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Theoretical Foundations of Ordinal Multidimensional Scaling,

Including Internal and External Unfolding

Ery Arias-Castro ∗ Clément Berenfeld † Daniel Kane ‡

Abstract

We provide a comprehensive theory of multiple variants of ordinal multidimensional scaling,
including external and internal unfolding. We do so in the continuous model of Shepard (1966).

1 Introduction

Ordinal or non-metric multidimensional scaling (MDS) consists in embedding a set of abstract
items based on pairwise dissimilarity information. MDS has been an important part of data analy-
sis within Psychometrics since at least the 1930s [63]. It is nowadays an integral part of multivariate
analysis in Statistics and of unsupervised learning in Machine Learning, and is known under dif-
ferent names in various areas such as Mathematics and Computer Science (embedding of metric
spaces) [14], including in Optimization (Euclidean distance matrix completion) [39], and Engineer-
ing (sensor network localization) [44]. We provide references throughout the article.

In its ordinal form, the basic problem of MDS consists in finding a configuration of points in a
given Euclidean space whose pairwise distances agree in ranking as much as possible with a partial
ranking of the pairwise dissimilarities between the items. This variant of the problem is particularly
important in Psychometrics, where a human subject may be asked to compare objects in triads
[58] by answering questions such as “Is item A closer to item B or item C?”.

Other variants of the problem that are also considered within Psychometrics are internal un-
folding and external unfolding. Internal unfolding is the problem of positioning individuals and
objects in space based on preference data [12, 22, 59]. In the ordinal variant of the problem, a
ranking of the objects is available for each individual. This is a special case of MDS where some of
the dissimilarities — those between individuals and those between objects — are simply missing. In
external unfolding [19, 20, 32], the positions of the objects are known, i.e., the objects are already
embedded.

1.1 Contribution and Content

While a large body of work is dedicated to methods, there is much less available in terms of theory.
In the present paper, we aim at giving a comprehensive theory of ordinal embedding in all these
variants. To avoid technicalities, we adopt the continuous model pioneered by Shepard [51] in his
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study of ordinal embedding. For comparison, in each variant of the problem that we consider, we
provide an overview of relevant theoretical results in the metric setting.

In Section 2, we consider ordinal external unfolding. In Section 3, we consider ordinal multidi-
mensional scaling in a setting where all triadic comparisons are available. We outline the reasoning
of Shepard [51] and contrast that with a different approach based on recent work by Kleindessner
and von Luxburg [36] and by ourselves [6]. In Section 4, we consider ordinal internal unfolding.
We close the paper with a brief discussion in Section 5.

The theory that we develop for external and internal unfolding is some of the only theory that
we are aware of for these problems. We consider both the point model — in which the individuals
are to be embedded as points [22] — and the vector model — where the individuals are to be
represented by vectors instead [12, 59]. While internal unfolding is known to be difficult in practice
as discussed, e.g., in [17] and in [15, Ch 14, 15], our theory shows that at least the problem is
well-posed. However, theoretical study does not provide any insight on methodology.

We do not consider the sort of item response models featured in [45, 46], which have evolved
from the ranking models that originated from early work of Thurstone [57], Bradley and Terry [16],
and others.

1.2 Notation

For a positive integer n, [n] ∶= {1, . . . , n}. For a point x ∈ Rp and r > 0, B(x, r) denotes the
open ball centered at x with radius r, and S(x, r) denotes the corresponding sphere. The unit
sphere will be denoted S

p−1 ∶= {x ∈ Rp ∶ ∥x∥ = 1}. For two distinct points z, z′ ∈ Rp, define H(z, z′) =
{x ∶ ∥x − z∥ = ∥x − z′∥}, which is the affine hyperplane passing through 1

2
(z + z′) perpendicular to

z − z′; we also define H+(z, z′) = {x ∶ ∥x − z∥ < ∥x − z′∥}, which is one of the two open half-spaces
defined by that hyperplane.

2 External Unfolding

External unfolding is the problem of locating an individual in space based on preferences for some
objects that are already positioned in that space. The earlier reference we know of in the Psycho-
metrics literature is from Gower [32], who presents the problem as an out-of-sample extension of
classical scaling. (We are talking about the method of Young and Householder [63], later refined
by Torgerson [58], although Gower refers to his own work [31].) We also know of contemporary
work by Carroll and Chang [20], although only indirectly by way of [52]. While the term ‘external
unfolding’ is favored in Psychometrics [15, Sec 16.1], where it is often attributed to Carroll [19],
the problem is best known in Engineering as ‘trilateration’, ‘multilateration’, or simply ‘lateration’
[5, 9, 21, 30, 47, 61]. In Engineering, the objects are often called ‘anchors’ or ‘landmarks’. Some
background is provided for statisticians in [43].

While most of that work (in particular, within Engineering) has been done on the metric variant
of the problem, the non-metric or ordinal variant has also received some attention [4, 25, 42, 52].
All these works place themselves in the point model.

2.1 Point Model

In the point model, the individual and the objects are represented as points in space [15, Sec 14.1].
We do so in the non-metric or ordinal variant of the problem where an individual x is to be located
based on a ranking of the individual’s preference for the objects. The objects are already embedded
in space and preference is quantified in terms of the Euclidean distance.
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2.1.1 Discrete Setting

In the discrete (in fact, finite) setting — which is the setting encountered in practice — the problem
can be described as follows: Given y1, . . . , yn ∈ R

p and a permutation (r1, . . . , rn) of (1, . . . , n),

Find x ∈ Rp such that ∥x − yi∥ < ∥x − yj∥ whenever ri < rj . (2.1)

The recent work by Massimino and Davenport [42] provides the most comprehensive study to
date. Even then, to simplify the analysis, the authors consider a variant of the problem where
the design is random: objects are sampled iid from some isotropic normal distribution, yielding
y1, . . . , yn and y′

1
, . . . , y′n, and (in the noiseless setting) for an unknown point x we have access to

ξi ∶= I{∥x − yi∥ < ∥x − y′i∥} for all i ∈ [n]. That is, based on the pairs (y1, y′1), . . . , (yn, y
′
n) and the

comparisons ξ1, . . . , ξn, the goal is to recover x. The assumption that the design is not only random
but Gaussian is crucial to the analysis carried out in [42]. In related work, Canal et al. [18] consider
the problem of actively selecting the objects in order to maximize the accuracy in locating the
individual. The authors provide an information lower for the problem and show that a Bayesian
approach this propose matches that bound in order of magnitude.

2.1.2 Continuum Setting

We are interested in the fundamental question of whether there is enough information to recover
the unknown location of the individual. This is clearly not the case in the discrete setting of
Section 2.1.1 as the set of solutions is open. However, we contend that the solution set reduces to
a singleton in the limit of an infinite number of objects. Instead of tackling this claim in a frontal
manner, in order to avoid technicalities and get to the core of the question, we follow Shepard
[51] and consider a limit model in the continuum where the set of objects is continuously infinite.
This corresponds to the limit of the discrete model if we image the points representing the objects
y1, . . . , yn as filling a set, denoted Y below.

We say that x,x′ ∈ Rp are equivalent with respect to Y if

∥x − y∥ < ∥x − y′∥ ⇔ ∥x′ − y∥ < ∥x′ − y′∥, for all y, y′ ∈ Y. (2.2)

Any two such points are indistinguishable in terms of their preference for the objects. The central
question of whether an individual can be located based on its preference for the objects can be
phrased as follows: Do equivalent points coincide? The answer is positive under some conditions
on the set of objects.

Theorem 2.1. If Y has non-empty interior, equivalent points must coincide.

In the proof, we will use the fact that (2.2) implies

∥x − y∥ = ∥x − y′∥ ⇔ ∥x′ − y∥ = ∥x′ − y′∥, for all y, y′ ∈ Y. (2.3)

Proof. We prove the result in the more general case where Y contains three spheres whose centers
are not collinear. In that case, for any x ∈ Rp there are two spheres inside Y, S1 ∶= S(z1, t1) and
S2 ∶= S(z2, t2), such that x, z1, z2 are not collinear. For any x′ equivalent to x with respect to Y,
we claim that x′ ∈ (xzj) for j = 1 and j = 2. If true, we can immediately conclude since x is the
only point at the intersection of the two lines L1 ∶= (xz1) and L2 ∶= (xz2).

We focus on proving that x′ ∈ L1. We use the fact that L1 is the intersection of all the
hyperplanes passing through z1 with orthogonal direction perpendicular to L1. Consider such a
hyperplane H with orthogonal direction v, so that v ⊥ L1. The line passing through z1 with
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direction v intersects S1 at two points, y− and y+. Since S1 ⊂ Y, we have y−, y+ ∈ Y, and the
hyperplane they define is exactly H by construction. And, since x ∈ L1 and L1 ⊂ H, we must have
∥x − y−∥ = ∥x − y+∥. By (2.3), we must also have that ∥x′ − y−∥ = ∥x′ − y+∥, so that x′ ∈ H as well.
Since this is true for any hyperplane H that contains L1, we have proved that x′ ∈ L1.

2.2 Vector Model

In the vector model, the individual and the objects are represented as vectors1 instead of points
[15, Sec 16.2]. We only consider the case where the dimension is p ≥ 2, as otherwise the situation
is trivial (and not useful). In the non-metric or ordinal variant, the individual preference for the
objects is quantified in terms of inner products instead of distances.

2.2.1 Discrete Setting

The problem encountered in practice is as follows: Given y1, . . . , yn ∈ R
p and a permutation

(r1, . . . , rn) of (1, . . . , n),

Find x ∈ Sp−1 such that ⟨x, yi⟩ < ⟨x, yj⟩ whenever ri > rj. (2.4)

(Note that change in the direction of the second inequality. We adopted this convention so that
the ranks have the same meaning as they do in (2.1).)

We are not aware of any theory for this problem.

2.2.2 Continuous Setting

In the continuous model, we assume that the objects fill a continuously infinite set denoted Y ⊂ Rp.
We say that x,x′ ∈ Sp−1 are equivalent with respect to Y if

⟨x, y⟩ < ⟨x, y′⟩ ⇔ ⟨x′, y⟩ < ⟨x′, y′⟩, for all y, y′ ∈ Y. (2.5)

Any two such vectors are indistinguishable based on their preference for the objects. The central
question is the same: Do equivalent vectors coincide? The answer is positive under the same
condition as in Theorem 2.1.

Theorem 2.2. If Y has non-empty interior, equivalent vectors must coincide.

Proof. We prove the result in the more general setting where Y contains a sphere. By translation
and scaling, if needed, we may assume without loss of generality that Y contains Sp−1.

Take two equivalent vectors x,x′. Applying (2.5) with y′ = x, which we can do since x ∈ Sp−1 ⊂ Y,
we have that

⟨x, y⟩ < ⟨x,x⟩ ⇔ ⟨x′, y⟩ < ⟨x′, x⟩, for all y ∈ Sp−1. (2.6)

Since ⟨x, y⟩ < ⟨x,x⟩ is true for any y ∈ Sp−1 ∖ {x}, we have that ⟨x′, y⟩ < ⟨x′, x⟩ for all y ∈ Sp−1 ∖ {x},
which is only possible if x′ = x.

It is also the case here that (2.5) implies

⟨x, y⟩ = ⟨x, y′⟩ ⇔ ⟨x′, y⟩ = ⟨x′, y′⟩, for all y, y′ ∈ Y, (2.7)

but we did not make use of this identity in the proof.

1In fact, the objects may be equivalently considered as points.
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3 Multidimensional Scaling

In multidimensional scaling (MDS), we have n items, and the goal is to locate all them in space
based on some pairwise dissimilarity information [15, 23, 62]. The problem is known under vari-
ous names in various fields: ‘embedding of metric spaces’ in Mathematics and Computer Science
[14]; ‘Euclidean distance matrix completion’ in Optimization [39]; ‘sensor network localization’ in
Engineering [44]. MDS is an integral part of Multivariate Analysis [3, 48].

We focus on the non-metric or ordinal variant of the problem, which has been of great interest
in Psychometrics and beyond. The body of work on this problem is substantial. Methodological
work was pioneered by Shepard [49, 50] and especially Kruskal [37, 38], and has continued to this
day [1, 4, 40, 41, 55, 56, 60]. Not much theoretical work is available. Shepard [51] pioneered
some theory, which was elaborated much more recently by Kleindessner and von Luxburg [36]
and ourselves [6]. Jain et al. [34] consider a situation where the available information is noisy or
imprecise and approach the problem via maximum likelihood.

In our study of the problem below, we focus on what Torgerson [58] calls the (complete) method
of triads, and what is referred to as triadic comparisons in [29] going back to early work of Stumpf
[53] in the late 1800s. We only treat the point model, as this seems to be the only model that is
considered in the literature. For the sake of curiosity, we discuss a possible vector model in the
Appendix.

3.1 Discrete Setting

In the usual setting, ordinal MDS can be described as follows: Given a set of row ranks (rij ∶ i, j ∈
[n]), with each (ri1, . . . , rin) being a permutation of (1, . . . , n), and a dimension p ≥ 1,

Find x1, . . . , xn ∈ R
p such that ∥xi − xj∥ < ∥xi − xk∥ whenever rij < rik. (3.1)

We note that any similarity transformation of a solution is also a solution.
In regards to the same foundational question of uniqueness (up to a similarity transformation),

except for some earlier work in dimension p = 1 [10, 54], the first meaningful contribution appears
to be that of Shepard [51]. To simplify matters, Shepard considered a continuous limit model, as is
routinely done in Physics, for example. We describe such a model in the following subsection, and
elaborate on his reasoning. This is the model that inspired the continuous models of Section 2.1.2
and Section 2.2.2. Further progress was made decades later by Kleindessner and von Luxburg [36],
who considered the finite sample situation described above and derived conditions under which, in
the asymptotic limit n → ∞ where the points fill a subset of Rp, the solutions are constrained to
be similitudes of each other. Their results were later refined in some of our own work [6].

3.2 Continuous Setting

Following Shepard [51], we consider a limit model in the continuum where the set of items forms
an uncountably infinite subset X ⊂ Rp.

In the discrete setting, two configurations in dimension p, {x1, . . . , xn} and {x′
1
, . . . , x′n}, are

indistinguishable if it holds that

∥xi − xj∥ < ∥xi − xk∥ ⇔ ∥x′i − x
′
j∥ < ∥x

′
i − x

′
k∥, for all i, j, k ∈ [n]. (3.2)

In order to transition from the discrete setting to the continuous setting, we consider these con-
figurations as being in correspondence via the function xi ↦ x′i defined on {x1, . . . , xn}. When
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considering equivalent configurations in the continuum, we are thus led to study injective functions
f ∶ X → R

p satisfying

∥x − x′∥ < ∥x − x′′∥ ⇔ ∥f(x) − f(x′)∥ < ∥f(x) − f(x′′)∥, for all x,x′, x′′ ∈ X . (3.3)

As in [36], we say that such a function is weakly isotonic. We note that this property is equivalent
to

f(B(x, ∥x − x′∥) ∩X ) = B(f(x), ∥f(x) − f(x′)∥)) ∩ f(X ), ∀x,x′ ∈ X . (3.4)

We note that (3.3) implies

∥x − x′∥ = ∥x − x′′∥ ⇔ ∥f(x) − f(x′)∥ = ∥f(x) − f(x′′)∥, for all x,x′, x′′ ∈ X , (3.5)

which is equivalent to

f(S(x, ∥x − x′∥) ∩X ) = S(f(x), ∥f(x) − f(x′)∥)) ∩ f(X ), ∀x,x′ ∈ X . (3.6)

We first state the result in the same setting that Shepard [51] considers, which crucially assumes
that f is a bijection of the entire space. We note that Shepard does that implicitly, even though
being bijective is not an immediate consequence of being weakly isotonic.

Proposition 3.1. Suppose that X = Rp. Then any bijective function f ∶ Rp → R
p satisfying (3.3)

must be a similarity transformation.

When f is surjective, (3.6) takes the form

f(S(x, ∥x − x′∥)) = S(f(x), ∥f(x) − f(x′)∥), ∀x,x′ ∈ Rp. (3.7)

This implies that f transforms any sphere into a sphere. Shepard [51] argues from there that “every
sphere-preserving transformation is either a similarity transformation or the product of an inversion
(in a sphere) and an isometry”, citing2 [24, p 104]. He then goes on to say that “The possibility
of an inversive transformation can immediately be ruled out, however. It preserves neither the
rank order of concentric spheres nor the equality of nonconcentric spheres, whereas both of these
invariances are required by the given rank order of the interpoint distances.”

We let Shepard’s arguments stand on their own, and turn our attention to establishing a more
general result using a different approach, following [6] instead.

Theorem 3.2. Suppose that X has non-empty interior. Then a weakly isotonic function on X
must coincide on X with a similarity transformation.

Proof. First, suppose that X is an open ball. Then the result follows from [36, Prop 7] or [6, Th 1].
We sketch the arguments following the latter reference. The line of reasoning is as follows: (1) a
weakly isotonic function on such a set X is continuous; (2) a weakly isotonic function on a convex
set preserves midpoints, i.e., satisfies Jensen’s functional equation; note that (1) and (2) combined
yield that a weakly isotonic function on an open ball is affine (i.e., coincides on its domain with
an affine function); and we conclude with (3) an affine function that satisfies (3.5) on a ball is a
similitude (i.e., coincides on its domain with a similarity transformation).

2We note that, strictly speaking, the result is stated for dimension three, and earlier in the same book, for

dimension two. These are Theorems 6.71 and 7.71, at least in the 1969 edition of the book.



7

Now, to prove the theorem as stated, let B be any open ball contained in X and let f be weakly
isotonic on X . We know that f coincides on B with a similarity transformation. Without loss of
generality, we may assume this similarity transformation to be the identity function, in which case
f(x) = x for all x ∈ B. In particular, f(B) = B, and via (3.3), we have, for any x ∈ X ,

∥x − x′∥ < ∥x − x′′∥ ⇔ ∥f(x) − x′∥ < ∥f(x) − x′′∥, for all x′, x′′ ∈ B. (3.8)

By Theorem 2.1, this implies that f(x) = x. And this is true for any x ∈ X , so that f coincides
with the identity function on the entirety of X .

4 Internal Unfolding

In internal unfolding, we have m individuals expressing preferences for n objects, and the goal is to
locate the m individuals and the n objects in space. Unlike in external unfolding (Section 2), the
location of the objects is unknown. The origins of internal unfolding in the Psychometrics literature
date back to Coombs [22] for the point model and to Bennett [12] and Tucker [59] for the vector
model — although the latter coincides with some variants of factor analysis. The problem is also
known as ‘multidimensional unfolding’, or just ‘unfolding’ [15].

We consider non-metric or ordinal variant of the problem, with a focus on the conditional
setting where each individual ranks the objects in order of preference without first agreeing with
other individuals on some ordinal scale. This corresponds to the method of triads. We consider
both the point model and the vector model.

It is well-known in the field that the problem is numerically difficult as the iterative method
otherwise popular in the metric setting often return degenerate solutions. This is discussed at
length in [17]. See also [15, Ch 14, 15].

4.1 Point Model

4.1.1 Discrete Setting

The practitioner adopting the point model is confronted with the following problem: Given a set
of row ranks (rik ∶ i ∈ [m], k ∈ [n]), with each (ri1, . . . , rin) being a permutation of (1, . . . , n), and
a dimension p ≥ 1,

Find x1, . . . , xm ∈ R
p and y1, . . . , yn ∈ R

p such that ∥xi − yk∥ < ∥xi − yl∥ whenever rik < ril. (4.1)

We note that any similarity transformation of a solution — applied to both the individuals and the
objects — is also a solution.

Bennett and Hays [13] propose three methods for determining the smallest dimension where an
exact embedding can be realized, and in the process offer some elementary observations on things
like the number of isotonic regions (aka Voronoi cells). A follow-up paper by the same authors [33]
considers extending the basic approach developed by Coombs [22] for the case of dimension p = 1
to general p > 1 by studying the order of individuals when projected onto lines. This combinatorial
and basic geometrical work was developed further by Davidson [26, 27]. Beyond that, the only
theoretical results we are aware of pertain to the study of degenerate solutions [17, 27, 28].

4.1.2 Continuous Setting

Again inspired by Shepard [51], we consider a limit model in the continuum where the number of
individuals and the number of objects are both infinite, represented by subsets X ⊂ Rp and Y ⊂ Rp,
respectively.
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Staying with the discrete model for a moment, two configurations in dimension p, one of them
{x1, . . . , xm;y1, . . . , yn} and the other {x′

1
, . . . , x′m;y′

1
, . . . , y′n}, are indistinguishable if it holds that

∥xi − yk∥ < ∥xi − yl∥ ⇔ ∥x′i − y
′
k∥ < ∥x

′
i − y

′
l∥, for all (i, k, l) ∈ [m] × [n] × [n]. (4.2)

In preparation to pass to the continuum, we regard these configurations as being in correspondence
via the pair of functions xi ↦ x′i and yk ↦ y′k, defined on {x1, . . . , xm} and {y1, . . . , yn}, respectively.
When considering equivalent configurations in the continuum, we are thus led to study pairs of
injective functions f ∶ X → R

p and g ∶ Y → R
p satisfying

∥x − y∥ < ∥x − y′∥ ⇔ ∥f(x) − g(y)∥ < ∥f(x) − g(y′)∥, for all (x, y, y′) ∈ X ×Y × Y. (4.3)

This is equivalent to

g(B(x, ∥x − y∥) ∩ Y) = B(f(x), ∥f(x) − g(y)∥)) ∩ g(Y), for all (x, y) ∈ X ×Y. (4.4)

We note that (4.3) implies

∥x − y∥ = ∥x − y′∥ ⇔ ∥f(x) − g(y)∥ = ∥f(x) − g(y′)∥, for all (x, y, y′) ∈ X ×Y × Y, (4.5)

which is equivalent to

g(S(x, ∥x − y∥) ∩ Y) = S(f(x), ∥f(x) − g(y)∥)) ∩ g(Y), ∀(x, y) ∈ X × Y. (4.6)

We first establish the result in the setting that we believe Shepard [51] would have considered.

Proposition 4.1. In the situation where X = Y = Rp, consider any pair of injective functions (f, g)
satisfying (4.3) such that g(Rp) = Rp. Then, it must be the case that f = g = L for some similarity
transformation L.

With the additional assumption that g(Rp) = Rp, meaning that g is not only injective but also
surjective, (4.6) becomes

g(S(x, ∥x − y∥)) = S(f(x), ∥f(x) − g(y)∥)), ∀(x, y) ∈ Rp ×Rp. (4.7)

Lemma 4.2. Consider any pair of injective functions (f, g) satisfying (4.7). If x,x′, x′′ ∈ X and
y, y′, y′′ ∈ Y are all collinear, then so are f(x), f(x′), f(x′′), g(y), g(y′), g(y′′).

Proof. Assume without loss of generality that the points are all distinct.
We first show that f(x), f(x′), g(y) are collinear. Indeed, since x,x′, y are collinear, and we

just assumed that x ≠ x′, it must be that y is the only point at the intersection of S ∶= S(x, ∥x−y∥)
and S ′ ∶= S(x′, ∥x′ − y∥). Now, by (4.7),

g(S) = S(f(x), ∥f(x) − g(y)∥), g(S ′) = S(f(x′), ∥f(x′) − g(y)∥), (4.8)

and, by the fact that g is injective, these two spheres only have one point in common, g(y), and so
they must be tangent as well. This then implies that their centers, f(x) and f(x′), are collinear
with their point of contact, g(y).

By the same token, f(x), f(x′), g(y′), f(x), f(x′), g(y′′), and also f(x), f(x′′), g(y), must be
collinear. And from all this, we are able to conclude.
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Proof of Proposition 4.1. It suffices to show that f and g coincide, as we can then deduce from
(4.3) that f is weakly isotonic, and is therefore a similarity transformation via Theorem 3.2.

Take any z0. We want to show that f(z0) = g(z0). Consider z1, z′1, z2, z
′
2
on some sphere S cen-

tered at z0 such that (z1z′1) and (z2z
′
2
) intersect at z0, so that [z1z′1] and [z2z

′
2
] are diameters of the

sphere. By (4.7), g(S) is a sphere centered at f(z0) and passing through g(z1), g(z′1), g(z2), g(z
′
2
).

And, by Lemma 4.2, f(z0), g(z1), g(z′1) are collinear, and so are f(z0), g(z2), g(z′2), implying that
[g(z1)g(z′1)] and [g(z2)g(z

′
2
)] are diameters of g(S). By the fact that g is injective, we have

that g(z1), g(z′1), g(z2), g(z
′
2
) are distinct, so that f(z0) is the only point at the intersection of the

lines (g(z1)g(z′1)) and (g(z2)g(z
′
2
)). However, Lemma 4.2 also gives that g(z0), g(z1), g(z′1) are

collinear, and that g(z0), g(z2), g(z′2) are collinear, implying in the same way that g(z0) is also at
the intersection of these two lines, forcing g(z0) = f(z0).

We now state our result for the setting that we consider. Importantly, we do not assume that
(4.7) holds, and the situation becomes substantially more complicated. We are able to establish
the following result.

Theorem 4.3. Suppose that either X = Rp and Y has non-empty interior, or that X has non-empty
interior and Y = Rp, and consider any pair of injective functions (f, g) satisfying (4.3). Then, there
is a similarity L such that f = L on X and g = L on Y.

The proof occupies the rest of the section. Until the end of the proof, (f, g) denotes a pair of
injective functions satisfying (4.3).

Proposition 4.4. Suppose that on an open ball contained in X ∩ Y, f = g = L for some similarity
transformation L. Then f = L on the entirety of X , and if either X = Rp or Y = Rp, then g = L on
the entirety of Y.

Proof. Let B denote such a ball and assume without loss of generality that L = id so that f(x) = x
for all x ∈ B and g(y) = y for all y ∈ B. We want to show that this extends to all x ∈ X and all
y ∈ Y, respectively.

Take any x ∈ X . By (4.5) and the assumptions made here,

∥x − y∥ = ∥x − y′∥ ⇔ ∥f(x) − y∥ = ∥f(x) − y′∥, ∀y, y′ ∈ B.

In words, x and f(x) are equivalent with respect to B. Since B is open, we may apply Theorem 2.1
to obtain that x and f(x) coincide. Therefore, f(x) = x for all x ∈ X .

To continue, assume without loss of generality that B is the unit ball. Take any y ∈ Y not in B,
for otherwise we already know that g(y) = y. First, assume that X = Rp. Let u ∶= y/∥y∥ and define
y± ∶= ±1

2
u, and then x± ∶= 1

2
(y + y±). Because y± ∈ B, we have g(y±) = y±, and by construction,

∥x± − y∥ = ∥x± − y±∥ =∶ r±, so that an application of (4.5) gives ∥x± − g(y)∥ = r±. This means that
g(y) ∈ B(x−, r−) ∩B(x+, r+). But, by construction, B(x−, r−) ∩B(x+, r+) = {y}, forcing g(y) = y.

Now, assume that Y = Rp. It suffices to show that g(y) = y for all y ∈ Bm ∶= B(0,m) for all m ≥ 1
integer, and we do that by induction. We can readily start the induction since this is true for m = 1
by assumption. Assume that this holds for some given m ≥ 1 and take y ∈ Bm+1∖Bm. Let u ∶= y/∥y∥,
so that y = (m+a)u for some 0 ≤ a < 1. Define yj ∶= −(m−a/j)u for j = 1,2, and note that yj ∈ Bm,
so that g(yj) = yj. Let xj ∶= 1

2
(y + yj), and note that xj ∈ B and also ∥xj − y∥ = ∥xj − yj∥ =∶ rj .

The arguments are now the same. Indeed, applying (4.5) gives ∥xj − g(y)∥ = rj, so that g(y) ∈
B(x1, r1) ∩B(x2, r2). But, by construction, B(x1, r1) ∩B(x2, r2) = {y}, forcing g(y) = y.

In view of this proposition, it suffices to prove the theorem in a situation where X = Y is an
open ball, which we denote B henceforth. Unless specified otherwise, all the points belong to B.
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For a subset S ⊂ R
p we define dimS to be the dimension of the affine space spanned by S,

denoted spanS. We denote by dirS the direction of spanS and by vectS the vector space spanned
by S. In particular, for any s ∈ S, we have dirS = vect(S − s) and spanS = s + dirS. We say that
two subsets S and S ′ are parallel if dirS ⊂ dirS ′ or dirS ′ ⊂ dirS.

We already saw that any pair of functions (f, g) satisfying (4.3) also satisfies (4.4), which here
takes the form

g(B(x, ∥y − x∥) ∩ B) = B(f(x), ∥g(y) − f(x)∥) ∩ g(B), ∀x, y ∈ B. (4.9)

It is also the case that

f(H+(y, y′) ∩B) =H+(g(y), g(y′)) ∩ f(B), ∀y ≠ y′ ∈ B; (4.10)

f(H(y, y′) ∩B) =H(g(y), g(y′)) ∩ f(B), ∀y ≠ y′ ∈ B. (4.11)

Recall that H(y, y′) is the hyperplane going through the midpoint of, and orthogonal to the line
segment [yy′], while H+(y, y′) is the half-space with boundary H(y, y′) and containing y.

Lemma 4.5. For any subset S ⊂ B, dimf(S) = dimS.

Proof. We first prove that dimf(S) ≥ dimS. Let k = dimS and let x1, . . . , xk+1 be affinely indepen-
dent points of S. Assume that dim{f(x1), . . . , f(xk+1)} < k. Because the Vapnik–Chervonenkis
dimension of affine hyperplanes in R

k is exactly k + 1, the set {f(x1), . . . , f(xk+1)} cannot be shat-
tered, and we can find a subset I ⊂ [k+1] such that (f(xi))i∈I cannot be separated from (f(xi))i∈Ic .
But because x1, . . . , xk+1 is affinely independent, it is shattered by affine hyperplanes and it exists
H that separates (xi)i∈I from (xi)i∈Ic . Now we can find y, y′ ∈ B such that H = H(y, y′): indeed,
it must be the case that both I and Ic are not empty, thus H operates a non-trivial separation of
{x1, . . . , xk+1} and so intersects B; since B is open, it is then easy to find two such points y, y′ ∈ B.
Now it is straight-forward to see that H(g(y), g(y′)) also separates (f(xi))i∈I from (f(xi))i∈Ic
through (4.10), leading to a contradiction. Thus dimf(S) ≥ dim{f(x1), . . . , f(xk+1)} ≥ k = dimS.

We now prove that dimf(S) ≤ dimS. We do so by descending induction on dimS. When
dimS = p − 1, then there exists distinct y, y′ ∈ B such that S ⊂ H(y, y′) and (4.10) yields that
f(S) ⊂H(g(y), g(y′)) hence dimf(S) ≤ p−1 by injectivity of g. Now by induction, if dimS ≤ p−2,
then at least dimf(S) ≤ p − 1. Now assume that dimf(S ∪ {x}) = dimf(S) for all x ∉ spanS.
Then, according to the first part of the proof,

dimf(S) = dimf(S ∪ (B ∖ spanS)) ≥ dim(B ∖ spanS) = p,

which is absurd. Therefore, there exists x ∉ spanS such that dimf(S ∪ {x}) = dimf(S) + 1. By
induction, we get

dimf(S) = dimf(S ∪ {x}) − 1 ≤ dim(S ∪ {x}) − 1 = dimS.

which ends the proof.

Lemma 4.6. Let R be any 2p-tuple of B forming a hyperrectangle. Then g(R) is also a 2p-tuple
forming a hyperrectangle in the same configuration as R.

Proof. It suffices to establish that, for any point set y1, y2, y3, y4 ∈ B that forms a rectangle, the
point set g(y1), g(y2), g(y3), g(y4) also forms a rectangle.

Assume without loss of generality that y1 − y2 = y3 − y4. In that case, we have H(y1, y2) =
H(y3, y4). Then, by (4.11), H(g(y1), g(y2)) and H(g(y3), g(y4)) both contain f(H(y1, y2) ∩ B),
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and because that subset has dimension p − 1 by Lemma 4.5, it must be that H(g(y1), g(y2)) =
H(g(y3), g(y4)) =∶H. In particular, v12 ∶= g(y1)− g(y2) is parallel to v34 ∶= g(y3)− g(y4). Similarly,
since y1−y3 = y2−y4, we also have that v13 ∶= g(y1)−g(y3) is parallel to v24 ∶= g(y2)−g(y4). Notice
that

1

2
(v13 + v24) = 1

2
(g(y1) + g(y2)) − 1

2
(g(y3) + g(y4)) ∈ H −H ⊂ dirH,

which by parallelism of v13 and v24 can only be true if both v13, v24 ∈ dirH. In particular, v13 and
v24 are perpendicular to v12 and v34. This proves that g(y1), g(y2), g(y3), g(y4) forms a rectangle
in the same configuration than y1, y2, y3, y4. As a result, g(R) is a hyperrectangle in the same
configuration as R.

As an immediate corollary, we get the following.

Corollary 4.7. g(B) has affine dimension p.

Lemma 4.8. Let L be a line intersecting B. Then g(L ∩ B) is contained in a line. Furthermore,
if L′ is another line intersecting B parallel to L, then g(L′ ∩B) is parallel to g(L ∩ B).

Proof. Let x,x′ and x′′ three points of L ∩ B. Then we can construct two hyperrectangles R and
R′ of B with a common facet and such that [xx′] and [x′x′′] are two edges of R and R′ orthogonal
to that common facet. Since g(R) and g(R′) are two hyperrectangles in the same configuration as
R and R′, theyx also share a common facet, and [g(x)g(x′)] and [g(x′)g(x′′)] must be orthogonal
to that common hyperfacet. They are thus parallel, so that g(x), g(x′) and g(x′′) are colinear.

For the second part of the proof, we can build a third hyperrectangle R′′ of B which contains
two edges that are supported on L and L′. Since g(R′′) is again a hyperrectangle, the images of
these edges are parallel, and so must be g(L ∩ B) and g(L′ ∩ B).

Lemma 4.9. Assume that 0 ∈ B and that g(0) = 0. It holds that g(y0 + y1) = g(y0) + g(y1) for all
y0, y1 ∈ B such that 0 ∉ (y0y1) and y0 + y1 ∈ B.

Proof. Take y0 ∈ B and L0 = vect(y0). Then, by Lemma 4.8, g(L0 ∩ B) ⊂ vect(g(y0)). Now let
y1 ∈ B such that 0 ∉ (y0y1) and such that y0 + y ∈ B, and denote L1 = vect(y1). Since g conserves
parallelism also by Lemma 4.8, g({y1 +L0} ∩ B) is contained in a line with direction vect(g(y0)),
so that g({y1 +L0} ∩ B) ⊂ g(y1) + vect(g(y0)). Similarly, g({y0 +L1} ∩ B) ⊂ g(y0) + vect(g(y1)).
Now, since y0 + y1 is the intersection of y0 +L1 and y1 +L0, there holds

g(y0 + y1) ∈ g ({y1 +L0} ∩ B) ⋂ g ({y0 +L1} ∩B)
⊂ {g(y1) + vect(g(y0))} ⋂ {g(y0) + vect(g(y1))} = {g(y0) + g(y1)} .

Lemma 4.10. Assume that 0 ∈ B and that g(0) = 0. It holds that g(−y) = −g(y) for all y ∈ B.

Proof. Let y0 ∈ B ∖ {0} and let y1 ∈ B ∖ vect(y0). Then there exists (a small) z in B that is not in
vect(y0) or vect(y1) and such that y0 ± z and y1 ± z are in B. Then, thanks to Lemma 4.9,

g(y0) + g(−y0) = g(z + y0) + g(z − y0) − 2g(z) (4.12)

= g(2z) − 2g(z) (4.13)

= g(z + y1) + g(z − y1) − 2g(z) (4.14)

= g(y1) + g(−y1), (4.15)

so that g(y0) + g(−y0) ∈ vect g(y0) ∩ vect g(y1). This last intersection is {0} by injectivity of g.

Lemma 4.11. Assume that 0 ∈ B and that g(0) = 0. It holds that f(0) = 0.
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Proof. Let x ∈ B ∖ {0}. By (4.11), f(H(x,−x) ∩ B) ⊂ H(g(x),−g(x)), and by Lemma 4.10,
H(g(x),−g(x)) = vect g(x)⊥. Thus,

f(0) ∈ ⋂
x∈B

vect g(x)⊥ = g(B)⊥ = {0} ,

because dim g(B) = p thanks to Corollary 4.7.

Proof of Theorem 4.3. Fix an arbitrary x0 ∈ B and define g0(x) ∶= g(x + x0) − g(x0) and f0(x) ∶=
f(x + x0) − g(x0). Then g0 and f0 satisfy (4.3), 0 ∈ B − x0 and g0(0) = 0. Therefore, thanks
to Lemma 4.11, f0(0) = 0, and hence f(x0) = g(x0). We have thus established that f = g on
B. Furthermore, combined with (4.3), we deduce that g is weakly isotonic on B, and must thus
coincide with a similarity transformation on B by way of Theorem 3.2.

We initially thought that we could work in Theorem 4.3 under more general conditions on X
and Y. The result might hold, for example, if X and Y are open and have a non-empty intersection.
We do not know whether this is the case or not. It is not even clear to us whether requiring that
X and Y intersect in that case is necessary or not. We note, however, that it is not sufficient
that X ∩ Y have non-empty interior — a condition that would be in line with what was assumed
in Theorem 2.1 and Theorem 3.2. Indeed, consider a situation where X is the unit ball (open or
closed) and Y = X ∪A, A ∶= {au ∶ a ≥ 1}, with u an arbitrary normed vector. In that case, f = id
on X and g = id on X and increasing along A with g(A) ⊂ A, satisfies (4.3).

4.2 Vector Model

4.2.1 Discrete Setting

In practical settings, the problem in the vector model variant of the problem is as follows: Given
a set of row ranks (rik ∶ i ∈ [m], k ∈ [n]), with each (ri1, . . . , rin) being a permutation of (1, . . . , n),
and a dimension p ≥ 1,

Find x1, . . . , xm ∈ S
p−1 and y1, . . . , yn ∈ R

p such that ⟨xi, yk⟩ < ⟨xi, yl⟩ whenever rik > ril. (4.16)

(Note that change in the direction of the second inequality. We adopted this convention so that
the ranks have the same meaning as they do in (4.1).) It is also the case here that any similarity
transformation of a solution is also a solution. In addition, there is one more degree of freedom
that comes from arbitrarily scaling the objects.

In his pioneering study, Bennett [12] provides some basic combinatorial insights into the prob-
lem, later enriched by Davidson [27]. Much closer to our contribution here, Shepard [51] discusses
the theoretical foundations of this problem in a continuous model, which we detail in the next
subsection.

4.2.2 Continuous Setting

In the continuous model inspired by Shepard [51], we consider a subset of individuals, X ⊂ Sp−1,
and a subset of objects, Y ⊂ Rp.

In the discrete setting, two configurations in dimension p (with p ≥ 2, as before), one being
{x1, . . . , xm;y1, . . . , yn} and the other being {x′

1
, . . . , x′m;y′

1
, . . . , y′n}, are indistinguishable when

⟨xi, yk⟩ < ⟨xi, yl⟩ ⇔ ⟨x′i, y
′
k⟩ < ⟨x

′
i, y
′
l⟩, for all (i, k, l) ∈ [m] × [n] × [n]. (4.17)
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As we did for the point model, we see these configurations as being in correspondence via xi ↦ x′i
and yk ↦ y′k. When passing to the continuum, we end up considering pairs of injective functions
f ∶ X → S

p−1 and g ∶ Y → R
p satisfying

⟨x, y⟩ < ⟨x, y′⟩ ⇔ ⟨f(x), g(y)⟩ < ⟨f(x), g(y′)⟩, for all (x, y, y′) ∈ X × Y ×Y. (4.18)

Theorem 4.12. Suppose that X contains p + 1 vectors in general position, and that Y is open
and connected. Then any pair of injective functions (f, g) satisfying (4.18) must be of the form
f(x) = L−⊺x/∥L−⊺x∥ and g(y) = Ly + τ , for some invertible linear function L and a vector τ ∈ Rp.

Recall that a set of vectors is in general position if any q of them are linearly independent for
any q ≤ p. We note that (4.18) implies

⟨x, y⟩ = ⟨x, y′⟩ ⇔ ⟨f(x), g(y)⟩ = ⟨f(x), g(y′)⟩, for all (x, y, y′) ∈ X × Y ×Y. (4.19)

We will use this identity in the proof below. The following two lemmas operate under the conditions
of Theorem 4.12.

Lemma 4.13. If x1, . . . , xq are linearly independent, so are f(x1), . . . , f(xq).

Proof. Take x1, . . . , xq are linearly independent, and suppose for contradiction that f(x1), . . . , f(xq)
are not linearly independent, e.g., suppose f(xq) is a linear combination of f(x1), . . . , f(xq−1).
Because Y has non-empty interior, there is y, y′ ∈ Y such that ⟨xi, y − y′⟩ = 0 for i = 1, . . . , q − 1 and
⟨xq, y − y′⟩ ≠ 0. Since ⟨xi, y⟩ = ⟨xi, y′⟩ for i = 1, . . . , q − 1, we have via (4.19) that ⟨f(xi), g(y)⟩ =
⟨f(xi), g(y′)⟩ for i = 1, . . . , q − 1. Since f(xq) is generated by the other f(xi), it must be the case
that ⟨f(xq), g(y)⟩ = ⟨f(xq), g(y′)⟩. However, ⟨xq, y⟩ ≠ ⟨xq, y′⟩, since ⟨xq, y −y′⟩ ≠ 0, and this implies
again via (4.19) that ⟨f(xq), g(y)⟩ ≠ ⟨f(xq), g(y′)⟩ — a contradiction.

Lemma 4.14. If g locally affine, then the conclusions of Theorem 4.12 hold.

Proof. We first note that a function that is locally affine on an open connected set must be affine
on the entire set — see, e.g., [6, Lem 8]. Therefore, we must have that g(y) = Ly + τ on the whole
of Y, for some linear map L and some translation vector τ , and by the fact that g is injective, L
must be invertible. We assume that τ = 0 without loss of generality.

Define f̃(x) = fL(x)/∥fL(x)∥ where fL(x) ∶= L⊺f(x). Then, ⟨f(x), g(y)⟩ = ⟨fL(x), y⟩ and
sign⟨fL(x), y⟩ = sign⟨f̃(x), y⟩ on X × B. Therefore, for any x ∈ X , by (4.18), we have

⟨x, y⟩ < ⟨x, y′⟩ ⇔ ⟨f̃(x), y⟩ < ⟨f̃(x), y′⟩, for all y, y′ ∈ Y. (4.20)

By Theorem 2.2, it must be the case that f̃(x) = x. This, and the fact that f ∶ X → S
p−1, then

implies that f(x) = L−⊺x/∥L−⊺x∥. And this is valid for all x ∈ X .

Proof of Theorem 4.12. By Lemma 4.14, it suffices to show that g is locally affine.
Let x0, . . . , xp ∈ X be as in the statement. In particular, x1, . . . , xp form a basis of the whole

space R
p, and x0 does not belong to any hyperplane generated by any p− 1 elements of that basis.

By applying to X and Y the orthogonal transformation that sends xi to ei, the i-th canonical
vector of Rp, we may assume without loss of generality that x1, . . . , xp form the canonical basis
of Rp. That being done, the condition on x0 is that none of its coordinates are zero: We write
x0 = (a1, . . . , ap) in the canonical basis.

In view of Lemma 4.13, it is also true that f(x0), . . . , f(xp) are in general position. By applying
to f(X ) and g(Y) the orthogonal transformation that sends f(xi) to ei, we may also assume without
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loss of generality that f(x1), . . . , f(xp) form the canonical basis of Rp. Having done that, we have
f(xi) = xi (or f(ei) = ei) for i = 1, . . . , p. And it is also true that f(x0) has none of its coordinates
equal to zero: We write f(x0) = (b1, . . . , bp) in the canonical basis.

Write g(y) = (g1(y), . . . , gp(y)). Applying (4.19) with x = em, and writing y = (u1, . . . , up) and
y′ = (u′

1
, . . . , u′p), we get

um = u
′
m ⇔ gm(y) = gm(y′), (4.21)

implying that gm is only a function of the m-th coordinate. This allows us to rewrite g(y) =
(g1(u1), . . . , gp(up)). Then, applying (4.18), we get

um < u
′
m ⇔ gm(um) < gm(u′m), (4.22)

implying that gm is increasing.
We want to show that g is affine in some neighborhood of an arbitrary point y0 ∈ Y. By applying

an appropriate translation and scaling to Y, we may assume without loss of generality that y0 is
the origin (y0 = 0) and that Y contains the hypercube [−1,1]p. And by applying an appropriate
translation to g(Y), we may also assume that g(0) = 0. We now show that each gm is linear in a
neighborhood of the origin. We do so for m = 1. Applying (4.19) with x = x0, we have

p

∑
m=1

amum =
p

∑
m=1

amu′m ⇔
p

∑
m=1

bmgm(um) =
p

∑
m=1

bmgm(u′m). (4.23)

Taking u3 = ⋯ = up = 0 and u′
2
= ⋯ = u′p = 0, we obtain the identity

a1u1 + a2u2 = a1u′1 ⇔ b1g1(u1) + b2g2(u2) = b1g1(u′1), (4.24)

which in turn implies
g1(u1 + a2

a1
u2) = g1(u1) + b2

b1
g2(u2). (4.25)

This is valid for u1, u2 ∈ [−1,1] such that ∣u1 + a2
a1
u2∣ ≤ 1. Applying this with u1 = 0, using the fact

that g1(0) = 0, we get
g1(a2a1u2) =

b2
b1
g2(u2), (4.26)

whenever ∣a2
a1
u2∣ ≤ 1, and re-injecting that into the previous identity, and changing variables, we get

g1(u1 + v1) = g1(u1) + g1(v1), (4.27)

when ∣u1∣ ≤ 1, ∣v1∣ ≤min(1, a2
a1
), and ∣u1 + v1∣ ≤ 1. Therefore, g1 is additive in a neighborhood of the

origin. Although additive functions are not linear in general, it is a known fact that a monotone
additive function on the real line is linear [11, Ex 15 L-M]. It is true that we have only shown that
g1 is additive in a neighborhood of the origin, not the entire real line, but the usual arguments
apply to show that it is linear in the same neighborhood.3

We note that the condition on X in Theorem 4.12 cannot be weakened. To see this, consider
the example situation where X = {e1, . . . , ep}, Y = R

p, f(ei) = ei for all i, and g(u1, . . . , up) =
(g1(u1), . . . , gp(up)) where each gm is increasing on R. The assumption that Y is connected is also
necessary. To see this, consider the example situation where X = {e0, e1, . . . , ep} with e0 ∝ (1, . . . ,1),
Y = Y0 ∪Y1 with Y0 ∶= B(0,1) and Y1 ∶= B(3e0,1), f(ei) = ei for all i, and g(y) = y + τs on Ys, with
τ0 < τ1 coordinate-wise.

3See, for example, https://math.stackexchange.com/a/1143841

https://math.stackexchange.com/a/1143841
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5 Discussion

The paper provides a comprehensive theory of ordinal embedding in some of its main variants in
the continuous model of Shepard [51]. We firmly believe that the sort of analysis done in [6, 36]
in the finite sample setting is possible in the context of external and internal unfolding, but carry
this out would make the study substantially more technical.

Although it might be possible to sharpen some of our results by dropping or weakening some
assumptions, more importantly, we have avoided issues of missingness and errors in the data.
While there is a good amount of some theory available in the metric setting on these two issues,
for example, in [2, 7, 8, 35] (and of course the whole literature on Graph Rigidity Theory) there
is comparatively little in the ordinal setting. A situation with some missingness, where only local
comparisons are available, is considered in the context of ordinal embedding in [6], and some theory
is developed in a framework that allows for erroneous comparisons in [34]. However, we do not see
an elegant and useful way of extending the continuous model to allow for missingness and noise in
the comparisons.

Acknowledgements

The work of EAC was partially supported by the US National Science Foundation (DMS 1916071).
The work of CB was supported by the Deutsche Foschungsgemeinschaft (German Research Founda-
tion) on the French-German PRCI ANR ASCAI CA 1488/4-1 “Aktive und Batch-Segmentierung,
Clustering und Seriation: Grundlagen der KI”. The work of DK was partially supported by the US
National Science Foundation (NSF Medium Award CCF-2107547 and NSF Award CCF-1553288
CAREER).

References

[1] Agarwal, S., J. Wills, L. Cayton, G. Lanckriet, D. J. Kriegman, and S. Belongie (2007). Generalized
non-metric multidimensional scaling. In International Conference on Artificial Intelligence and Statistics,
pp. 11–18.

[2] Anderson, B. D., I. Shames, G. Mao, and B. Fidan (2010). Formal theory of noisy sensor network
localization. SIAM Journal on Discrete Mathematics 24 (2), 684–698.

[3] Anderson, T. W. (2003). An Introduction to Multivariate Statistical Analysis (3rd ed.). Hoboken: John
Wiley and Sons.

[4] Anderton, J. and J. Aslam (2019). Scaling up ordinal embedding: A landmark approach. In International
Conference on Machine Learning.

[5] Anonymous (1994). Glossary of the Mapping Sciences. The American Society for Photogrammetry and
Remote Sensing, the American Congress on Surveying and Mapping, and the American Society of Civil
Engineers.

[6] Arias-Castro, E. (2017). Some theory for ordinal embedding. Bernoulli 23 (3), 1663–1693.
[7] Arias-Castro, E. and P. A. Chau (2022). Supervising embedding algorithms using the stress. arXiv

preprint arXiv:2207.07218 .
[8] Arias-Castro, E., A. Javanmard, and B. Pelletier (2020). Perturbation bounds for Procrustes, clas-

sical scaling, and trilateration, with applications to manifold learning. Journal of Machine Learning
Research 21, 1–37.

[9] Aspnes, J., T. Eren, D. K. Goldenberg, A. S. Morse, W. Whiteley, Y. R. Yang, B. D. Anderson, and P. N.
Belhumeur (2006). A theory of network localization. IEEE Transactions on Mobile Computing 5 (12),
1663–1678.

[10] Aumann, R. J. and J. Kruskal (1958). The coefficients in an allocation problem. Naval Research Logistics
Quarterly 5 (2), 111–123.

[11] Bartle, R. G. (1964). The Elements of Real Analysis. John Wiley & Sons.



16

[12] Bennett, J. F. (1956). Determination of the number of independent parameters of a score matrix from
the examination of rank orders. Psychometrika 21 (4), 383–393.

[13] Bennett, J. F. and W. L. Hays (1960). Multidimensional unfolding: Determining the dimensionality of
ranked preference data. Psychometrika 25 (1), 27–43.

[14] Blumenthal, L. M. (1938). Distance geometries. University of Missouri Studies 13 (2).
[15] Borg, I. and P. J. Groenen (2005). Modern Multidimensional Scaling: Theory and Applications. Springer.
[16] Bradley, R. A. and M. E. Terry (1952). Rank analysis of incomplete block designs: I. the method of

paired comparisons. Biometrika 39 (3/4), 324–345.
[17] Busing, F. M., P. J. Groenen, and W. J. Heiser (2005). Avoiding degeneracy in multidimensional

unfolding by penalizing on the coefficient of variation. Psychometrika 70 (1), 71–98.
[18] Canal, G., A. Massimino, M. Davenport, and C. Rozell (2019). Active embedding search via noisy

paired comparisons. In International Conference on Machine Learning, Volume 97, pp. 902–911. PMLR.
[19] Carroll, D. J. (1972). Individual differences and multidimensional scaling. In R. Shepard, A. K. Romney,

and S. B. Nerlove (Eds.), Multidimensional Scaling: Theory and Applications in the Behavioral Sciences,
pp. 105–155. Seminar Press.

[20] Carroll, D. J. and J. J. Chang (1967). Relating preference data to multidimensional scaling solutions
via a generalization of Coomb’s unfolding model. In Meeting of the Psychometric Society.

[21] Chrzanowski, A. and G. Konecny (1965). Theoretical comparison of triangulation, trilateration and
traversing. The Canadian Surveyor 19 (4), 353–366.

[22] Coombs, C. H. (1950). Psychological scaling without a unit of measurement. Psychological Review 57 (3),
145.

[23] Cox, T. F. and M. A. Cox (2000). Multidimensional Scaling. CRC Press.
[24] Coxeter, H. S. M. (1961). Introduction to Geometry. John Wiley & Sons.
[25] Davenport, M. A. (2013). Lost without a compass: Nonmetric triangulation and landmark multidimen-

sional scaling. In Computational Advances in Multi-Sensor Adaptive Processing, pp. 13–16. IEEE.
[26] Davidson, J. (1972). A geometrical analysis of the unfolding model: nondegenerate solutions. Psy-

chometrika 37 (2), 193–216.
[27] Davidson, J. (1973). A geometrical analysis of the unfolding model: general solutions. Psychome-

trika 38 (3), 305–336.
[28] de Leeuw, J. (1983). On degenerate nonmetric unfolding solutions. Technical report, Department of

Data Theory, University of Leiden.
[29] de Leeuw, J. and W. Heiser (1982). Theory of multidimensional scaling. In Classification Pattern

Recognition and Reduction of Dimensionality, Volume 2 of Handbook of Statistics, pp. 285–316. Elsevier.
[30] Fang, B. T. (1986). Trilateration and extension to global positioning system navigation. Journal of

Guidance, Control, and Dynamics 9 (6), 715–717.
[31] Gower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate

analysis. Biometrika 53 (3-4), 325–338.
[32] Gower, J. C. (1968). Adding a point to vector diagrams in multivariate analysis. Biometrika 55 (3),

582–585.
[33] Hays, W. L. and J. F. Bennett (1961). Multidimensional unfolding: Determining configuration from

complete rank order preference data. Psychometrika 26 (2), 221–238.
[34] Jain, L., K. G. Jamieson, and R. Nowak (2016). Finite sample prediction and recovery bounds for

ordinal embedding. In Advances in Neural Information Processing Systems, pp. 2711–2719.
[35] Javanmard, A. and A. Montanari (2013). Localization from incomplete noisy distance measurements.

Foundations of Computational Mathematics 13 (3), 297–345.
[36] Kleindessner, M. and U. von Luxburg (2014). Uniqueness of ordinal embedding. In Conference on

Learning Theory, pp. 40–67.
[37] Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.

Psychometrika 29, 1–27.
[38] Kruskal, J. B. (1964b). Nonmetric multidimensional scaling: a numerical method. Psychometrika 29 (2),

115–129.
[39] Laurent, M. (2001). Matrix completion problems. In Encyclopedia of Optimization, pp. 221–229.

Springer.
[40] Liu, H., R. Ji, Y. Wu, and W. Liu (2016). Towards optimal binary code learning via ordinal embedding.



17

In Conference on Artificial Intelligence. AAAI.
[41] Mair, P., P. J. Groenen, and J. de Leeuw (2022). More on multidimensional scaling and unfolding in r:

smacof version 2. Journal of Statistical Software 102, 1–47.
[42] Massimino, A. K. and M. A. Davenport (2021). As you like it: Localization via paired comparisons.

Journal of Machine Learning Research 22, 1–37.
[43] Navidi, W., W. S. Murphy Jr, and W. Hereman (1998). Statistical methods in surveying by trilateration.

Computational Statistics & Data Analysis 27 (2), 209–227.
[44] Priyantha, N. B., H. Balakrishnan, E. Demaine, and S. Teller (2003). Anchor-free distributed localization

in sensor networks. In Conference on Embedded Networked Sensor Systems, pp. 340–341. AMC.
[45] Reckase, M. (2009). Multidimensional Item Response Theory. Springer Science & Business Media.
[46] Reckase, M. D. (2006). 18 multidimensional item response theory. In C. Rao and S. Sinharay (Eds.),

Psychometrics, Volume 26 of Handbook of Statistics, pp. 607–642. Elsevier.
[47] Savvides, A., C.-C. Han, and M. B. Strivastava (2001). Dynamic fine-grained localization in ad-hoc

networks of sensors. In International Conference on Mobile Computing and Networking, pp. 166–179.
ACM.

[48] Seber, G. A. (2004). Multivariate Observations. John Wiley & Sons.
[49] Shepard, R. N. (1962a). The analysis of proximities: multidimensional scaling with an unknown distance

function. I. Psychometrika 27, 125–140.
[50] Shepard, R. N. (1962b). The analysis of proximities: multidimensional scaling with an unknown distance

function. II. Psychometrika 27, 219–246.
[51] Shepard, R. N. (1966). Metric structures in ordinal data. Journal of Mathematical Psychology 3 (2),

287–315.
[52] Srinivasan, V. and A. D. Shocker (1973). Linear programming techniques for multidimensional analysis

of preferences. Psychometrika 38 (3), 337–369.
[53] Stumpf, C. (1880). Tonpsychologie. Leipzig: Teubner.
[54] Suppes, P. and M. Winet (1955). An axiomatization of utility based on the notion of utility differences.

Management Science, 259–270.
[55] Tamuz, O., C. Liu, S. Belongie, O. Shamir, and A. T. Kalai (2011). Adaptively learning the crowd

kernel. In International Conference on Machine Learning, pp. 673–680.
[56] Terada, Y. and U. von Luxburg (2014). Local ordinal embedding. In International Conference on

Machine Learning, pp. 847–855.
[57] Thurstone, L. (1927). A law of comparative judgment. Psychological Review 34 (4), 273–286.
[58] Torgerson, W. S. (1952). Multidimensional scaling: I. Theory and method. Psychometrika 17 (4),

401–419.
[59] Tucker, L. R. (1960). Intra-individual and inter-individual multidimensionality. Psychological Scaling:

Theory and Applications , 155–167.
[60] van der Maaten, L. and K. Weinberger (2012). Stochastic triplet embedding. In International Workshop

on Machine Learning for Signal Processing, pp. 1–6. IEEE.
[61] Yang, J. and Y. Chen (2009). Indoor localization using improved RSS-based lateration methods. In

Global Telecommunications Conference, pp. 1–6. IEEE.
[62] Young, F. W. and R. M. E. Hamer (1987). Multidimensional Scaling: History, Theory, and Applications.

Lawrence Erlbaum Associates, Inc.
[63] Young, G. and A. S. Householder (1938). Discussion of a set of points in terms of their mutual distances.

Psychometrika 3 (1), 19–22.

A Appendix

A.1 Vector Model for Ordinal MDS

We propose a possible vector model for ordinal MDS where the items are to be embedded as vectors
in the unit sphere. We are not aware of publications considering this problem, at least not in the
ordinal setting.



18

A.1.1 Discrete Setting

In practice, when dealing with a finite set of items that need to be embedded in the unit sphere,
the problem is as follows: Given a set of row ranks (rij ∶ i, j ∈ [n]), with each (ri1, . . . , rin) being a
permutation of (1, . . . , n), and a dimension p ≥ 1,

Find x1, . . . , xn ∈ S
p−1 such that ⟨xi, xj⟩ < ⟨xi, xk⟩ whenever rij > rik. (A.1)

We note that any orthogonal transformation of a solution is also a solution.
In view of the fact that ∥x − x′∥2 = 2(1 − ⟨x,x′⟩) for all x,x′ ∈ Sp−1, the problem is in fact the

same as (3.1) but with the embedding space being S
p−1 instead of Rp.

A.2 Continuous Setting

Reasoning as we did in throughout the paper, and in particular in Section 3.2, if we follow Shepard
[51] we arrive at a limit model in the continuum where the set of items forms an uncountably
infinite subset X ⊂ Sp−1, and we are led to study injective functions f ∶ X → S

p−1 that are weakly
isotonic, meaning that satisfy (3.3), or equivalently,

⟨x,x′⟩ < ⟨x,x′′⟩ ⇔ ⟨f(x), f(x′)⟩ < ⟨f(x), f(x′′)⟩, for all x,x′, x′′ ∈ X . (A.2)

We note that (3.5) also applies here, or equivalently,

⟨x,x′⟩ = ⟨x,x′′⟩ ⇔ ⟨f(x), f(x′)⟩ = ⟨f(x), f(x′′)⟩, for all x,x′, x′′ ∈ X . (A.3)

We quickly note that this implies that

f(−x) = −f(x) for all x ∈ X such that −x ∈ X . (A.4)

We content ourselves with the following analog of Proposition 3.1.

Proposition A.1. Suppose that X = Sp−1. Then any bijective function f ∶ Sp−1 → S
p−1 satisfying

(A.2) must be an orthogonal transformation.

The arguments are very similar to — and simpler than — those underlying Theorem 3.2. The
setting of Proposition A.1 is in place.

Lemma A.2. In the present context, f is continuous.

Proof. Fix x ≠ x′ in S
p−1. Let C denote the great circle passing through x and x′, and let x0 =

x,x1, . . . , xm−1, xm be regularly placed long C in sequence so that ⟨xj−1, xj⟩ = cos(2π/m) for all j.
We choose m largest so that cos(2π/m) ≤ ⟨x,x′⟩. By construction,

m >
2π

cos−1⟨x,x′⟩
− 1. (A.5)

Since
⟨x,x′⟩ = ⟨x0, x′⟩ ≥ ⟨x0, x1⟩ = ⟨x1, x2⟩ = ⋯ = ⟨xm−1, xm⟩,

by (A.2) and (A.3), we have

⟨f(x), f(x′)⟩ ≥ ⟨f(x0), f(x1)⟩ = ⟨f(x1), f(x2)⟩ = ⋯ = ⟨f(xm−1), f(xm)⟩.
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Therefore, if we define θ ∶= cos−1⟨f(x0), f(x1)⟩, we have that θ ≥ cos−1⟨f(x), f(x′)⟩ and that
{f(x0), f(x1), . . . , f(xm−1)} forms a θ-packing of Sp−1. It is well-known that such a packing must
have cardinality ≤ C0θ

−(p−1) for some constant C0 depending only on p. Hence,

m ≤ C0[ cos−1⟨f(x), f(x′)⟩]
−(p−1)

. (A.6)

Combining (A.5) and (A.6), we obtain

cos−1⟨f(x), f(x′)⟩ ≤ C1[ cos−1⟨x,x′⟩]
1/(p−1)

,

for some other constant C1 that depends only on p. This is equivalent to

cos−1 (1 − 1

2
∥f(x) − f(x′)∥2) ≤ C1[ cos−1 (1 − 1

2
∥x − x′∥2)]

1/(p−1)
.

Since cos−1 ∶ [−1,1] → [0, π] is a homeomorphism with value 0 at 1, this inequality implies that f
is continuous.

Lemma A.3. In the present context, f preserves midpoints.

In the proof of this lemma, we will use the following analog of (3.7), where the spheres are
understood as being within S

p−1:

f(S(x, ∥x − x′∥)) = S(f(x), ∥f(x) − f(x′)∥), ∀x,x′ ∈ Sp−1. (A.7)

Proof. Fix x,x′ ∈ Sp−1, distinct and not diametrically opposed. The midpoint of x,x′ is the unique
equidistant point on the shortest arc joining them. Let x0 denote that point. Staying within S

p−1,
let S (resp. S ′) denote the sphere with diameter [xx0] (resp. [x′x0]), and let x1 (resp. x′

1
) denote

its center so that S = S(x1, a) and S ′ = S(x′1, a) with a ∶= ∥x1 −x0∥ = ∥x′1 −x0∥. By construction, x0
is the only point at the intersection of these two spheres.

By (A.7), f(S) = S(f(x1), b) and f(S ′) = S(f(x′
1
), b) with (using (3.5)) b ∶= ∥f(x1) − f(x0)∥ =

∥f(x′
1
) − f(x0)∥. Moreover, by injectivity of f , f(x0) is the only point at the intersection of these

two spheres of equal radius. Therefore, f(x0) must be the midpoint of f(x) and f(x′).

Proof of Proposition A.1. Let e1, . . . , ep denote the canonical basis on R
p. Without loss of gener-

ality, we may assume that f(ej) = ej for all j. By (A.4), we then know that f(−ej) = −ej for all
j as well. Let U0 = {±e1, . . . ,±ep} and define U1,U2, . . . recursively by letting Ut be made of the
midpoints of any pair of points in Ut−1 that are not diametrically opposed. Then let V = U0∪U1∪. . . .
By applying Lemma A.3 recursively, we obtain that f(x) = x for any point x ∈ V. But since V is
dense in S

p−1, and f is continuous (Lemma A.2), we must have f(x) = x for all x ∈ Sp−1.
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