
Efficiently Learning One-Hidden-Layer ReLU Networks

via Schur Polynomials

Ilias Diakonikolas†

University of Wisconsin-Madison
ilias@cs.wisc.edu

Daniel M. Kane‡

University of California, San Diego
dakane@cs.ucsd.edu

July 26, 2023

Abstract

We study the problem of PAC learning a linear combination of k ReLU activations under
the standard Gaussian distribution on Rd with respect to the square loss. Our main result is an
efficient algorithm for this learning task with sample and computational complexity (dk/ϵ)O(k),
where ϵ > 0 is the target accuracy. Prior work had given an algorithm for this problem with
complexity (dk/ϵ)h(k), where the function h(k) scales super-polynomially in k. Interestingly, the
complexity of our algorithm is near-optimal within the class of Correlational Statistical Query
algorithms. At a high-level, our algorithm uses tensor decomposition to identify a subspace
such that all the O(k)-order moments are small in the orthogonal directions. Its analysis makes
essential use of the theory of Schur polynomials to show that the higher-moment error tensors
are small given that the lower-order ones are.

∗Author last names are in randomized order.
†Supported by NSF Medium Award CCF-2107079, NSF Award CCF-1652862 (CAREER), and a DARPA Learning

with Less Labels (LwLL) grant.
‡Supported by NSF Medium Award CCF-2107547, NSF Award CCF-1553288 (CAREER), and a grant from

CasperLabs.

ar
X

iv
:2

30
7.

12
84

0v
2

 [
cs

.L
G

]
 2

5
Ju

l 2
02

3

1 Introduction

The efficient learnability of (natural classes of) neural networks has emerged as one of the central
challenges in machine learning. Despite significant research efforts over several decades — see,
e.g., [JSA15, SJA16, DFS16, ZLJ16, ZSJ+17, GLM18, GKLW19, BJW19, GKKT17, GK19, VW19,
DKKZ20, DK20, CKM21, CGKM22, CDG+23] for some relatively recent works on the topic — the
classes of neural networks for which provably efficient learning algorithms are known is startlingly
limited. The majority of the aforementioned works focused on parameter learning — the task of
recovering the weight matrix of the data-generating neural network — and consequently require
certain assumptions on the weight matrix (e.g., that it is full-rank with bounded condition number).

Here we focus on the problem of PAC learning, i.e., approximating the underlying function
given access to random labeled examples. We note that the sample complexity of PAC learning
is typically polynomially bounded for networks of interest without any assumptions on the weight
matrix. The challenging question, of course, is whether a computationally efficient learner exists.
Arguably, the most basic problem in this setting is that of PAC learning a single non-linear gate,
e.g., a ReLU or sigmoid. This task has been extensively studied over the past few years both in the
realizable setting (i.e., with consistent labels) and in the presence of various types of label noise.
A line of research has essentially characterized the complexity of this basic task under natural
assumptions on the data distribution and the label noise, see, e.g., [GKKT17, DGK+20, DKZ20,
DKPZ21, DPT21, DKMR22, DKRS22, DKTZ22, WZDD23, DKR23].

In this paper, we study the problem of PAC learning one-hidden-layer ReLU networks in the
realizable setting1. A one-hidden-layer ReLU network is a function F : Rd → R of the form
F (x) =

∑k
i=1wiReLU(vi · x) for some wi ∈ R and unit vectors vi ∈ Rd, where ReLU : R → R is

defined as ReLU(t)
def
= max{0, t}. Following prior work on this problem [DKKZ20, GGJ+20, DK20,

CKM21, CGKM22, CDG+23], we will assume that the feature vectors x are normally distributed.
Despite its apparent simplicity, the complexity of learning this class of functions remains open.

Our Result. The main algorithmic contribution of this work is stated in the following theorem.

Theorem 1.1 (Main Algorithmic Result). Let wi ∈ R, i ∈ [k], with
∑k

i=1 |wi| ≤ 1 and vi ∈ Rd,

i ∈ [k], be unit vectors. Define a function F : Rd → R by F (x) =
∑k

i=1wiReLU(vi · x). Let X ∼
N(0, I). Then for C a sufficiently large universal constant, there exists an algorithm that given ϵ > 0
sufficiently small and N = (dk/ϵ)Ck i.i.d. samples of the form (X,F (X)), runs in poly(N) time
and outputs a function F̃ : Rd → R such that with probability 9/10 we have ∥F̃ (X)− F (X)∥2 ≤ ϵ.

A few remarks are in order regarding Theorem 1.1. First, we note that the assumption that
the sum of the absolute values of the weights wi be bounded is somewhat strong, but turns out to
be necessary. One might instead hope that for any set of weights one could learn a function F̃ such
that ∥F̃ (X) − F (X)∥2 ≤ ϵ∥F (X)∥2. Unfortunately, this is information-theoretically impossible.
Consider for example the function F (x) = ReLU(v · x) + ReLU(u · x) − ReLU((v + u) · x), where
this last term is actually given as ∥v + u∥2ReLU((v + u)/∥v + u∥2 · x). In such a case, F (x) would
be 0 unless sign(v ·x) ̸= sign(u ·x). If v and u are close to each other, this event could happen with
arbitrarily small probability. Thus, to learn F to such a relative error guarantee would require an
unbounded number of samples.

Second, it is worth mentioning that our learning algorithm is not proper, i.e., the hypothesis,
F̃ , returned is not a one-hidden-layer ReLU network. The hypothesis F̃ is a somewhat more

1It is easy to see that our results straightforwardly extend to the case that the labels have been corrupted by
random zero-mean additive noise.

1

complicated function that can still be evaluated at any point of interest in time (dk/ϵ)O(k). While
we do not prove any relevant theorem here, we believe that with some additional work (involving
runtime (dk/ϵ)O(k2)) one can adapt our algorithm to output a nearly proper hypothesis, which is a
sum of slightly smoothed versions of ReLUs.

Finally, we note that our result is not specific to ReLUs. Similar techniques should apply to any
function of the form F (x) =

∑k
i=1wiσ(vi · x) for wi real numbers with

∑k
i=1 |wi| not too large, vi

unit vectors, and σ a known activation function satisfying mild conditions on its Fourier spectrum.

Comparison to Prior Work. Before we describe our algorithmic approach, we provide a brief
summary and comparison with the most relevant prior work. The first positive result on PAC
learning one-hidden-layer ReLU networks was obtained in [DKKZ20]. That work gave a PAC
learning algorithm with complexity poly(d/ϵ) + (k/ϵ)O(k2) for the special case that the weights
wi are positive. Subsequently, [DK20] gave a significantly improved algorithm for the positive

weights case with complexity poly(d/ϵ)+(k/ϵ)O(log2(k)). [CKM21] gave a fixed-parameter tractable
algorithm for learning ReLU networks of constant depth, albeit with complexity exponential in 1/ϵ.

The most directly related prior work is that of [CDG+23] who gave an algorithm for one-
hidden-layer networks (in the exact same setting as Theorem 1.1) with sample and computational

complexity (d/ϵ)h(k), where h(k) = kO(log2(k)). In comparison, our algorithm of Theorem 1.1
improves the super-polynomial dependence on k in the exponent to linear.

It is worth noting that the complexity of our algorithm is essentially optimal within the class
of Correlational Statistical Query (CSQ) algorithms. CSQ algorithms are a subclass of SQ algo-
rithms [Kea98] capturing many learning algorithms used in practice — including, e.g., gradient
descent on the square loss. A CSQ algorithm is allowed to choose any bounded query function
on the examples and obtain estimates of its correlation with the labels. Interestingly, [DKKZ20]
(see also [GGJ+20] for a weaker bound) showed that any CSQ algorithm for our learning task re-
quires complexity dΩ(k), nearly matching our upper bound. It can be readily verified that both our
algorithm and the algorithms in the prior works [DKKZ20, DK20, CDG+23] are CSQ algorithms.

Our Techniques. At a very high level, our techniques bear similarities to a number of prior
works in this area [DKKZ20, DK20, CDG+23]. Let F (x) =

∑k
i=1wiReLU(vi · x) be the target

(label generating) function. We note that if V is the vector space spanned by the vi’s, then F (x)
depends only on ProjV (x). This means that if we could learn the k-dimensional subspace V , we
can use brute-force — in this case, approximating F as a low-degree polynomial in ProjV (x) using
L2 regression — to learn F efficiently.

To learn V , we use the method of moments. The t-th moment tensor of F , properly conditioned,
is 0 if t > 1 is odd and proportional to

∑k
i=1wiv

⊗t
i if t is even (see Corollary 3.3 and Equation (4)).

In particular, this quantity lies in V ⊗t and we would like to use this fact to find V . To achieve
this, we can think of this moment tensor as a matrix that takes a (t− 1)-order tensor and returns
a vector. Then V should contain the span of this matrix, which we can efficiently compute. By
taking the sum of these spans for various values of t, we can hope to learn V . We note that it is
necessary to consider moment tensors of order t up to at least Ck, where C > 0 is a sufficiently
large universal constant. Otherwise, the CSQ lower bound construction of [DKKZ20] implies that
this approach will necessarily fail. In particular, computing these Ω(k) moments will require dΩ(k)

time even to write down the answer, and this is a major contributing factor in our final runtime.
Unfortunately, the above approach would only work if we could approximate the t-th moment

tensors of F exactly. Of course, all we can hope for is to learn them approximately. However,
fortunately, most of the aforementioned plan should still work if instead of considering the span of

2

the higher order moment tensors, we look at the top few right singular vectors. However, this brings
us to another problem. The top few singular vectors will only robustly produce an approximation
of V if the corresponding singular values were not too small (or were not smaller than the error in
our approximation of the moment tensors). This could become problematic if, for example, all of
the vi’s nearly lie in a proper subspace of V , or if there are two or more vectors whose terms nearly
cancel out. If such situations occur, it means that even information-theoretically we cannot hope
to recover a reasonable approximation of V .

What we can hope to accomplish instead is to learn a subspace W such that the “low-order”
moment tensors are small in all directions orthogonal to W . Fortunately, this turns out to be
sufficient for our purposes. Once we have learned W , we just need to show that F (x) is well-
approximated by some function of ProjW (x). Investigating this in terms of moments boils down
to showing that Errt := ∥

∑k
i=1wi(v

⊗t
i −ProjW (vi)

⊗t)∥2 is small for all (not too large) even values
t. Fortunately, by the way we computed W (considering the first O(k) many moments), it follows
that Errt is quite small for t = O(k). Perhaps surprisingly, it turns out (see Proposition 4.2) that
this actually suffices to show that Errt is also small for all (not too large) values of t. In particular,
we use the theory of Schur polynomials (Definition 3.5 and Corollary 3.12) to re-express the t-th
order tensor in question here as a sum of not-too-many tensor powers of vi’s and ProjW (vi)’s times
the low-order versions of this tensor whose norms are small by construction.

2 Preliminaries

Notation. For n ∈ Z+, we denote by [n] the set {1, 2, . . . , n}. For a vector v ∈ Rn, let ∥v∥2
denote its Euclidean norm. We denote by x · y the standard inner product between x, y ∈ Rd. We
will denote by δ0 the Dirac delta function and by δi,j the Kronecker delta. Throughout the paper,
we let ⊗ denote the tensor/Kronecker product. For a vector x ∈ Rd, we denote by x⊗m the m-th
order tensor power of x.

We will denote by N(0, Id) the d-dimensional Gaussian distribution with zero mean and identity
covariance; we will use N(0, I) when the underlying dimension will be clear from the context.
We will use N(0, 1) for the univariate case. For a random variable X and p ≥ 1, we will use

∥X∥p
def
= E[|X|p]1/p to denote its Lp-norm.

Let V be an inner product space. If A and B are elements of V ⊗t for some t ∈ Z+, then we
use ⟨A,B⟩ to denote the inner product of A and B induced by the inner product on V . We also
use ∥A∥2 = ⟨A,A⟩1/2 for the corresponding ℓ2-norm.

Hermite Analysis and Concentration. Consider L2(Rd, N(0, I)), the vector space of all func-
tions f : Rd → R such that Ex∼N(0,I)[f(x)

2] < ∞. This is an inner product space under the inner
product ⟨f, g⟩ = Ex∼N(0,I)[f(x)g(x)]. This inner product space has a complete orthogonal basis
given by the Hermite polynomials. In the univariate case, we will work with normalized Hermite
polynomials defined below.

Definition 2.1 (Normalized Probabilist’s Hermite Polynomial). For k ∈ N, the k-th probabilist’s

Hermite polynomial Hek : R → R is defined as Hek(t) = (−1)ket
2/2 · dk

dtk
e−t2/2. We define the k-th

normalized probabilist’s Hermite polynomial hk : R → R as hk(t) = Hek(t)/
√
k!.

Note that for G ∼ N(0, 1) we have E[hn(G)hm(G)] = δn,m, and
√
m+ 1hm+1(t) = thm(t)− h′m(t).

We will use multivariate Hermite polynomials in the form of Hermite tensors. We define the
normalized Hermite tensor as follows, in terms of Einstein summation notation.

3

Definition 2.2 (Normalized Hermite Tensor). For k ∈ N and x ∈ V for some inner produce space
V , we define the k-th Hermite tensor as

(H
(V)
k (x))i1,i2,...,ik :=

1√
k!

∑
Partitions P of [k]

into sets of size 1 and 2

⊗
{a,b}∈P

(−Iia,ib)
⊗
{c}∈P

xic ,

where I above denotes the identity matrix over V . Furthermore, if V = Rd, we will often omit the
superscript and simply write Hk(x).

We will require a few properties that follow from this definition. First, note that if V is a subspace of

W , then H
(V)
k (ProjV (x)) = Proj⊗k

V H
(W)
k (x). Applying this when V is the one-dimensional subspace

spanned by a unit vector v gives that ⟨Hk(x), v
⊗k⟩ = hk(v · x). We will also need to know that

the entries of Hk(x) form a useful Fourier basis of L2(Rd, N(0, I)). In particular, for non-negative
integers m and k, we have that Ex∼N(0,I)[Hk(x)⊗Hm(x)] is 0 if m ̸= k and Symk(Idk), if m = k,
where Symk is the symmetrization operation over the first k coordinates. From this we conclude
that if T is a symmetric k-tensor, then Ex∼N(0,I)[⟨Hk(x), T ⟩Hm(x)] is 0 if m ̸= k and T if m = k.

For a polynomial p : Rd → R, we will use ∥p∥r
def
= Ex∼N(0,I)[|p(x)|r]1/r, for r ≥ 1. We recall the

following well-known hypercontractive inequality [Bon70, Gro75]:

Fact 2.3. Let p : Rd → R be a degree-k polynomial and q > 2. Then ∥p∥q ≤ (q − 1)k/2∥p∥2.

3 Technical Results

In this section, we establish some structural results that are used in our algorithm and its analysis.

3.1 Hermite Analysis of ReLUs and Moment-Tensor Estimation

Lemma 3.1. For G ∼ N(0, 1) and m ∈ Z+, we have that E[ReLU(G)hm(G)] = cm for some
cm ∈ R. Specifically, if m > 1, then cm = 0 if m is odd and

cm = (−1/4)(m−2)/4

√(
m− 2

(m− 2)/2

)
/
√
2πm(m− 1) = Θ(m−5/4)

if m is even.

Proof. Let g(t) be the probability density function (pdf) of N(0, 1). We need to evaluate the
quantity ∫ ∞

−∞
ReLU(t)hm(t)g(t)dt . (1)

Note that
d

dt
(hm(t)g(t)) = (h′m(t)g(t)− thm(t)g(t)) = −

√
m+ 1hm+1(t)g(t) ,

where we used the recurrence relation
√
m+ 1hm+1(t) = thm(t) − h′m(t). Thus, using integration

by parts and noting that the limits at infinity are asymptotically zero, we find that (1) equals:∫ ∞

−∞
ReLU′(t)hm−1(t)g(t)/

√
mdt .

4

Integrating by parts again yields∫ ∞

∞
ReLU′′(t)hm−2(t)g(t)/

√
m(m− 1)dt .

Note that ReLU′′(t) = δ0(t). Thus, this integral is equal to

hm−2(0)g(0)/
√

m(m− 1) .

For odd m, we have that hm−2(0) = 0, which implies that cm = 0. For even m, we have that

cm = (−1/4)(m−2)/4
√(

m−2
(m−2)/2

)
/
√

2πm(m− 1), as was to be shown. This completes the proof of

Lemma 3.1.

We also require the following high-dimensional analogue of Lemma 3.1.

Lemma 3.2. For any unit vector v ∈ Rd and x ∈ Rd, we have that ReLU(v·x) =
∑∞

m=0 cm⟨Hm(x), v⊗m⟩ .

Proof. By Lemma 3.1 we have that ReLU(v ·x) =
∑∞

m=0 cmhm(v ·x) =
∑∞

m=0 cm⟨v⊗m, Hm(x)⟩ .

Via orthogonality, as an immediate corollary we obtain:

Corollary 3.3. For a unit vector v ∈ Rd, X ∼ N(0, Id), and m ∈ Z+ we have

E[ReLU(v ·X)Hm(X)] = cmv⊗m .

We will also need a way of algorithmically approximating the Hermite components of a function.

Lemma 3.4. Let X ∼ N(0, Id) and let y be a (possibly correlated) real-valued random variable. Let

m ∈ Z+, δ ∈ (0, 1), and t > 2. There exists an algorithm that given N = O
((

d+m
m

)
eO(m/t)∥y∥2t /(τ2δ2)

)
independent samples from (X, y), runs in sample polynomial time, and computes an estimate of
E[yHm(X)] whose ℓ2-error at most δ with probability at least 1− τ .

Proof. The algorithm is simply to use the empirical estimator. In order to get the appropriate
ℓ2-error, we need that the sum of the squared errors of the empirical estimates of yhα(X) is at most
δ2τ2, where hα(X) =

∏d
i=1 hαi(Xi) for α ∈ Nd with

∑d
i=1 αi = m. To do this, we note that the

expected sum of squared empirical errors is at most
∑

α ∥yhα(X)∥22/N , and that as long as this is
at most δ2τ2, our desired statement follows by Markov’s inequality.

It remains to show that
∑

α ∥yhα(X)∥22/N ≤ δ2τ2 for appropriately large N . To prove this, we

note that there are fewer than
(
m+d
m

)
many possible values of α, and each of the terms has size at

most
∥yhα(X)∥22 ≤ ∥y∥2t ∥hα(X)∥21/(1/2−1/t)

by Hölder’s inequality. Noting that 1/(1/2−1/t) = 2+O(1/t), by hypercontractivity (Fact 2.3) we
have that ∥hα(X)∥1/(1/2−1/t) = (1 +O(1/t))m/2∥hα(X)∥2 = eO(m/t), and the lemma follows.

3.2 Schur Polynomials and Key Technical Result

The analysis of our algorithm will make essential use of Schur polynomials and their properties.
We start by recalling the definition of Schur polynomials.

5

Definition 3.5 (Schur Polynomials). Let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 be a sequence of non-negative
integers denoted by λ. The Schur polynomial sλ(x) is a polynomial in n variables x = (x1, . . . , xn)
given by

sλ(x1, . . . , xn)
def
=

det

([
x
λj+j−1
i

]
1≤i,j≤n

)
det

([
xj−1
i

]
1≤i,j≤n

) . (2)

The first Jacobi-Trudi formula, stated below, expresses the Schur polynomials as a determinant
in terms of the complete homogeneous symmetric polynomials.

Fact 3.6 (First Jacobi-Trudi Formula). We have that

sλ(x) = det([yλi+j−i(x)]1≤i,j≤n) ,

where yk(x) is the complete homogeneous symmetric polynomial of degree k given as the sum of all
of the degree-k monomials in (x1, . . . , xn).

Remark 3.7. The complete homogeneous symmetric polynomial of degree k is usually denoted hk,
which we have avoided in order to not cause confusion with our notation for Hermite polynomials.

Lastly, we will also need that these are polynomials with non-negative coefficients:

Fact 3.8. The Schur polynomial sλ(x) is a polynomial in x, homogeneous of degree |λ| =
∑

i λi,
with non-negative coefficients.

Making use of the theory of Schur polynomials will be essential in proving that our higher moment
error tensors are not too large given that the lower order ones are not. In particular, we prove a
general result about certain exponential sequences of tensors. As a warmup, we begin with a scalar
version of the statement we require.

Proposition 3.9. For k ∈ Z+, let wi ∈ R and xi ∈ R, i ∈ [k], with |xi| ≤ 1. For t ∈ N, let

Mt
def
=
∑k

i=1wix
t
i. Then, for t ≥ k, we have that

|Mt| ≤
(

t

k − 1

)
(2k)k max

t<k
(|Mt|) .

Proof. We begin by proving the desired statement in the special case where no two of the xi’s are
identical. As any collection of x’s can be written as a limit of such situations, this will suffice by
continuity.

Let w = (w1, . . . , wk) and let Xt = (xt1, x
t
2, . . . , x

t
k) so that Mt = w ·Xt. Since X0, . . . , Xk−1 are

linearly independent (by the non-vanishing property of the Vandermonde determinant), it follows
that any Xt can be written as a linear combination of X0, . . . , Xk−1. The following claim establishes
bounds on the coefficients of the corresponding linear combination.

Claim 3.10. For any t ∈ N, we have that Xt =
∑k−1

a=0 caXa, where ca = (−1)k+a+1sλ(x1, . . . , xk)
and λ = (λ1, . . . , λk) with λ1 = (t − k + 1), λj = 1 for 2 ≤ j ≤ k − a, and λj = 0 otherwise.
Moreover, we have that the sum of the absolute values of the coefficients of these sλ is at most(

t
k−1

)
(2k)k.

6

Proof of Claim 3.10. By Cramer’s rule, the coefficient of Xa, a ∈ {0, . . . , k − 1}, in this linear
combination will be

ca = det([Xk−1, Xk−2, . . . , Xa+1, Xt, Xa−1, . . . , X0])/ det([Xk−1, . . . , X0]) =

= (−1)k+a+1 det([Xt, Xk−1, Xk−2, . . . , Xa+1, Xa−1, . . . , X0])/det([Xk−1, . . . , X0])

= (−1)k+a+1sλ(x1, . . . , xk) ,

where λ = (λ1, . . . , λk) is the partition with first coordinate equal to (t−k+1), followed by (k−1−a)
many 1’s, followed by a sequence of 0’s.

By Fact 3.8, we have that sλ has non-negative coefficients, and thus the sum of the absolute
values of these coefficients is merely sλ(1), where 1 = (1, 1, . . . , 1).

We can bound sλ(1) using the first Jacobi-Trudi formula (Fact 3.6) and note that |ym(1)| =(
k+m−1
k−1

)
. Since the sequence

(
k+m
m

)
is log-concave inm, the traversal of the matrix [yλi+j−i(x)]1≤i,j≤n

with the largest product of terms gives an absolute value of at most
(

t
k−1

)
kk−1−a. Furthermore,

since each term with i > j + 1 has yλi+j−i = 0 (since the subscript will be negative), there are at
most 2k−1−a many non-vanishing traversals in the expansion of the determinant. Thus, the sum of
the absolute values of the coefficients of the sλ in ca is at most

(
t

k−1

)
(2k)k−1−a. Summing over a

proves the claim.

Note that

Mt =
k−1∑
a=0

caw ·Xa =
k−1∑
a=0

caMa ,

which has absolute value at most
(

t
k−1

)
(2k)k maxt<k(|Mt|) by Claim 3.10. This completes the proof

of Proposition 3.9.

We will actually require a somewhat stronger tensor-valued version of Proposition 3.9.

Proposition 3.11. Let V be an inner product space with norm ∥ · ∥2. Let wi ∈ R, and vi ∈ V ,
i ∈ [k], with ∥vi∥2 ≤ 1 for all i ∈ [k]. For t ∈ N, let Mt ∈ V ⊗t be the tensor

∑k
i=1wiv

⊗t
i . Then, for

t ≥ k, we have that

∥Mt∥2 ≤
(

t

k − 1

)
(2k)k max

t<k
(∥Mt∥2) .

Proof. Our goal is to write Mt as a combination of M0, . . . ,Mk−1, as in the proof of Proposition 3.9.
To accomplish this, we need to define tensor-valued Schur polynomials. In particular, if λ is a
partition with at most k parts, we define sλ(v1, v2, . . . , vk) as the order-|λ| tensor (where |λ| =∑

i λi) obtained by replacing each monomial cα
∏k

i=1 x
αi
i in the usual Schur polynomial with the

symmetrization of the tensor cα
⊗k

i=1 v
⊗αi
i .

We claim that for t ≥ k we have

Mt = Sym

k−1∑
a=0

(−1)k+a+1Ma ⊗ s

(t−k−1,

k−1−a︷ ︸︸ ︷
1, 1, . . . , 1)

(v1, . . . , vk)

 , (3)

where Sym denotes the symmetrization operator that averages a tensor over all permutations of
its entries. To show this, we note that both sides of Equation (3) are symmetric order-t tensors.
Furthermore, for any vector u, the inner product of the left hand side with u⊗t is

k∑
i=1

wi(vi · u)t ,

7

while the inner product with the right hand side is

k−1∑
a=0

(−1)k+a+1⟨Ma, u
⊗t⟩s

(t−k−1,

k−1−a︷ ︸︸ ︷
1, 1, . . . , 1)

(v1 · u, . . . , vk · u) .

By applying Claim 3.10 to

Nt
def
=

k∑
i=1

wi(vi · u)t

implies that these quantities are equal. Consequently, the difference between the left and right hand
sides of (3) is a symmetric tensor that is orthogonal to all u⊗t, and therefore must be identically 0.

From here the proof follows fairly easily. Indeed, Equation (3) implies that

∥Mt∥2 ≤ k max
0≤a≤k−1

∥Ma∥2
k−1∑
a=0

∥∥∥∥∥∥∥s(t−k−1,

k−1−a︷ ︸︸ ︷
1, 1, . . . , 1)

(v1, . . . , vk)

∥∥∥∥∥∥∥
2

≤
(

t

k − 1

)
(2k)k max

t<k
(∥Mt∥2) ,

where the second line follows from the fact that, by Claim 3.10, the sum of the absolute values of
the coefficients of the relevant sλ’s is bounded and that each of these monomials produces a tensor
of norm at most 1. This completes the proof of Proposition 3.11.

We will need the following slight generalization of the above:

Corollary 3.12. Let V be an inner product space with norm ∥ · ∥2. Let wi ∈ R, i ∈ [k], and vi ∈ V
with ∥vi∥2 ≤ 1 for all i ∈ [k]. For t ∈ N, let Mt ∈ V ⊗t be the tensor

∑k
i=1wiv

⊗t
i . Then, for even

t ≥ 2k, we have that

∥Mt∥2 ≤
(

t

k − 1

)
(2k)k max

t<2k, even
(∥Mt∥2) .

Proof. This follows by noting that

M2t =
k∑

i=1

wi(v
⊗2
i)⊗t

and applying Proposition 3.11 to M2t thought of as an element of (V ⊗2)⊗t given by a linear
combination of the tth tensor powers of v⊗2

i .

4 Algorithm and Analysis: Proof of Theorem 1.1

Our algorithm is given in pseudocode below.

8

Algorithm Learn-One-Hidden-Layer-Networks

1. Let C > 0 be a sufficiently large universal constant.

2. For each m = 1, 2, . . . , 4k use the algorithm from Lemma 3.4 to compute tensors Tm

such that with 99% probability ∥Tm −E[F (X)Hm(X)]∥2 < (ϵ/k)Ck for all such m.

3. Define a quadratic form on Rd by Q(v)
def
=
∑4k

m=1 ∥Tmv∥22, where Tmv denotes the result
of dotting the tensor Tm with v along one of its coordinates.

4. Let V be the subspace spanned by the k largest eigenvalues of Q.

5. For m = 0, 1, 2, . . . , D, where D
def
= Cϵ−4/3, use the algorithm from Lemma 3.4 to

compute tensors Pm such that ∥Pm−E[F (X)H
(V)
m (ProjV (X))]∥2 < ϵ2/(DC) = ϵ10/3/C2

with 99% probability for all such m.

6. Return the hypothesis function F̃ (x)
def
=
∑D

m=0 PmHm(x).

Before proving correctness, we analyze the sample complexity of Steps 2 and 5. We use Lemma
3.4 with t = m. We note that

∥F (X)∥m ≤
k∑

i=1

|wi|∥ReLU(vi ·X)∥m ≤
k∑

i=1

|wi|∥vi ·X∥m = O(
√
m)

k∑
i=1

|wi| = O(
√
m).

In Step 2, the
(
d+m
m

)
term is dO(m) = dO(k), δ = (ϵ/k)O(k) and τ = Ω(1/k). Thus, the sample

complexity of this step is (dk/ϵ)O(k).
In Step 5, since we may do this computation within V , which is a k-dimensional subspace, the(

d+m
m

)
term is (1/ϵ)O(k), giving a similar sample complexity bound.

Thus, the total sample complexity is N = (dk/ϵ)O(k). It is also easy to see that the runtime of
the algorithm is sample polynomial.

We now proceed to prove correctness. First, we would like to analyze V and in particular claim
that it is close in a sense to the span of the vi’s. In particular, let

Mm
def
= E[F (X)Hm(X)] = cm

k∑
i=1

wiv
⊗m
i , (4)

where the equation uses Corollary 3.3, and cm is defined in Lemma 3.1. Assuming that our algorithm
in Step 2 succeeds, we have that ∥Tm −Mm∥2 < (ϵ/k)Ck for all m ≤ 4k.

We next define the quadratic form Q0(v) by

Q0(v)
def
=

4k∑
m=1

∥Mmv∥22 =
4k∑

m=1

c2m

∥∥∥∥∥
k∑

i=1

wi(v · vi)v⊗m−1
i

∥∥∥∥∥
2

2

, (5)

where the equation follows from (4). Since ∥Tm−Mm∥2 is small for all m ≤ 4k, for any unit vector
v it holds |Q(v) −Q0(v)| < (ϵ/k)Ck/2. Furthermore, if W is the space spanned by the vi’s (which
has dimension at most k), then Q0 vanishes on W . Therefore, if v is any unit vector perpendicular

9

to V we have that:

|Q0(v)| ≤ |Q(v)|+ (ϵ/k)Ck/2

≤ sup
w∈W⊥,∥w∥2=1

|Q(w)|+ (ϵ/k)Ck/2

≤ sup
w∈W⊥,∥w∥2=1

|Q0(w)|+ 2(ϵ/k)Ck/2

= 2(ϵ/k)Ck/2 ,

where the second line above follows from the variational formulation of the principal value decom-
position. We conclude:

Lemma 4.1. For v a unit vector perpendicular to V and m ≤ 4k, we have ∥Mmv∥22 < 2(ϵ/k)Ck/2 .

Next we would like to claim that ∥Pm −Mm∥2 is small for all m. To this end, we establish the
following proposition.

Proposition 4.2. For m ≤ D, we have ∥(Pm −Mm)∥2 < 2ϵ2/(DC).

Proof. Note that by construction (Step 5 of pseudocode) Pm is close to the projection of Mm onto
V . In particular, if we let

Rm
def
= Proj⊗m

V Mm = cm

k∑
i=1

wiProjV (vi)
⊗m,

then ∥Pm −Rm∥2 < ϵ2/(DC). Since,

∥(Pm −Mm)∥2 ≤ ∥(Pm −Rm)∥2 + ∥(Rm −Mm)∥2,

it remains to bound ∥Rm −Mm∥2.
Note that

(Rm −Mm)/cm =

k∑
i=1

wi(v
⊗m
i − ProjV (vi)

⊗m) . (6)

For m > 4k and odd, (6) is 0 because cm = 0. For m > 4k and even, applying Corollary 3.12 along
with the fact that |cm| = O(1), we conclude that

∥Rm −Mm∥2 ≤ O

((
m

2k − 1

)
(4k)2k max

t<4k, even
∥Rt −Mt∥2/ct .

)
For m ≤ D the

(
m

2k−1

)
(4k)2k term is (k/ϵ)O(k). It remains to bound ∥Rt −Mt∥2/ct when t is even

and at most 4k.
Note that if W is the span of the vi’s, then Rt − Mt is in (V + W)⊗t. Let x1, . . . , x2k be

an orthonormal basis of V + W with x1, . . . , xk an orthonormal basis of V . We will bound the
xi1xi2 . . . xit entry of Rt −Mt. In particular, if all of the xij are in V , we have that since Rt is the
projection onto V of Mt that the corresponding coefficient is 0. If, on the other hand, one of them
(say xi1) is perpendicular to V , then Rtxi1 = 0 and

∥Rtxi1 −Mtxi1∥2 = ∥Mtxi1∥2 ≤ 2(ϵ/k)Ck/2 ,

where the inequality follows from Lemma 4.1. Summing over all entries and using the fact that
ct = Ω(t−5/4), we find that

∥Rt −Mt∥2/ct < O(D5/4)DO(k) (ϵ/k)Ck/2 < (ϵ/k)Ck/3 .

for C a sufficiently large universal constant. This completes the proof of Proposition 4.2.

10

We are now ready to bound the final error and complete the proof of Theorem 1.1. Note that

F̃ (x) =
D∑

m=0

Pm(x)Hm(x) and F (x) =
∞∑

m=0

Mm(x)Hm(x) .

We can write

∥F̃ (X)− F (X)∥22 =
D∑

m=0

∥Pm −Mm∥22 +
∞∑

m=D+1

∥Mm∥22

≤
D∑

m=0

2ϵ2/(CD) +

∞∑
m=D+1

c2m

∥∥∥∥∥
k∑

i=1

wiv
⊗m
i

∥∥∥∥∥
2

2

≤ 2ϵ2/C +
∞∑

m=D+1

c2m

(
k∑

i=1

|wi|∥v⊗m
i ∥2

)2

≤ 2ϵ2/C +

∞∑
m=D+1

c2m

≤ 2ϵ2/C +
∞∑

m=D+1

O(m−5/2)

≤ 2ϵ2/C +O(D−3/2) < ϵ2 ,

where the first line follows by the orthonormality of the Hermite tensors, the second line uses
Proposition 4.2, and the fifth line uses the upper bound on cm from Lemma 3.1. This completes
the proof of Theorem 1.1.

5 Conclusions

In this paper, we gave a simple algorithm that learns one-hidden-layer ReLU networks of size
k under the Gaussian distribution on Rd to L2-error ϵ with complexity (dk/ϵ)O(k). While the
complexity of our algorithm cannot be qualitatively improved within the class of CSQ algorithms
(a natural yet restricted family of algorithms), to the best of our knowledge there is no (known)
inherent obstacle ruling out a poly(d, k, 1/ϵ) time algorithm. It should be noted that the complexity
of the non-CSQ algorithm of [CKM21] is polynomial in d but exponential in 1/ϵ (even for constant
k). The existence of a fully-polynomial time algorithm remains open even for the special case of

positive weights, where the best known algorithm [DK20] has runtime poly(d/ϵ) + (k/ϵ)O(log2(k)).

References

[BJW19] A. Bakshi, R. Jayaram, and D. P. Woodruff. Learning two layer rectified neural networks
in polynomial time. In Conference on Learning Theory, COLT 2019, pages 195–268,
2019.

[Bon70] A. Bonami. Etude des coefficients fourier des fonctiones de lp(g). Ann. Inst. Fourier
(Grenoble), 20(2):335–402, 1970.

[CDG+23] S. Chen, Z. Dou, S. Goel, A. R. Klivans, and R. Meka. Learning narrow one-hidden-
layer relu networks. CoRR, abs/2304.10524, 2023. Conference version in COLT’23.

11

[CGKM22] S. Chen, A. Gollakota, A. R. Klivans, and Raghu Meka. Hardness of noise-free learning
for two-hidden-layer neural networks. In NeurIPS, 2022.

[CKM21] S. Chen, A. R. Klivans, and R. Meka. Learning deep relu networks is fixed-parameter
tractable. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, pages 696–707. IEEE, 2021.

[DFS16] A. Daniely, R. Frostig, and Y. Singer. Toward deeper understanding of neural net-
works: The power of initialization and a dual view on expressivity. In Advances in
Neural Information Processing Systems 29: Annual Conference on Neural Information
Processing Systems 2016, pages 2253–2261, 2016.

[DGK+20] I. Diakonikolas, S. Goel, S. Karmalkar, A. R. Klivans, and M. Soltanolkotabi. Approx-
imation schemes for relu regression. In Conference on Learning Theory, COLT 2020,
volume 125 of Proceedings of Machine Learning Research, pages 1452–1485. PMLR,
2020.

[DK20] I. Diakonikolas and D. M. Kane. Small covers for near-zero sets of polynomials and
learning latent variable models. In 61st IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2020, pages 184–195, 2020. Full version available at
https://arxiv.org/abs/2012.07774.

[DKKZ20] I. Diakonikolas, D. M. Kane, V. Kontonis, and N. Zarifis. Algorithms and SQ lower
bounds for PAC learning one-hidden-layer relu networks. In Conference on Learning
Theory, COLT 2020, volume 125 of Proceedings of Machine Learning Research, pages
1514–1539. PMLR, 2020.

[DKMR22] I. Diakonikolas, D. Kane, P. Manurangsi, and L. Ren. Hardness of learning a single
neuron with adversarial label noise. In International Conference on Artificial Intelli-
gence and Statistics, AISTATS 2022, volume 151 of Proceedings of Machine Learning
Research, pages 8199–8213. PMLR, 2022.

[DKPZ21] I. Diakonikolas, D. M. Kane, T. Pittas, and N. Zarifis. The optimality of polynomial
regression for agnostic learning under gaussian marginals in the SQ model. In Confer-
ence on Learning Theory, COLT 2021, volume 134 of Proceedings of Machine Learning
Research, pages 1552–1584. PMLR, 2021.

[DKR23] I. Diakonikolas, D. M. Kane, and L. Ren. Near-optimal cryptographic hardness of
agnostically learning halfspaces and relu regression under gaussian marginals. CoRR,
abs/2302.06512, 2023. Conference version in ICML’23.

[DKRS22] I. Diakonikolas, D. Kane, L. Ren, and Y. Sun. SQ lower bounds for learning single
neurons with massart noise. In NeurIPS, 2022.

[DKTZ22] I. Diakonikolas, V. Kontonis, C. Tzamos, and N. Zarifis. Learning a single neuron with
adversarial label noise via gradient descent. In Conference on Learning Theory, volume
178 of Proceedings of Machine Learning Research, pages 4313–4361. PMLR, 2022.

[DKZ20] I. Diakonikolas, D. M. Kane, and N. Zarifis. Near-optimal SQ lower bounds for agnos-
tically learning halfspaces and relus under gaussian marginals. In Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, 2020.

12

[DPT21] I. Diakonikolas, J. H. Park, and C. Tzamos. Relu regression with massart noise. In
Advances in Neural Information Processing Systems 34: Annual Conference on Neural
Information Processing Systems 2021, NeurIPS 2021, pages 25891–25903, 2021.

[GGJ+20] S. Goel, A. Gollakota, Z. Jin, S. Karmalkar, and A. R. Klivans. Superpolynomial lower
bounds for learning one-layer neural networks using gradient descent. In Proceedings
of the 37th International Conference on Machine Learning, ICML 2020, volume 119 of
Proceedings of Machine Learning Research, pages 3587–3596, 2020.

[GK19] S. Goel and A. R. Klivans. Learning neural networks with two nonlinear layers in
polynomial time. In Conference on Learning Theory, COLT 2019, pages 1470–1499,
2019.

[GKKT17] S. Goel, V. Kanade, A. R. Klivans, and J. Thaler. Reliably learning the relu in poly-
nomial time. In Proceedings of the 30th Conference on Learning Theory, COLT 2017,
pages 1004–1042, 2017.

[GKLW19] R. Ge, R. Kuditipudi, Z. Li, and X. Wang. Learning two-layer neural networks with
symmetric inputs. In 7th International Conference on Learning Representations, ICLR
2019, 2019.

[GLM18] R. Ge, J. D. Lee, and T. Ma. Learning one-hidden-layer neural networks with landscape
design. In 6th International Conference on Learning Representations, ICLR 2018, 2018.

[Gro75] L. Gross. Logarithmic Sobolev inequalities. Amer. J. Math., 97(4):1061–1083, 1975.

[JSA15] M. Janzamin, H. Sedghi, and A. Anandkumar. Beating the perils of non-convexity:
Guaranteed training of neural networks using tensor methods, 2015.

[Kea98] M. J. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the
ACM, 45(6):983–1006, 1998.

[SJA16] H. Sedghi, M. Janzamin, and A. Anandkumar. Provable tensor methods for learning
mixtures of generalized linear models. In Proceedings of the 19th International Confer-
ence on Artificial Intelligence and Statistics, AISTATS 2016, pages 1223–1231, 2016.

[VW19] S. Vempala and J. Wilmes. Gradient descent for one-hidden-layer neural networks:
Polynomial convergence and SQ lower bounds. In Conference on Learning Theory,
COLT 2019, pages 3115–3117, 2019.

[WZDD23] P. Wang, N. Zarifis, I. Diakonikolas, and J. Diakonikolas. Robustly learning a single
neuron via sharpness. CoRR, abs/2306.07892, 2023. Conference version in ICML’23.

[ZLJ16] Y. Zhang, J. D. Lee, and M. I. Jordan. L1-regularized neural networks are improperly
learnable in polynomial time. In Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, pages 993–1001, 2016.

[ZSJ+17] K. Zhong, Z. Song, P. Jain, P. L. Bartlett, and I. S. Dhillon. Recovery guarantees for
one-hidden-layer neural networks. In Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, pages 4140–4149, 2017.

13

	Introduction
	Preliminaries
	Technical Results
	Hermite Analysis of ReLUs and Moment-Tensor Estimation
	Schur Polynomials and Key Technical Result

	Algorithm and Analysis: Proof of Theorem 1.1
	Conclusions

