match t = 1/(26ε) many moments in order to end-up with k components, and (ii) the
fact about random matrices being nearly orthogonal (Fact 3.4) that we used was suboptimal. In
particular, while the corresponding fact for vectors states that any pair of random unit vectors has
inner product very close to O(d−1/2), the generalization of that to matrices by Fact 3.4 stated that
the pairs of random matrices U,V have ∥UV⊤∥F ≤ O(d−1/10). The constant in the exponent is
crucial here because it also appears in front of ε in the final SQ lower bound.

In this section, we overcome both of these issues by providing a tighter construction and analysis
for the ε = 1/2 case. In particular, we replace the existential LP-duality argument of Proposition 3.3
by a simpler constructive proof (cf. Lemma 4.2); Lemma 4.2 provides a discrete distribution matching
the first three moments with the standard Gaussian. Moreover, we provide a tight version of Fact 3.4
via an improved analysis (Lemma 4.3).

With these tools, we are able to show that any SQ algorithm for distinguishing between N (0, I)
and a k-GMM with unknown bounded covariance and mean separation of the order of

√
k has nearly

quadratic complexity.
We now establish the existence of a simple discrete distribution that matches its first three

moments with the standard Gaussian.

Lemma 4.2 (Moment Matching). There exists a discrete distribution D on Rm such that: (i) D is
supported on 2m points, (ii) D matches the first three moments with N (0, Im), and (iii) for every
pair of distinct points x,y in the support of D, it holds ∥x− y∥2 ≥

√
m.

Proof. Let ei for i ∈ [m] denote the i-th vector of the standard basis of Rm, i.e., the vector having 1
in the i-th coordinate and zero everywhere else. Let the set of vectors S = {x1, . . . ,x2m} defined as
xi =

√
m/2 ei for i = 1, . . . ,m, and xi = −

√
m/2 ei−m for i = m+ 1, . . . , 2m.

It is easy to verify that D = U(S), the uniform distribution on these points, matches the first three
moments with N (0, Im): Let p be a polynomial of degree at most 3, i.e., p(x1, . . . , xm) = xa1x

b
2x

c
3,

with a + b + c ≤ 3 (without loss of generality, we assumed that the coordinates from [m] with
non-zero power are the first three). If either of a, b, c is equal to 1 or 3, then Ex∼U(S)[p(x)] = 0,
because we made S symmetric about the origin. This only leaves the case p(x1, . . . , xm) = x21, where
we have Ex∼U(S)[p(x)] = 1, because the first coordinate is equal to

√
m/2 and −

√
m/2 only for two

points in S and zero for every other one. This completes the proof.
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We provide the tightening of Fact 3.4 in the lemma below. The proof is deferred to Appendix C.

Lemma 4.3. Let C be a sufficiently large absolute constant. Let c ∈ (0, 1/4) and m, d ∈ N with
d > (1/c)C/c and m < dc/5/C. There exists a set S of 2Ω(d2c) matrices in Rm×d such that every
A ∈ S satisfies AA⊤ = Im and every pair A,A′ ∈ S with A ̸= A′ satisfies ∥A′A⊤∥op ≲ d−1/2+2c.

We can now give the proof of the main result of this section.

Proof of Theorem 4.1. Let C be a sufficiently large constant. Let D be the distribution from
Lemma 4.2 with m := k/2 and A = UρD for δ = k−2.5/m/C, where Uρ denotes the Ornstein-
Uhlenbeck operator with parameter ρ. We choose ρ =

√
1− δ.

The above means that A is a mixture of k equally weighted spherical Gaussians in Rm,
each with variance δ in every direction. By Lemma 4.2, the mean separation is ρ ·

√
k/2 =√

1− k−2.5/k/C
√

k/2 ≥
√
k/3 for any k ≥ 2.

The following can be shown by repeating mutatis-mutandis the same steps we followed while
proving Proposition 3.3:

1. The first 3 moments of A match with those of N (0, Im).

2. For every U,V ∈ Rm×d with UU⊤ = VV⊤ = Id and ∥UV⊤∥F = O(d−1/2+2c), it holds
dTV(PA,U, PA,V) > 0.99. Moreover, for all V ∈ Rm×d it holds dTV(PA,V,N (0, Id)) > 0.99.

3. χ2(A,N (0, Im) ≤ eO(k).

Now by also following the same steps as in the proof of Theorem 3.1, but replacing Fact 3.4 by
Lemma 4.3, we obtain that every SQ algorithm for solving our hypothesis testing problem, either
needs 2Ω(d2c) queries or at least one query to

VSTAT(Ω(d2−8c)/χ2(A,N (0, Im))) .

We note that Ω(d2−8c)/χ2(A,N (0, Im)) ≥ Ω(d2−8c)e−O(k) ≥ Ω(d2−9c), where the last inequality
uses our assumption k < (c/C) log d. Also note that Lemma 4.3 was indeed applicable, since its
requirement m < dc/5/C is satisfied because we have m := k/2 < 0.5(c/C) log d < dc/5/C, where the
first inequality is one of our assumptions and the second follows by our other assumption d > (1/c)C/c.
This completes the proof of Theorem 4.1.

16



References

[AAR99] G. E. Andrews, R. Askey, and R. Roy. Special Functions. Encyclopedia of Mathematics
and its Applications. Cambridge University Press, 1999.

[AK01] S. Arora and R. Kannan. Learning mixtures of arbitrary Gaussians. In Proceedings of
the 33rd Symposium on Theory of Computing, pages 247–257, 2001.

[AM05] D. Achlioptas and F. McSherry. On spectral learning of mixtures of distributions. In
Proceedings of the Eighteenth Annual Conference on Learning Theory (COLT), pages
458–469, 2005.

[BBH+21] M. Brennan, G. Bresler, S. B. Hopkins, J. Li, and T. Schramm. Statistical query
algorithms and low degree tests are almost equivalent. In Conference on Learning
Theory, pages 774–774. PMLR, 2021.

[BDH+20] A. Bakshi, I. Diakonikolas, S. B. Hopkins, D. Kane, S. Karmalkar, and P. K. Kothari.
Outlier-robust clustering of gaussians and other non-spherical mixtures. In 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020, pages 149–159,
2020.

[BDJ+22] A. Bakshi, I. Diakonikolas, H. Jia, D.M. Kane, P. Kothari, and S. Vempala. Robustly
learning mixtures of k arbitrary gaussians. In STOC ’22: 54th Annual ACM SIGACT
Symposium on Theory of Computing, pages 1234–1247, 2022. Full version available at
https://arxiv.org/abs/2012.02119.

[Bog98] V. Bogachev. Gaussian measures. Mathematical surveys and monographs, vol. 62, 1998.

[BRST21] J. Bruna, O. Regev, M. J. Song, and Y. Tang. Continuous LWE. In STOC ’21: 53rd
Annual ACM SIGACT Symposium on Theory of Computing, pages 694–707. ACM,
2021.

[BS10] M. Belkin and K. Sinha. Polynomial learning of distribution families. In FOCS, pages
103–112, 2010.

[BV08] S. C. Brubaker and S. Vempala. Isotropic PCA and Affine-Invariant Clustering. In Proc.
49th IEEE Symposium on Foundations of Computer Science, pages 551–560, 2008.

[CFJ13] T. Cai, J. Fan, and T. Jiang. Distributions of angles in random packing on spheres.
Journal of Machine Learning Research, 14(1):1837–1864, 2013.

[CLL22] S. Chen, J. Li, and Y. Li. Learning (very) simple generative models is hard. In NeurIPS,
2022.

[Das99] S. Dasgupta. Learning mixtures of Gaussians. In Proceedings of the 40th Annual
Symposium on Foundations of Computer Science, pages 634–644, 1999.

[DDW21] D. Davis, M. Díaz, and K. Wang. Clustering a mixture of gaussians with unknown
covariance. CoRR, abs/2110.01602, 2021.

[DGJ+10] I. Diakonikolas, P. Gopalan, R. Jaiswal, R. Servedio, and E. Viola. Bounded indepen-
dence fools halfspaces. SIAM J. on Comput., 39(8):3441–3462, 2010.

17



[DHKK20] I. Diakonikolas, S. B. Hopkins, D. Kane, and S. Karmalkar. Robustly learning any
clusterable mixture of gaussians. CoRR, abs/2005.06417, 2020.

[DK14] C. Daskalakis and G. Kamath. Faster and sample near-optimal algorithms for proper
learning mixtures of gaussians. In Proceedings of The 27th Conference on Learning
Theory, COLT 2014, pages 1183–1213, 2014.

[DK22] I. Diakonikolas and D. Kane. Near-optimal statistical query hardness of learning
halfspaces with massart noise. In Conference on Learning Theory, volume 178 of
Proceedings of Machine Learning Research, pages 4258–4282. PMLR, 2022. Full version
available at https://arxiv.org/abs/2012.09720.

[DK23] I. Diakonikolas and D. M. Kane. Algorithmic High-Dimensional Robust Statistics.
Cambridge University Press, 2023.

[DKK+22a] I. Diakonikolas, D. M. Kane, S. Karmalkar, A. Pensia, and T. Pittas. List-decodable
sparse mean estimation via difference-of-pairs filtering. CoRR, abs/2206.05245, 2022.
Conference version in NeurIPS’22.

[DKK+22b] I. Diakonikolas, D. M. Kane, D. Kongsgaard, J. Li, and K. Tian. Clustering mixture
models in almost-linear time via list-decodable mean estimation. In STOC ’22: 54th
Annual ACM SIGACT Symposium on Theory of Computing, 2022, pages 1262–1275,
2022. Full version available at https://arxiv.org/abs/2106.08537.

[DKK+22c] I. Diakonikolas, D. M. Kane, V. Kontonis, C. Tzamos, and N. Zarifis. Learning general
halfspaces with general massart noise under the gaussian distribution. In STOC ’22:
54th Annual ACM SIGACT Symposium on Theory of Computing, pages 874–885, 2022.
Full version available at https://arxiv.org/abs/2108.08767.

[DKKZ20] I. Diakonikolas, D. M. Kane, V. Kontonis, and N. Zarifis. Algorithms and SQ lower
bounds for PAC learning one-hidden-layer relu networks. In Conference on Learning
Theory, COLT 2020, volume 125 of Proceedings of Machine Learning Research, pages
1514–1539. PMLR, 2020.

[DKP+21] I. Diakonikolas, D. M. Kane, A. Pensia, T. Pittas, and A. Stewart. Statistical query
lower bounds for list-decodable linear regression. In Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information Processing Systems
2021, NeurIPS 2021, pages 3191–3204, 2021.

[DKPZ21] I. Diakonikolas, D. M. Kane, T. Pittas, and N. Zarifis. The optimality of polynomial
regression for agnostic learning under gaussian marginals in the sq model. In Conference
on Learning Theory, pages 1552–1584. PMLR, 2021.

[DKS17] I. Diakonikolas, D. M. Kane, and A. Stewart. Statistical query lower bounds for robust
estimation of high-dimensional gaussians and gaussian mixtures. In 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, pages 73–84, 2017. Full
version at http://arxiv.org/abs/1611.03473.

[DKS18] I. Diakonikolas, D. M. Kane, and A. Stewart. List-decodable robust mean estimation
and learning mixtures of spherical gaussians. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, pages 1047–1060, 2018.
Full version available at https://arxiv.org/abs/1711.07211.

18



[DKS19] I. Diakonikolas, W. Kong, and A. Stewart. Efficient algorithms and lower bounds for
robust linear regression. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019, pages 2745–2754, 2019.

[DKZ20] I. Diakonikolas, D. Kane, and N. Zarifis. Near-optimal SQ lower bounds for agnostically
learning halfspaces and relus under gaussian marginals. In Advances in Neural Infor-
mation Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, 2020.

[FGR+13] V. Feldman, E. Grigorescu, L. Reyzin, S. Vempala, and Y. Xiao. Statistical algorithms
and a lower bound for detecting planted cliques. In Proceedings of STOC’13, pages
655–664, 2013. Full version in Journal of the ACM, 2017.

[FOS06] J. Feldman, R. O’Donnell, and R. Servedio. PAC learning mixtures of Gaussians with no
separation assumption. In Proc. 19th Annual Conference on Learning Theory (COLT),
pages 20–34, 2006.

[GGK20] S. Goel, A. Gollakota, and A. R. Klivans. Statistical-query lower bounds via functional
gradients. In Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, 2020.

[GVV22] A. Gupte, N. Vafa, and V. Vaikuntanathan. Continuous LWE is as hard as LWE
& applications to learning gaussian mixtures. In 63rd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2022, pages 1162–1173. IEEE, 2022.

[HL18] S. B. Hopkins and J. Li. Mixture models, robustness, and sum of squares proofs. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, pages 1021–1034, 2018.

[HP15] M. Hardt and E. Price. Tight bounds for learning a mixture of two gaussians. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing,
STOC 2015, pages 753–760, 2015.

[Kea98] M. J. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the
ACM, 45(6):983–1006, 1998.

[KSS18] P. K. Kothari, J. Steinhardt, and D. Steurer. Robust moment estimation and improved
clustering via sum of squares. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, pages 1035–1046, 2018.

[KSV08] R. Kannan, H. Salmasian, and S. Vempala. The spectral method for general mixture
models. SIAM J. Comput., 38(3):1141–1156, 2008.

[KWB22] D. Kunisky, A. S. Wein, and A. S. Bandeira. Notes on computational hardness of
hypothesis testing: Predictions using the low-degree likelihood ratio. In ISAAC Congress
(International Society for Analysis, its Applications and Computation), pages 1–50.
Springer, 2022.

[LL22] J. Li and A. Liu. Clustering mixtures with almost optimal separation in polynomial
time. In STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing,
pages 1248–1261. ACM, 2022.

19



[LM21] A. Liu and A. Moitra. Settling the robust learnability of mixtures of gaussians. In
STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages
518–531. ACM, 2021. Full version available at https://arxiv.org/abs/2011.03622.

[MV10] A. Moitra and G. Valiant. Settling the polynomial learnability of mixtures of Gaussians.
In FOCS, pages 93–102, 2010.

[Nel73] E. Nelson. The free markoff field. Journal of Functional Analysis, 12(2):211–227, 1973.

[O’D14] R. O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

[Pea94] K. Pearson. Contribution to the mathematical theory of evolution. Phil. Trans. Roy.
Soc. A, 185:71–110, 1894.

[RV17] O. Regev and A. Vijayaraghavan. On learning mixtures of well-separated gaussians.
In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017,
pages 85–96, 2017.

[SOAJ14] A. T. Suresh, A. Orlitsky, J. Acharya, and A. Jafarpour. Near-optimal-sample estimators
for spherical gaussian mixtures. In Advances in Neural Information Processing Systems
(NIPS), pages 1395–1403, 2014.

[ST21] D. Steurer and S. Tiegel. Sos degree reduction with applications to clustering and robust
moment estimation. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2021, pages 374–393. SIAM, 2021.

[Sze89] G. Szegö. Orthogonal Polynomials, volume XXIII of American Mathematical Society
Colloquium Publications. A.M.S, Providence, 1989.

[Ver18] R. Vershynin. High-Dimensional Probability: An Introduction with Applications in Data
Science. Number 47 in Cambridge Series in Statistical and Probabilistic Mathematics.
Cambridge University Press, Cambridge ; New York, NY, 2018.

[VW02] S. Vempala and G. Wang. A spectral algorithm for learning mixtures of distributions.
In Proceedings of the 43rd Annual Symposium on Foundations of Computer Science,
pages 113–122, 2002.

[Weg21] S.-A. Wegner. Lecture Notes on High-Dimensional Data. 2021.

20



A Additional Preliminaries

A.1 Additional Notation

We use Z for the set of integers and Z+ for positive integers. For n ∈ Z+, we denote [n]
def
= {1, . . . , n}

and use Sd−1 for the d-dimensional unit sphere. We use Sd−1(R) to denote the d dimensional sphere
with radius R and center the origin. For a vector v, we let ∥v∥2 denote its ℓ2-norm. We use Id to
denote the d× d identity matrix. We will drop the subscript when it is clear from the context. For
a matrix A, we use ∥A∥F and ∥A∥op to denote the Frobenius and spectral (or operator) norms
respectively. If a = (a1, . . . , am) ∈ Zm

+ is a multi-index, we denote |a| =
∑m

i=1 ai
We use a ≲ b to denote that there exists an absolute universal constant C > 0 (independent of

the variables or parameters on which a and b depend) such that a ≤ Cb.
We use the notation x ∼ D to denote that a random variable x is distributed according to the

distribution D. For a random variable x, we use E[x] for its expectation. We use N (µ,Σ) to denote
the Gaussian distribution with mean µ and covariance matrix Σ. For a set S, we use U(S) to denote
the uniform distribution on S and use x ∼ S as a shortcut for x ∼ U(S). We denote by ϕm(x) the
probability density function (pdf) of the standard Gaussian in m-dimensions N (0, Im), and by ϕ(x)
the pdf of the univariate standard Gaussian N (0, 1). We slightly abuse notation by using the same
letter for a distribution and its pdf, e.g., we will denote by P (x) the pdf of a distribution P . We use
dTV(P,Q) for the total variation distance between two distributions P,Q.

We will prefer to use capital letters for constants that are assumed to be sufficiently large and
small letters for constants that need to be sufficiently small.

A.2 Hermite Analysis

Hermite polynomials form a complete orthogonal basis of the vector space L2(R,N (0, 1)) of all
functions f : R → R such that Ex∼N (0,1)[f

2(x)] < ∞. There are two commonly used types of
Hermite polynomials. The physicist’s Hermite polynomials, denoted by Hk for k ∈ Z satisfy
the following orthogonality property with respect to the weight function e−x2 : for all k,m ∈ Z,∫
RHk(x)Hm(x)e−x2

dx =
√
π2kk!1(k = m). The probabilist’s Hermite polynomials Hek for k ∈ Z

satisfy
∫
RHek(x)Hem(x)e

−x2/2dx = k!
√
2π1(k = m) and are related to the physicist’s polynomials

through Hek(x) = 2−k/2Hk(x/
√
2). We will mostly use the normalized probabilist’s Hermite polynomi-

als hk(x) = Hek(x)/
√
k!, k ∈ Z for which

∫
R hk(x)hm(x)e−x2/2dx =

√
2π1(k = m). These polynomi-

als are the ones obtained by Gram-Schmidt orthonormalization of the basis {1, x, x2, . . .} with respect
to the inner product ⟨f, g⟩N (0,1) = Ex∼N (0,1)[f(x)g(x)]. Every function f ∈ L2(R,N (0, 1)) can be
uniquely written as f(x) =

∑
i∈Z aihi(x) and we have limn→∞Ex∼N (0,1)[(f(x)−

∑n
i=0 aihi(x))

2] = 0
(see, e.g., [AAR99]). Moreover, we have the following explicit expression of hi(·) (see, for example,
[AAR99, Sze89]):

hi(x) =
√
i!

⌊i/2⌋∑
j=0

(−1)j

j!(i− 2j)!

xi−2j

2j
. (20)

Extending the normalized probabilist’s Hermite polynomials to higher dimensions, an orthonormal
basis of L2(Rd,N (0, Id)) (with respect to the inner product ⟨f, g⟩ = Ex∼N (0,Id)[f(x)g(x)]) can be
formed by all the products of one-dimensional Hermite polynomials, i.e., ha(x) =

∏d
i=1 hai(xi), for all

multi-indices a ∈ Zd (we are now slightly overloading notation by using multi-indices as subscripts).
The total degree of ha is |a| =

∑d
i=1 ai.
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Ornstein-Uhlenbeck Operator For a ρ > 0, we define the Gaussian noise (or Ornstein-
Uhlenbeck) operator Uρ as the operator that maps a distribution F on Rm to the distribution of the
random variable ρx+

√
1− ρ2z, where x ∼ F and z ∼ N (0, Im) independently of x. A standard

property of the Uρ operator is that it operates diagonally with respect to Hermite polynomials:

Fact A.1 (see, e.g., Proposition 11.37 in [O’D14]). For any multivariate Hermite polynomial ha,
any F on R, and ρ ∈ (0, 1), that Ex∼UρF [ha(x)] = ρ|a|Ex∼F [ha(x)], where |a| =

∑
i ai.

A.3 Background on the Statistical Query Model

Definition A.2 (Decision Problem over Distributions). Let D be a fixed distribution and D be a
distribution family. We denote by B(D, D) the decision (or hypothesis testing) problem in which
the input distribution D′ is promised to satisfy either (a) D′ = D or (b) D′ ∈ D, and the goal is to
distinguish between the two cases.

Definition A.3 (Pairwise Correlation). The pairwise correlation of two distributions with prob-
ability density functions D1, D2 : Rd → R+ with respect to a distribution with density D : Rd →
R+, where the support of D contains the supports of D1 and D2, is defined as χD(D1, D2) =∫
Rd D1(x)D2(x)/D(x) dx− 1.

Definition A.4. We say that a set of s distributions D = {D1, . . . , Ds} is (γ, β)-correlated relative
to a distribution D if |χD(Di, Dj)| ≤ γ for all i ̸= j, and |χD(Di, Dj)| ≤ β for i = j.

A.4 Miscellaneous Facts

We require the standard concentration of the norm of Gaussian vectors (see, e.g., Theorem 3.1.1 of
[Ver18] or Theorem 4.7 of [Weg21]):

Fact A.5 (Gaussian Norm Concentration). For every 0 ≤ β ≤ σ
√
d we have that

Pr
x∼N (0,σ2Id)

[|∥x∥2 − σ
√
d| > β] ≤ 2 exp

(
− β2

16σ2

)
.

We also require the following result stating the random Gaussian vectors are nearly-orthogonal.

Fact A.6 ([CFJ13], also see Corollary D.3 in [DKS17]). Let θ be the angle between two random unit
vectors uniformly distributed over Sd−1. Then, we have that Pr[| cos θ| ≥ d−α] ≤ e−d1−2α/5, for any
0 ≤ α ≤ 1/2.

Fact A.7 (Gaussian Hypercontractivity [Bog98, Nel73]). If p : Rm → R is a polynomial of degree at
most k, for every t ≥ 2,

E
x∼N (0,Im)

[
|p(x)|t

] 1
t ≤ (t− 1)k/2

√
E

x∼N (0,Im)
[p2(x)] .

Fact A.8 (Volume of d-Ball). For any R > 0 let Sd−1(R) = {x ∈ Rd : ∥x∥2 ≤ R}. Then,

Vol(Sd−1) = O

(
1√
πd

(
2πe

d

)d/2

Rd

)
.

Fact A.9. The following holds for the chi-square divergence between two univariate Gaussians:

χ2(N (µ1, σ
2
1),N (µ2, σ

2
2)) =

σ2
2

σ1
√
2σ2

2 − σ2
1

exp

(
(µ1 − µ2)

2

2σ2
2 − σ2

1

)
− 1 .
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In the following we let C denote the set of complex numbers.

Definition A.10 (Gershgorin Discs). For any complex n× n matrix A, for i ∈ [n], let R′
i(A) =∑

j ̸=i |aij | and let G(A) =
⋃n

i=1{z ∈ C : |z − aii| ≤ R′
i(A)}. Each disc {z ∈ C : |z − aii| ≤ R′

i(A)}
is called Gershgorin disc and their union G(A) is called the Gershgorin domain.

Fact A.11 (Gershgorin’s Disc Theorem). For any complex n× n matrix A, all the eigenvalues of A
belong to the Gershgorin domain G(A).

B Omitted Proofs from Section 3.1

B.1 Concentration of Gaussian Polynomials

We restate and prove the following:

Claim 3.6. Let a set S = {x1, . . . ,xN} of i.i.d. samples xi ∼ N (0, Im). If N > 10m12t/η2, then
with probability at least 0.6, for any polynomial p : Rm → R of degree at most t it holds

(i) Ex∼U(S)[p(x)] ≤ Ex∼N (0,Im)[p(x)] + η,

(ii) Ex∼U(S)[p
2(x)] ≥ Ex∼N (0,Im)[p

2(x)]− η, and

(iii) Ex∼U(S)[p
4(x)] ≤ Ex∼N (0,Im)[p

4(x)] + η.

The proof follows by applying the lemma below for the polynomials p, p2 and p4 which are of
degree k = t, 2t and 4t respectively.

Lemma B.1. For any ε > 0, if a set S of N > 10σ2m3k/ε2 samples is drawn i.i.d. from N (0, Im),
then with probability at least 0.9 we have that for all polynomials p : Rm → R with Ex∼N (0,Im)[p

2(x)] ≤
σ2 and degree at most k it holds that∣∣∣∣ E

x∼U(S)
[p(x)]− E

x∼N (0,Im)
[p(x)]

∣∣∣∣ ≤ ε .

Proof. First, using Chebyshev’s inequality, we have the following concentration for every normalized
probabilist’s Hermite polynomial:

Pr
x1,...,xN∼N (0,Im)

[∣∣∣∣ E
x∼U(S)

[hJ(x)]− E
x∼N (0,Im)

[hJ(x)]

∣∣∣∣ > ε

mkσ

]
≤ σ2m2k

Nε2
Var

x∼N (0,Im)
[hJ(x)]

=
σ2m2k

Nε2
E

x∼N (0,Im)
[h2J(x)]

=
σ2m2k

Nε2
≤ 0.1

mk
, (21)

where the last line used that N > 10σ2m3k/ε2. In what follows we condition on the event that
|Ex∼U(S)[hJ(x)] − Ex∼N (0,Im)[hJ(x)]| ≤ ε for all J ∈ Nm : |J| ≤ k, which, by a union bound and
Equation (21) holds with probability at least 0.9. We expand p(x) on the basis of the normalized
probabilist’s Hermite polynomials p(x) =

∑
J∈Nm:|J|≤k aJhJ(x), and note that |aJ| ≤ σ for all these

coefficients (because by Parseval’s identity
∑

J a
2
J ≤ σ2). Therefore, we conclude that∣∣∣∣ E

x∼U(S)
[p(x)]− E

x∼N (0,Im)
[p(x)]

∣∣∣∣ ≤ ∑
J∈Nm:|J|≤k

|aJ|
∣∣∣∣ E
x∼U(S)

[hJ(x)]− E
x∼N (0,Im)

[hJ(x)]

∣∣∣∣
≤ σmkε/(mkσ) = ε .
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B.2 Omitted Details from Proof of Item (iv)

Claim 3.8. IV,U ≤ Cmkδ0.4m for a sufficiently large absolute constant C.

Proof. Let
∫∫

x,x′∈Rm min{Ai(x), Aj(x
′)} = I1 + I2 + I3 + I4, where

1. I1 =
∫∫

∥x− µi∥2 > R and ∥x′ − µj∥2 ≤ R min{Ai(x), Aj(x
′)}dxdx′,

2. I2 =
∫∫

∥x− µi∥2 ≤ R and ∥x′ − µj∥2 > R min{Ai(x), Aj(x
′)}dxdx′,

3. I3 =
∫∫

∥x− µi∥2 > R and ∥x′ − µj∥2 > R min{Ai(x), Aj(x
′)}dxdx′,

4. I4 =
∫∫

∥x− µi∥2 ≤ R and ∥x′ − µj∥2 ≤ R min{Ai(x), Aj(x
′)}dxdx′.

We start with the first term. Recall that Ai is an m-dimensional Gaussian with mean µi and variance
δ in all directions. We have the following:

I1 ≤
∫
∥x−µi∥2>R

√
Ai(x)dx

∫
∥x′−µj∥2≤R

√
Aj(x′)dx′ (using min(a, b) ≤

√
ab)

≤
∫
∥x−µi∥2>R

(2πδ)−m/4e−
∥x−µi∥

2
2

4δ dx

∫
∥x′−µj∥2≤R

(2πδ)−m/4e−
∥x′−µj∥

2
2

4δ dx′

≤ (2πδ)m/4

∫
∥x−µi∥2>R

(2πδ)−m/2e−
∥x−µi∥

2
2

4δ dx

∫
∥x′−µj∥2≤R

(2πδ)−m/4e−
∥x′−µj∥

2
2

4δ dx′

≤ (2πδ)m/4δ · δ−m/4Vol(Sd−1(R)) (using Equation (19) for the first integral)

≤ (2π)m/4δ

(
1√
πm

(
2πe

m

)m/2

Rm

)
(by Fact A.8)

≤ Cm
1 m−m/2δ1+m/2mm/2(log(1/δ))m/2 (using R = C ′√δm log(1/δ))

≤ Cm
1 δ1+m/2(log(1/δ))m/2 (22)

for a sufficiently large constant C1. The same bound can be derived for I2. For I3 we use
Equation (19) for both integrals to obtain I3 ≤ (2πδ)m/2δ2. Finally, for the last term I4 we have
that I4 ≤ δ−m/2(Vol(Sd−1(R)))2 ≤ Cm

2 δ−m/2m−mδmmm(log(1/δ))m ≤ Cm
2 δm/2(log(1/δ))m, where

the first step used min{Ai(x), Aj(x)} ≤ δ−m/2 and that both integrals are over a ball of radius R.
Putting everything together, we have shown that

IV,U ≤ Cm
3 kδm/2(log(1/δ))m ≤ Cm

4 kδ0.4m . (23)

Claim B.2. In the setting of Proposition 3.3 it holds dTV(PA,V,N (0, Id)) > 0.99.

Proof. Let v1, . . . ,vm denote the rows of V and extend this set to an orthonormal basis v1, . . . ,vm, . . . ,vd

of the entire Rd. Let V⊥ be the matrix having vm+1, . . . ,vd as rows and R be the matrix having
v1, . . . ,vm, . . . ,vd as rows. Using the definition from Equation (1) (and recalling that ϕd(x) denotes
the pdf of N (0, Id),

PA,V(z) = A(Vz)ϕd−m (ProjV⊥(z)) = A(Vz)ϕd−m

(
V⊥z

)
.
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As before, we examine the integral I :=
∫
z∈Rd min {PA,V(z), ϕd(z)}dz for which we have the

following:

I =

∫
z∈Rd

min {PA,V(z), ϕd(z)} dz

=

∫
z∈Rd

min
{
A(Vz)ϕd−m

(
V⊥z

)
, ϕm (ProjV(z))ϕd−m (ProjV⊥(z))

}
dz

=

∫
z∈Rd

min
{
A(Vz)ϕd−m

(
V⊥z

)
, ϕm (Vz)ϕd−m

(
V⊥z

)}
dz

=

∫
z∈Rd

min
{
A(VR⊤z)ϕd−m

(
V⊥R⊤z

)
, ϕm

(
VR⊤z

)
ϕd−m

(
V⊥R⊤z

)}
dz

(by rotating space by R⊤)

=

∫
z∈Rd

min {A(z1, . . . , zm)ϕd−m (zm+1, . . . , zd) , ϕm (z1, . . . , zm)ϕd−m (zm+1, . . . , zd)} dz

(using the definition of matrices V,V⊥,R)

=

∫
(z1,...,zm)∈Rm

min {A(z1, . . . , zm), ϕm (z1, . . . , zm)} dz1 · · · dzm

=

∫
x∈Rm

min {A(x), ϕm (x)} dx (by renaming x = (z1, . . . , zm))

=

∫
x∈Rm

min

{
k∑

i=1

λiAi(x), ϕm (x)

}
dx (A =

∑
i∈[k] λiAi)

≤
k∑

i=1

∫
x∈Rm

min {λiAi(x), ϕm (x)}dx (using min(a+ b, c) ≤ min(a, c) + min(b, c))

≤ kmax
i∈[k]

∫
x∈Rm

min {Ai(x), ϕm (x)} dx , (24)

where the last step uses that λi ≤ 1. Now, Ai = N (µi, δIm) with ∥µi∥2 ≥ 0.9
√
m by Item (iv)

of Proposition 3.5 and δ is smaller than 1, thus we have that
∫
x∈Rm min {Ai(x), ϕm (x)}dx =

1− dTV(N (µi, δIm),N (0, Im)) ≤ 1− dTV(N (µi, Im),N (0, Im)). By a rotation argument similar to
what we did earlier, the contribution comes only from the error along the direction that connects
the origin to the point µi

1− dTV (N (µi, Im),N (0, Im)) = 1− dTV (N (∥µi∥2, 1),N (0, 1)) = erfc

(
∥µi∥2
2
√
2

)
≤ erfc

(√
m/4

)
≤ 1

100k
,

where the last step requires m > C log(k), which is true since m = k2ε and we have assumed
kε > C

√
log k. Putting everything together and combining with the bound of Equation (24) we

conclude that dTV(PA,V,N (0, Id)) = 1−
∫
z∈Rd min {PA,V(z), ϕd(z)} dz ≥ 1− k/(100k) = 0.99.

C Omitted Proofs from Section 4

We restate and prove the following result.
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Lemma 4.3. Let C be a sufficiently large absolute constant. Let c ∈ (0, 1/4) and m, d ∈ N with
d > (1/c)C/c and m < dc/5/C. There exists a set S of 2Ω(d2c) matrices in Rm×d such that every
A ∈ S satisfies AA⊤ = Im and every pair A,A′ ∈ S with A ̸= A′ satisfies ∥A′A⊤∥op ≲ d−1/2+2c.

Proof. We will use the following basic fact:

Fact C.1. For any 0 < c < 1/2, there exists a set S′ of 2Ω(d2c) unit vectors in Rd, such that any
pair u,v ∈ S′ with u ̸= v satisfies |u⊤v| ≲ d−1/2+c.

Let S′ = {u1, . . . ,u|S′|} be the set of vectors from the fact above. Let S′′ be the set of matrices
{Bi}|S

′|/m
i=1 for where Bi is defined to have as rows the vectors uj for j = (i− 1) ·m+1, . . . i ·m. Note

that |S′|/m = 2Ω(d2c) for any d > (1/c)C/c where C is a sufficiently large constant. Finally, let S be
the set of matrices {Ai}|S

′|/m
i=1 where for each Bi ∈ S′′ we consider the Singular Value Decomposition

Bi = UiΣiV
⊤
i and we let Ai be the matrix obtained by replacing the diagonal matrix Σi with

identity (i.e., changing all singular values to 1). We will show that S is the set of matrices satisfying
the desideratum of Lemma 4.3.

In particular, we claim the following. Let C be a sufficiently large absolute constant, then:

(i) For every i ∈ |S′′|, all singular values of Bi belong in [1− Cm2d−1/2+c, 1 + Cm2d−1/2+c].

(ii) For every i ∈ |S′′|, it holds ∥Ai −Bi∥F ≲ m2.5d−1/2+c.

(iii) For every i, j = 1, . . . , |S′′|, it holds ∥BiB
⊤
j ∥op ≲ m2d−1/2+c.

Given the above, the proof of Lemma 4.3 follows immediately by noting that

∥AiA
⊤
j ∥op = ∥(Bi +Ai −Bi)(Bj +Aj −Bj)

⊤∥op

≤ ∥BiB
⊤
j ∥op + ∥Bi(Aj −Bj)

⊤∥op + ∥(Ai −Bi)B
⊤
j ∥op + ∥(Ai −Bi)(Aj −Bj)

⊤∥op

≤ ∥BiB
⊤
j ∥op + ∥Bi∥op∥Aj −Bj∥F + ∥B⊤

j ∥op∥Ai −Bi∥F + ∥Ai −Bi∥F∥Aj −Bj∥F

≲ m2d−1/2+c +m3d−1/2+c +m5d−1/4+2c

≲ d−1/2+2c ,

where the second line uses triangle inequality, the third line uses the sub-multiplicative property of
the operator norm , i.e., that ∥UV∥op ≤ ∥U∥op∥V∥op as well as the fact ∥V∥op ≤ ∥V∥F, the fourth
line uses our three claims (that we show later on) and the last line uses our assumption m ≪ dc/5.

We now prove the three claims. For Item (i), consider the matrix BiB
⊤
i (which is a square m×m

matrix). Using Fact C.1, the sum of the absolute values of its non-diagonal entries is

R =
∑
k ̸=ℓ

|u⊤
(i−1)m+ku(i−1)m+ℓ| ≲ m2d−1/2+c .

The diagonal entries of BiB
⊤
i are all equal to one. Thus, by the Gershgorin’s disc theorem Fact A.11,

every eigenvalue of BiB
⊤
i , i.e., singular value of Bi, lies the interval [1−R, 1 +R].

For proving Item (ii), we note that

∥Ai −Bi∥F =

√√√√ m∑
k=1

(σk(Bi)− 1)2 ≤
√
m · (R− 1)2 ≲ m2.5d−1/2+c .
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Finally, regarding Item (iii), for every i, j ∈ [|S′′|] with i ̸= j, we have that

∥BiB
⊤
j ∥op ≤ sup

z∈Sm−1

z⊤BiB
⊤
j z ≤ sup

z∈Sm−1

〈∑
k∈[m]

zku(i−1)m+k,
∑
ℓ∈[m]

zℓu(j−1)m+ℓ

〉

≤ sup
z∈Sm−1

∑
k,ℓ∈[m]

zkzℓ
〈
u(i−1)m+k,u(j−1)m+ℓ

〉
≲ d−1/2+c sup

z∈Sm−1

∑
k,ℓ∈[m]

zkzℓ ≲ m2d−1/2+c ,

where the last line uses Fact C.1.

D Lower Bounds for Low-Degree Polynomial Tests

Problem D.1. Let a distribution A on Rm. For a matrix V ∈ Rm×d, we let PA,V be the distribution
as in Equation (1), i.e., the distribution that coincides with A on the subspace spanned by the rows
of V and is standard Gaussian in the orthogonal subspace. Let S be the set of nearly orthogonal
vectors from Fact 3.4. Let S = {PA,v}u∈S . We define the simple hypothesis testing problem where
the null hypothesis is N (0, Id) and the alternative hypothesis is PA,V for some V uniformly selected
from S.

We now describe the model in more detail. We will consider tests that are thresholded polynomials
of low-degree, i.e., output H1 if the value of the polynomial exceeds a threshold and H0 otherwise.
We need the following notation and definitions. For a distribution D over X , we use D⊗n to denote
the joint distribution of n i.i.d. samples from D. For two functions f : X → R, g : X → R and
a distribution D, we use ⟨f, g⟩D to denote the inner product EX∼D[f(X)g(X)]. We use ∥f∥D to
denote

√
⟨f, f⟩D. We say that a polynomial f(x1, . . . , xn) : Rn×d → R has sample-wise degree (r, ℓ)

if each monomial uses at most ℓ different samples from x1, . . . , xn and uses degree at most r for
each of them. Let Cr,ℓ be linear space of all polynomials of sample-wise degree (r, ℓ) with respect to
the inner product defined above. For a function f : Rn×d → R, we use f≤r,ℓ to be the orthogonal
projection onto Cr,ℓ with respect to the inner product ⟨·, ·⟩D⊗n

0
. Finally, for the null distribution D0

and a distribution P , define the likelihood ratio P
⊗n

(x) := P⊗n(x)/D⊗n
0 (x).

Definition D.2 (n-sample τ -distinguisher). For the hypothesis testing problem between D0 (null
distribution) and D1 (alternate distribution) over X , we say that a function p : X n → R is an
n-sample τ -distinguisher if |EX∼D⊗n

0
[p(X)] − EX∼D⊗n

1
[p(X)]| ≥ τ

√
VarX∼D⊗n

0
[p(X)]. We call τ

the advantage of the polynomial p.

Note that if a function p has advantage τ , then the Chebyshev’s inequality implies that one can
furnish a test p′ : X n → {D0, D1} by thresholding p such that the probability of error under the
null distribution is at most O(1/τ2). We will think of the advantage τ as the proxy for the inverse
of the probability of error (see Theorem 4.3 in [KWB22] for a formalization of this intuition under
certain assumptions) and we will show that the advantage of all polynomials up to a certain degree
is O(1). It can be shown that for hypothesis testing problems of the form of Problem D.1, the best
possible advantage among all polynomials in Cr,ℓ is captured by the low-degree likelihood ratio (see,
e.g., [BBH+21, KWB22]): ∥∥∥∥ E

v∼U(S)

[(
P

⊗n
A,V

)≤r,ℓ
]
− 1

∥∥∥∥
D⊗n

0

,
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where in our case D0 = N (0, Id).
To show that the low-degree likelihood ratio is small, we use the result from [BBH+21] stat-

ing that a lower bound for the SQ dimension translates to an upper bound for the low-degree
likelihood ratio. Therefore, given that we have already established in previous section that
SD(B({PA,V}V∈S ,N (0, Id)), γ, β) = 2d

c for γ = Ω(d)(t+1)/10χ2(A,N (0, Id)) and β = χ2(A,N (0, 1)),
we one can obtain the corollary:

Theorem D.3. Let a sufficiently small positive constant c. Let the hypothesis testing problem of
Problem D.1 the distribution A matches the first t moments with N (0, Im). For any d ∈ Z+ with
d = tΩ(1/c), any n ≤ Ω(d)(t+1)/10/χ2(A,N (0, Im)) and any even integer ℓ < dc, we have that∥∥∥∥ E

v∼U(S)

[(
P

⊗n
A,V

)≤∞,ℓ
]
− 1

∥∥∥∥
D⊗n

0

≤ 1 .

The interpretation of this result is that unless the number of samples used n is greater than
Ω(d)(t+1)/10/χ2(A,N (0, Im)), any polynomial of degree roughly up to dc fails to be a good test (note
that any polynomial of degree ℓ has sample-wise degree at most (ℓ, ℓ)).
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