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Abstract. This paper gives a general definition of a “kind of schema”
(often called a “meta-model” in the literature, but here called a “species”)
along with general definitions for the schemas of a species, and for the
databases, constraints, and queries over a given schema of a species. This
leads naturally to a general theory of data translation and integration
over arbitrary schemas of arbitrary species, based on schema morphisms,
and to a similar general theory of ontology translation and integration
over arbitrary logics. Institutions provide a general notion of logic, and
Grothendieck flattening provides a general tool for integrating heteroge-
neous schemas, species and logics, as well as theories, such as ontologies,
over different logics. Many examples of our novel concepts are included,
some rather detailed. An initial section introduces data integration and
ontologies for readers who are not specialists, with some emphasis on
challenges. A brief review of universal algebra is also given, though some
familiarity with category theory is assumed in later sections.

1 Introduction and Motivation

Data translation (also called “data exchange”) and data integration have emerged
as important challenges in the early twenty-first century. The rise of inexpen-
sive storage media, data warehousing, and especially the web, have made vast
amounts of data available. But it can be difficult to find what you want and cor-
rectly process it to get what you need. Reasons for this include highly variable
data formats (e.g., spreadsheets, relational databases, informally formatted files,
XML files, object oriented databases, and more) and highly variable data quality
(e.g., entries may be incomplete, corrupted, or inconsistent, and there may be
little or no meta-data to document either format or meaning). If all documents
had associated schemas (also called data models) that accurately described their
structure, and if fully automatic schema translation and integration were possi-
ble, then several important problems could be solved at a purely syntactic level
[5]; however, these two assumptions are far from true. Moreover, format is only
a small part of the difficulty, most of which is semantic and pragmatic. The
growing popularity of XML will make some things easier, but cannot solve the
basic problems, which are not only technical, but also social, as shown by diffi-
culties with implementing the semantic web vision [4], as well as workflows which
automate processing the enormous datasets that are increasingly common in as-
trophysics, proteomics, high energy physics, ecology, agriculture, pharmacology,
e-business, geology, and many other areas.



Ontologies have been proposed as a solution; these are not metaphysical
assertions about basic world substances made by philosophers, but rather are
terminological systems, items from which can be attached to e-documents. They
cannot capture real world semantics, but only logical relations between predi-
cates, such as that all humans are mammals; the actual meanings of “human”
and “mammal” remain unformalized. Moreover, a given domain may have sev-
eral competing ontologies, each in some ways incomplete and/or ambiguous, and
potentially written in different ontology languages, which in turn may be based
upon different logical systems. OWL and RDF are currently most prominent,
but others include Ontologic, ALC, KIF, KL-ONE, XSB, Flora, and OIL; spe-
cialized ontology languages, e.g., Ecolingua and EML for ecology, tend not to
have formal semantics. A sociological and philosophical discussion of limitations
of ontologies is given in [17]. It follows from all this that human involvement can-
not be entirely eliminated, and moreover, that data integration may require not
just schema and ontology integration, but also ontology language integration,
and even ontology logic integration, in such a way that semantics is respected
throughout the entire “integration stack,” from actual datasets or e-documents,
through schemas, schema species, and ontologies, up to ontology logics.

It is useful (e.g., in discussing tool support) to distinguish four levels of
support for data manipulation, for which we will use the following terminology:

1. Schema matching tools produce a relation between the node sets of two
schemas; nodes may be elements, attributes, paths, or some combination of
two or all three of these. Most current tools work at this level, and therefore
rely on other tools, perhaps just a text editor, to provide the additional
information needed to support data translation and integration.

2. Schema mapping tools provide enough information to generate a view that
can be used for data translation. We use the term schema morphism for

a mapping that produces correct data translation, noting that the ultimate

criterion for correctness is satisfaction of the user. The language of the tool

need not be the same as that of the views that it generates; indeed, in the
best cases, the tool is GUI-based rather than text based like SQL or XQuery.

3. Data integration tools support translation of data from multiple sources
and its subsequent integration to answer queries over a global schema.

4. Heterogeneous data integration tools provide translation and integra-
tion for data sources over schemas of different species.

A major obstacle to research in this area is that, although several particular
species of schema are well defined (such as XML Schema), we do not have a
general definition for the basic concept of schema species; similarly, we do not
have a general definition for the concept of ontology language; and more signif-
icantly, we do not understand the various kinds of morphisms that are needed
to support translations among such objects. Without such understandings, it is
impossible to build effective tools to support heterogeneous data, schema, and
ontology integration. This paper is intended to fill these gaps, while also provid-
ing some technological background for those not already familiar with this area.
In addition, it briefly discusses practical tools to support translation and inte-
gration of data at various levels of the integration stack. Institutions and their



morphisms (these notions are explained in Section 4) are promising for under-
standing the higher levels of this stack, clarifying some problems, and suggesting
sound solutions.

Section 2 provides informal background on databases, schemas, schema map-
pings, ontologies, workflows, and their roles in data integration; computer sci-
entists may wish to skip this. Section 3 describes our approach to schemas, and
their species, databases, constraints and morphisms. Section 3.1 is a brief intro-
duction to algebraic specification theory, which is heavily used in the rest of the
paper. Section 3.7 briefly describes the SCIA tool, which implements our theory
for certain schema species.

Section 4 describes our approach to heterogeneous data and ontology inte-
gration, which uses institutions, institution morphisms, and the Grothendieck
flattening construction to formalize the integration stack; some category theory
is used here and in Section 3.6; categorical background can be found in [34, 37]
and many other sources. The category theoretic view that morphisms are often
more important than objects will be found very consistent with the subject of
this paper. Section 4.2 briefly discusses the information flow (in the technical
sense of Barwise and Seligman [2]) approach to integration, and Section 4.3 dis-
cusses ways to use ontologies for data integration. The many definitions in this
paper are important as the basis of tools to translate and integrate data over
schemas of different species, while the relatively few results establish properties
needed for such applications; some results are designated “Theorem” despite
having rather easy proofs, due to their fundamental nature.
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errors are of course my own responsibility, and are perhaps inevitable in trying
to algebraicize a large subarea of computer science in a short time. This research
was partially supported by the National Science Foundation under Grant No.
ITR 0225676, Science Environment for Ecological Knowledge (SEEK).

2 Background

Information comes from and goes to human beings: pixels, bits, marks on paper,
etc. have no meaning in themselves, but must be interpreted. So what is stored
in databases (or books, cave walls, memory chips, video tapes, or other media)
is not information, but data. Interpretation has long been studied by numerous
disciplines, including semiotics, hermeneutics, pattern recognition, literary criti-
cism, ethnomethodology, statistics, media studies, psychology, machine learning,
phenomenology, cognitive neuro-science, and psychophysics, to name a few. But
it is still poorly understood, in part because the narrow confines of individual
disciplines prevent a comprehensive perspective on a complex phenomenon that



transcends such boundaries. It is distressingly common to sweep as much com-
plexity as possible under the rug of “context,” and it is a sadly pervasive error
to think that all the contextual information needed to interpret data can be
digitally encoded and mechanically applied. Human beings are the ground for
all information and all interpretation, and human society is the matrix within
which all meaning is embedded; a prevasive result of this situation is the cre-
ation of a constantly shifting foreground and background, with the latter being
called “context” [12]. I do not say that machines could never deal with this, but
they are far from being able to do so today, and to do so, they would have to
be given not merely more computing power, more memory, and more sensory
capability, but would also have to be embedded in human society, a situation
having consequences which not everyone welcomes, although it is beginning to
appear in ubiquitous computing, emotive computing, etc.

Confining attention to digital data, and moving up from bits, we find a great
variety of storage media, including tape, CD, DVD, flash memory, hard and
scuzzy disk, RAM, stick, jukebox, and more. This level is usually taken for
granted, but it is non-trivial, as anyone who has ever had to deal with the in-
ternals of a device driver can attest. Data at this level is structured into bits,
bytes, tracks, and other device-dependent subdivisions, which are oriented to-
wards particular patterns of use.

Databases further organize storage media to facilitate operations that in-
terrogate and update content. This may involve encodings for data types, as
well as further structuring, to make relationships between different data items
explicit. Types determine what operations are possible on the underlying bits,
and provide humans with valuable clues about interpretation, while structuring
makes it easier to find related data, (usually) provides associated names, and
again facilitates interpretation. Data about data is called meta-data. The most
important, or at least best understood, meta-data for databases are schemas,
which describe conventions for structuring, typing, and naming data. However,
several different kinds of schema are in common use; when schemas are called
“models,” kinds of schemas may be called “meta-models,” but this paper prefers
the term schema species. The best established and most studied species is
the relational, which structures data into sets of relations with fields, while
another, called object oriented, structures data into objects with inheritance
and attributes. With the rise of the web, XML is poised to overtake these; its
approach is called semi-structured, hinting at its greater flexibility. There are
legacy databases that use so called hierarchical meta-models; spreadsheets and
formatted ascii files can also be considered to be schema species.

Unfortunately, a great deal of critically important meta-data falls outside the
scope of schemas. For example, while it may be possible to say that a certain
item of data is measured in feet, a schema cannot say what a “foot” actually
is, or relate it to other units, such as meters. In some cases, the way a mea-
surement is taken, called its protocol, can be very important. For example, in
ecology, species density is defined as species count divided by area. But for ma-
rine species, volume may be the relevant denominator, and it will matter how



species counts are obtained, e.g., by a net that is dragged for a certain amount
of time, or by observation from some fixed point. The time of year and time
of day may also be important, since species migrate at different times of the
day and year, and of course variations in weather modify these patterns. The
taxonomies used to classify species may also differ, e.g., different criteria may be
used, different granularities of classes, etc. Different modes of observation may
also have different inherent inaccuracies, some of which may be systematic, e.g.,
because certain colors are distorted or difficult to distinguish underwater. And
all this is just one tip of an enormous iceberg of potentially critical knowledge
relevant to the interpretation of data.

As the above discussion suggests, making use of data in one database may
require integrating it with data from others. For example, to interpret a mea-
surement of the density of gray whales at a certain time and place, we may need
to know the ocean temperature, and the path and time of migration for that
species, and then we may need to compare the current data with data from pre-
vious years, among other things. This requires knowing what factors are relevant,
how important they are, where to get the necessary data, and how to process it.
In general, the necessary data is stored in different databases at different sites,
and although it might all be accessible over the internet, some of it may require
specialized background knowledge. Typically today, scientists import all the data
they need into their own lab, massage it in various ways (such as averaging or
interpolating time series to achieve compatibility with other time series), and
finally process the integrated data, often using hand coded ad hoc programs. All
this is a far cry from writing a query in a standard database query language such
as SQL or XQuery, and then running it over a single database. However, the goal
of much current research is to bring data integration closer to that paradigm;
some of this research is described in the next three subsections. It is not claimed
that these three areas include everything that is relevant, or that they are likely
to be sufficient for solving all the problems of data integration and translation.

2.1 Schema Integration

A standard approach to data integration is to construct a global database con-
nected by views to the various local databases such that the global database
contains all the data of interest from the local databases, and can be queried to
obtain exactly what is needed for some particular purpose. However, it is likely
that the local databases are evolving, and it is therefore wasteful to continually
update and duplicate everything. For this reason, the global database is often vir-
tual, represented by a schema. More formally and generally, using some language
from category theory, correct views are schema morphisms, and the situation de-
scribed above is a cone (and/or co-cone) in the category of schemas, with apex
a global schema G over local schema, L;. The case of a cone v;: G — L; is called
“local-as-view,” while the case of a co-cone u;: L; — G is called “global-as-
view.” Cones correspond to relations, and co-cones to co-relations.
Unfortunately, it can take a lot of effort to construct the necessary views,
effort that is often not worthwhile for any single project. Moreover, the schemas



of the local databases are in general also evolving, along with the needs of the
domain of activity involved, so that additional ongoing work is needed to “main-
tain” the views, i.e., to keep them up to date; often, no single research project
has the resources or motivation to do this additional work. Therefore tools are
being built to construct schema mappings; although there has been a good deal
of effort, one outcome is that total automation is infeasible, so that some human
intervention is needed to achieve high quality results; see Section 3.7.

A different kind of gap is that the local databases often use different species
of schema, whereas the concept of view is limited to schemas of the same species.
An expensive option is to “wrap” a database of one species with a “mediator”
providing data over a schema of a different species; this may be practical for
legacy databases using obsolete data models, but otherwise may not be worth
the trouble. Our solution is to define morphisms between schemas of different
species. To avoid an ad hoc approach in which there are n? different notions of
view among n different schema species, it would make sense to have a single
general notion of schema that can be used for databases of any species; then
we only need one general notion of schema morphism, which should specialize
to views for the individual species. Such a notion is described in Section 3; it
goes well beyond matching by supporting complex morphisms with semantic
functions and conditions, and as far as we know, is the first theory of views
that applies to arbitrary species. In addition, techniques in Section 4.2 yield
schema “heteromorphisms” which support translation and integration of data
over schemas of different species.

The research that seems most closely related to this paper is due to Alagic
and Bernstein in [1], which can be interpreted as axiomatizing the schemas,
constraints, morphisms, and databases of a fixed species as an institution in
which schemas are signatures, constants are sentences, morphisms are theory
morphisms, and databases are models. This approach, called the “schema trans-
formation framework,” is illustrated with an object oriented species based on
Java interfaces with Horn clause logic constraints. The paper also suggests that
schema integration is given by pushouts in the category of theories. Further mo-
tivation for the use of category theory is given on Bernstein’s model management
webpage [6].

2.2 Ontologies and Institutions

Computer-based ontologies express logical relations among entities and predi-
cates. The intention is to establish a standard terminology for some body of
data, to simplify search and integration. Although many ontology languages are
equivalent to Horn clause logic, there are also many other formalisms, some of
which even use second order logic. Moreover, not all ontology languages have
a formal semantics. Problems with ontologies are similar to those with schema
species discussed in Section 2.1, as is our approach to solving them, by provid-
ing a uniform formalization of logics and their morphisms. While logicians have
been reluctant to formalize the notion of “a logic,” computer scientists have been
less shy, and there is now a considerable literature on institutions [20, 35], which



formalize logics as an abstraction of satisfaction relations between sentences and
models, in the style of Tarskian semantics, but parameterized over a category
of signatures (signatures typically supply non-logical symbols, such as predicate
and function symbols, for constructing sentences and models). Institutions can
be considered a theory of truth, i.e., of sound reasoning, that is relativized to
context. A very high level of generality is achieved through the use of category
theory. However, it must be noted that the problems raised by social aspects of
interpretation become even more acute at the ontology level than at the schema
and data levels.

2.3 Workflows

The kinds of data processing required for applications to scientific research and e-
commerce go well beyond what can be accomplished using only database query
languages. Data must flow through a complex pipeline, being massaged and
combined with other data in a great variety of ways; such processes are called
workflows. In the case of scientific workflows, more than just data translation or
even complex data massaging is needed, including the use of powerful statistics
packages, integration with complex scientific models, and display of selected data
using visualization packages; there may also be feedback loops, as hypotheses,
algorithms and data are progressively refined. Web-based business workflows
have similar complexity, although the components are different. A number of
languages have been developed to describe workflow components and processes,
and of course there are also many ad hoc solutions. In general, it is a major
task to construct a workflow for a specific project using these technologies, and
therefore it is a major open problem to develop more flexible and user-friendly
approaches.

Service integration is a generalization of data integration, and the problems
described above also arise in this new and more complex setting. We expect
that many aspects of our proposed solutions for data integration will extend to
workflow and service integration. In particular, our schemas can describe the se-
mantics of ports (i.e., interfaces) of actors in a workflow, and schema morphisms
can provide sound translations among ports that have different requirements,
that are expressed in different formalisms.

3 Schemas and their Morphisms

Subsections below review some algebra that we need, and then develop abstract
schemas, their databases, queries, constraints, and morphisms. Section 3.6 as-
sumes some category theory. A final subsection briefly describes a tool that
implements this theory for some special cases.

3.1 Brief Introduction to Algebraic Specification

This subsection briefly reviews algebraic specification [22, 26,27]. A (many sorted
algebraic) signature Y is a sort set S and a set (also denoted X) of operation



symbols, each with a rank, which is a string of input sorts and a single output
sort; a constant of sort s has rank ([], s), where [] is the empty string. Elements
of S are also called types. A Y-algebra A is a set A, of elements of sort s for
each s € S, plus a function 4, : A, x ...A,, — A, for each operation symbol o
of rank (sl...sn,s); A, is the carrier of sort s. Unsorted signature and algebra
are the same as one sorted, but instead of rank, the arity of an operation is its
number of arguments (see also Example 20). In order sorted algebra, the sort
set S is partially ordered by a subsort relation, and if s is a subsort of s’, then
As C Ay and overloaded operations are consistent with all such inclusions (see
[22] for details).

A Y-term is a well formed expression (with respect to sorts, subsorts, and
arties) built using function symbols from X plus possibly some variable symbols,
and a Y-equation is a pair of such terms, considered as universally quantified
over variable symbols. A Y-algebra A satisfies a Y-equation iff all substitution
instances of the two terms, using values in A for the variable symbols, are equal
in A. A conditional Y-equation has an additional set of pairs of terms, and
is satisfied by A iff the first two terms are equal in A under a substitution
whenever all the other pairs of terms are equal under the same substitution. We
can write A |=x e when A satisfies e.

An algebraic specification is a pair (X, E) of a signature X and a set E
of equations using only operations in X. An algebra satisfies (X, E) if it has
signature X' and satisfies all equations in F, some of which may be conditional,
i.e., required to hold only when a given unconditional equation, called its condi-
tion, already holds. Equations are (usually implicitly) universally quantified over
their variables, each of which must have a declared sort. The term algebra T'x
of a signature X consists of all well-formed terms built from the operations (in-
cluding constants) in Y. The initial algebra of a specification (X, E) is Tx
with identifications determined by E; formally, it is the quotient T's /E of T's; by
the congruence generated by the ground instances of equations in FE; it satisfies
the specification by construction. Term algebras are initial for the empty set of
equations. The term “initial” is used because there is a unique homomorphism
from it to any other algebra satisfying the specification. Any two initial algebras
for a given specification are isomorphic, i.e., they are the same up to a renaming
of their elements.

We also need parameterized algebraic specifications, called polymorphic
types or polytypes, such as sets, bags, lists, and pairs; more exotic types, such
as graphs, tables, and balanced binary trees, are also possible. For the purposes
of this paper, a polytype is an algebraic specification with one or more type
parameter, for which we will later substitute previously defined sorts?'.

Ezample 1. Here two simple examples of polytypes, written in the notation of
OBJ [29, 22], in which the keyword “obj” indicates initial semantics:

obj Pair[X Y :: TRIV] is sort Pair .

L' A more general definition (e.g., [20,25,28]) has “interface theories” that specify
multiple sorts and operations to be substituted, subject to axioms that restrict the
allowable substitutions.



op [_,_.] : XY -> Pair .
op 1_ Pair -> X .
op 2_ Pair -> Y .

var X : X . var Y : Y .
eq 1l [X, Y] =X .
eq 2 [X, Y] =Y.

endo

obj ListOf[X :: TRIV] is sort List NeList .
subsort X < NelList < List .
op nil : -> List .
op cons : X List -> NeList .
op head_ : Nelist -> X .

op tail_ : Nelist -> List .

var X : X . wvar L : List . wvar N : NelList .
eq head(cons(X, L)) = X .

eq tail(cons(X, L)) =1L .

endo

The keywords obj and endo mark the beginning and end of a specification, and
the string following obj is its name, while the material between [ and ] declares
the type variables; TRIV indicates that there are no restrictions on these variables.
The first sort declared is called the principal sort of the specification. Underbars
in operation declarations indicate where arguments go in mixfix syntax, and the
rank follows the colon. Of course, there are also many other ways to specify lists,
such as the following:

obj ListOf[X :: TRIV] is sort List NeList .
subsort X < NeList < List .

op nil : -> List .

op __ : NeList List -> Nelist [assoc id: nil].
op __ : List NeList -> NelList [assoc id: nil].
op __ : NeList NeList -> NeList [assoc id: nil].

op head_ : Nelist -> X .
op tail_ : NeList -> List .
var X : X . var L : List . var N : Nelist .
eq head(cons(X, L)) = X .
eq tail(cons(X, L)) =L .
endo

where “[assoc id: nil]” indicates that the associative and identity laws hold
for the append operation (with juxtaposition syntax indicated by __), with nil
its identity constant. O

The constructors of a specification are those the target sort of which is the prin-
cipal sort of the specification, while its selectors are the inverses of constructors,
as defined by equations. Thus, [_,_] is a constructor, while 1_ and 2_ are selec-
tors in PAIR; the type parameters for Pair are X and Y. There may also be some



predicates, given as Boolean valued functions (the sort Bool for Booleans is im-
ported into every specification). To instantiate a parameterized specification,
we simply substitute names of types for the type variables in its name. For ex-
ample, List0f [Nat] gives lists of natural numbers, and Pair[Bool,Bool] gives
pairs of Booleans; all the equations should also be instantiated by substitution
of the actual type for the generic type variable.

It is also natural to write List0f (Nat),Pair (Bool, Bool) (but NatXxBool is
even better), List0f (Pair (Nat, Bool)), etc. for the principal sorts that results
from instantiation, and this notation is used in the type algebras constructed in
Sections 3.2 and 3.3.

A collector is a polytype with constructors for inserting elements of its
parameter type, and a Boolean valued operation _in_, also written _€_, for
querying whether an element has been inserted, but without operations for re-
moving arbitrary inserted elements. Thus, Set0f, Bag0f, List0f are collectors,
but pairs and arrays are not. In several places, we need to iterate a binary oper-
ation over one collector structure to build a value, or to build another collector
structure, i.e., to apply the operation iteratively to the elements of the given
structure. For example, if L has type List0f [String] and if P is a Boolean
valued function on String, then the result of iterating the operation P(z) A B
over L may be written A ., P(z). Or if L is a list of pairs of integers, then
the result of iterating insert(pz(z),S) is {p2(z) | « € L} = {b | (a,b) € L},
where insert is the set collector and po(x) extracts the second component of
x. Such polymorphic iterator operations are are similar to mapcar in Lisp, and
are easily defined by recursive equations over basic collector constructors (e.g.,
see [15]).

Values that depend on conditions can be constructed using the polymor-
phic if_then_else_ function, the first argument of which is Boolean while
the other two are of some other type, such as integer, as in the expression
if even(n) then n + 1 else n + 2.

Ezxample 2. What are called null values in databases can be handled in a simple
and elegant way in order sorted algebra. For example, if Int is the sort of integers,
then we can a supersort Int? of Int, and a new constant nullInt of sort Int?.
Formally, in OBJ syntax, we can write

obj NULLINT is pr INT .

sort Int? . subsort Int < Int? .
op nullInt : -> Int? .
endo

Here “pr INT” indicates that the already defined module INT for integers is
imported. It is clear that null values can be defined in the same way for Booleans,
characters, or any other sort of data value. O

To ensure uniform representation for interoperability in our database ap-
plications, it is convenient to assume that the basic values used for data are
taken from a fixed algebra D, called the data algebra. We will assume that
all the operations we need on data values are included in the signature 7 of
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D, and we also assume for convenience that all elements of D are included in
X as constants. Let S denote the set of sorts of D, elements of which may
be called basic types; typical basic types are Int, Bool, Char, and String (of
characters), and typical operations are addition, exclusive-or, append, etc.

We can view any data algebra as an initial algebra of a suitable specification,
as follows: let EP be the set of all equations that are satisfied by D; then D
is X-isomorphic to T;p /EP. Our formalization of schema morphisms will use a
related term algebra, based on the following construction: if X is an SP-sorted
signature containing only constants (to be regarded as new variable symbols),
let 2(X) denote the union signature X' U X, and let T?(X) = Tp(x)/E"; as
usual, we denote elements of TP (X) by elements of Tsp(x), such as z + 2y or
if even(n) then n + 1 else n + 2; note that in TP (X), the latter is actually
equal to 2[5 + 1.

A different approach to null values than that of Example 2, called labelled
nulls in the database literature, adds new function symbols of sort s as null
values of sort s, for example, to handle key constraints in schema based data
translation, e.g., in [32, 38]; they may be just constants, but can also have non-
trivial arity, in which case they are Skolem null values; intuitively, they represent
values that are presently unknown, but that depend on other values. Because
TP can be extended to TP (£2) where (2 contains nulls, we can assume that 7P
contains whatever nulls are needed. Note that labelled null operations can also
be put in error supersorts, as in Example 2.

3.2 Schemas

Schemas may contain both structure declarations and semantic constraints,
which describe those aspects of a database that should be invariant under trans-
actions; a particular schema of a given species describes the databases that
conform to that schema. This subsection presents general notions of schema and
species, with some examples.

The first ingredient of a schema species is a data algebra D, consisting of the
basic data elements and operations upon them, having one sort for each type
of basic element. Elements of D serve as data values in schema instances, i.e.,
databases or “e-documents.” Different schema species may have different data
algebras, depending on the constants, functions and relations that they need.

The second ingredient of a schema, species is a collection P of polytypes that
includes the finite set polytype. From this and a data algebra D, we will build
the type algebra, which plays a fundamental role in our theory. The following are
needed for its construction: For each constructor P; in P, let ¢; be an operation on
types (not on data) having the same (unsorted) arity as P;; examples are unary
Set0f and List0f, and binary Pair, the latter of which is hereafter written as
an infix product x. The constructors in P; structure data, for example, a relation
as a set of records, whereas the ¢; are constructors for type expressions, which
describe the structure of data, as in the term Set0f(StudentID X CourselID).
Let Cp or just C denote the (unsorted) signature containing all ¢; with their
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arities, and all sorts SP of the data algebra D as constants. We will assume that
all the iterators we need are already in P.

Type constructors with just one type argument are often called collectors;
examples are SetOF, List 0f, and Bag0f, as well as more exotic examples, such
as 2Arr (N, K), for 2-dimensional (N x K)-arrays, e.g., 2Arr (366,24) (Real),
for recording hourly temperatures over a year (with a null value for the 366th
day of a non-leap year).

Definition 1. Given a data algebra D, a collection P of polymorphic type con-
structors, and set N of elements called names (which will be used to name
database (sub)structures) in the form of strings, i.e., elements of Dg¢ring, let the
type algebra, denoted T(N), consists of all type expressions, which are well
formed terms built using Cp and N. O

Note that T(N) has just one sort. Type expressions are fundamental for our
abstract schemas (Definition 3 below). It is not as well known as it should be that
type expressions form an initial algebra, nor that abstract syntax and Knuthian
attribute grammars are also elegantly handled by initiality [26, 27].

The third ingredient of a schema species is restriction on the allowable forms
for schemas of that species, given as an admissibility relation R(n,t) between
names n and type expressions ¢, and generally defined by a set of rules. We
therefore have the following;:

Definition 2. A schema species consists of a data algebra D, a set P of
polymorphic types, and an admissibability relation R between names and
type expressions. O
Example 3. Relational Database Species. Let P; define finite sets, and let
Py, for k > 1 define k-tuples, so that ¢; = SetOf and ¢z is the binary infix
product type constructor X, cs is a constructor for types of 3-tuples, etc?. Then
the following defines admissibility for relational schemas, where the database
name is R, the names for its relations are Ry, ..., R,, and the names for the fields
of each R; are Fj; fori=1,..,nand j =1,..., K;:

R(R,R1 X ... x Ry,)

R(Ri,Seth(Fﬂ X ... X FiKi))

R(F;j,d) for d € SP
The first says a relational database has relations Ry, ..., R, for some n > 1, the
second says each R; is a set of records of type Fj; X ... X Fik, having K; > 0
fields F;; which the third says all have values of a basic type. (If preferred,
Bag0f could be used instead of Set0f.) Any particular relational schema makes
particular choices for these parameters, as illustrated below. O

The name graph G(S) of a function S: N — T(N) with a given top name
Top has Top as its root node, and if ¢ is a node of G(S) and if a name n appears
in S(t), then there is an edge from ¢ to n in G(S). S is acyclic if its graph G(S)
is acyclic. Also, name n € N is reachable if there is a path in G(S) from Top to
n, and § is reachable if every name in NV is reachable. The following captures
the structural aspect of schemas (constraints are considered later):

2 A more sophisticated approach uses only the binary pair constructor with an asso-
ciative law, so that n-tuples are built using n — 1 pair constructors.
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Definition 3. An abstract schema of a given species is a finite set N of
elements called names containing a top name designated Top, plus a function
S: N — T(N) such that every term S(n) is admissible for n, and has depth 1 or
2 (where constants have depth 1), and such that any term obtained by starting
from some S(n) and making any number of substitutions of S(n') for occurrences
of names n' in the resulting terms are also admissible for n. A schema, is acyclic
if its name graph is acyclic, and is reachable if its name graph is reachable with
respect to its top name. Let N, denote the set of reachable names of S. O
Abstract schemas capture the abstract structure of concrete schemas, including
their relations of subordination, ordering, and typing. Restricting the terms S(n)
to depth 1 or 2 guarantees that names are associated with substructures, which
enhances readability, and prevents anonymous types, which are subexpressions
without assigned names.

Ezxample 4. A Relational Database Schema. Here is a schema for a simple
relational student database having three relations:
S(SDB) = Student X Enrolled X Course
S(Student) = Set0f(StudentID x Address X Major X GPA)
S(Enrolled) = Set0f(StudentID x Courseld)
S(Course) = Set0f(CourseId X Synopsis)
S(StudentID) = Nat
S(Address) = String
S(Major) = String
S(GAP) = Real
S(CourselID) = Nat
S(Synopsis) = String
where Nat is for natural numbers. The type algebra contains terms such as
SetDf(Courseld x Synopsis), and Student X Enrolled X Course, which uses
the 3-tuple type constructor, plus infinitely many others not used by S. O

Claims of Siméon and Wadler [40] about the “essence of XML” can be seen
as implying that the abstract schemas of XML Schemas use only the collector
ListOf, reflecting the inherent ordering in XML syntax; this is of course a sim-
plification, since the official specification of XML is very large (over 300 printed
pages) and ugly. The following captures this essential abstract structure, in-
cluding relations of subordination, ordering, and typing; note that elements and
attributes are not distinguished.

Definition 4. The essential XML species uses only the list and k-tuple (for
k > 1) polytypes; any term involving only these is admissible for any name. O
Most of our examples are of this species.

Example 5. We illustrate this with a schema for lists of persons:

S(PDB) = List0f(Person)

S(Person) = Name X Age X Mother X Father

S(Name) = String

S(Age) = Nat

S(Mother) = Person

S(Father) = Person
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The name graph of this schema is cyclic, because the type name Person occurs
within its own definition. In this example, because lists are finite, null values
would be used to avoid an infinite regress of ancestors; theoretically this schema
allows circularities in its databases, e.g., a person could be its own father and
mother, although a constraint could eliminate this possibility. O

Our second illustration of Definition 3 is a simple acyclic schema for lists of
books; it also includes an XML Schema for the same structure:

Example 6. Abstract and Concrete XML Schemas for Books. Here the
top name is Bib, and

S(author) = String
The XML Schema for this (taken from [13]) looks much more complex:

<xsd:group name="Bib">
<xsd:element name="bib">
<xsd:complexType>
<xsd:group ref="Book" minOccurs="0" maxOccurs="unbounded"/>
</xsd:complexType>
</xsd:element>
</xsd:group>

<xsd:group name="Book">
<xsd:element name="book">
<xsd:complexType>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="year" type="xsd:integer"/>
<xsd:element name="author" type="xsd:string"
minOccurs="1" max0Occurs="unbounded"/>
</xsd:complexType>
</xsd:element>
</xsd:group>

To explain the details of this XML Schema in words would take much space, but
note that the names in abstract schema are just the strings following “name="
above, except that collectors do not need names, and bib and book are not
needed. OQur abstract schema S does not express the constraints on the number
of items in the two lists. If the list polytype includes the empty list, then the
constraint that Author lists are non-empty needs a constraint, for which see
Example 14 and Definition 10. O

14



3.3 Explicit Type Algebra

Database entities often have the same underlying type, such as integer, but use
it in different ways. To distinguish them, we “wrap” their underlying type names
with explicit names that indicate how they are used; we call this an explicit type,
and use a quotient construction to identify the explicit type with the name given
in its schema.

Definition 5. Given a schema species and a schema §: N — T(N) of that
species, let T## (V) denote the free unsorted algebra consisting of all well formed
terms built using N and SP plus the set of all unary type constructors #n for
n € N plus the (unsorted) type constructors in Cp for that species. Elements
of T##(N) are called explicit type expressions, and T##(N) is called the
explicit type algebra. A type equation of S has the form n = #n(S(n))
for n € N; let E be the set of these. Then T##(N)/E is called the reduced
explicit type algebra, and is denoted T#(N).

Each E-equivalence class of type expressions contains a unique complete
explicit type expression, the result of substituting #n(S(n)) for n wherever pos-
sible, except that no name is expanded twice along any path, i.e., such that
no operation #n appears more than once along any path in the expression. A
necessary type expression is a complete subexpression of some explicit type
expression equal under E to the top sort of the schema. O

Expressions in T##(N) extend those in T'(N) by attaching names to subex-
pressions using # operations. For example, #Title(String) and #author(String)
are different in 7##(N) but would be just String in T(NN); also, paths can be
traced by following # operations in the parse trees of explicit type expressions.
The reduced explicit type algebra identifies names with the explicit type expres-
sions that they denote under S. Note that E-classes can be infinite for cyclic
schemas, e.g., for the schema PDB of Example 5.

Example 7. Complete Type Expressions. The complete type expression for
the top sort of the student database of Example 4 is

#SDB(Set0f (#Student(#StudentID(Int) x #Address(String) X #GPA(Real))
X Set0f(#Enrolled(#StudentID(Int) x #CourseId(Nat)))
x Set0f(#Course(#CourseId(String) x #Synopsis(String))))

It is interesting to look at the complete type expression of the schema in Example
5, because it involves recursion. The complete top type expression is

#PDB(List0f (#Person(#Name(String) x #Age(Nat)
x #Mother(Person) x #Father(Person))) ,

in which the second two Person names are not expanded. O

Example 8. Bibliographic Schema Type Expressions. Some complete type
expressions for the schema of Example 6 are

List0f(#Book(Title X Year x Author))

and
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List0f(Title X Year x ListOf(author))

so that modulo the type equations, Bib is actually equal to #Bib(List0f(Book))
as well as to the following complete type expression for the schema,

#Bib(List0f(#Book(#Title(String) X #Year(Int) x
List0f(#Author(List0f(#author(String))))))) .

Unused names like GenomeRef will not appear among the necessary type expres-
sions of S. O

Example 9. A schema can be recovered from its complete type expression by a
process that we call unfolding, which successively removes each outermost #n
operation from the term, and then defines S(n) to be the remainder of the term.
Rather than give a formal definition, we do a simple example, unfolding the
complete type expression given in the above example for the schema in Example
6. The first step produces the equation
S(Bib) = (List0f(#Book(#Title(String) x #Year(Int) X
List0f(#Author(List0f(#author(String))))))) ,

and the second step produces the equations

S(Bib) = List0f(Book)

S(Book) = #Title(String) X #Year(Int) x
List0f(#Author(List0f(#author(String)))) ,

while the third produces

S(Bib) = List0£(Book)

S(Book) = Title x Year x ListOf(Author)

S(Title) = String

S(Year) = Int

S(#Author) = (List0f(#author(String)))) ,

which after one more step yields the original bibliographic schema. O

3.4 Specification and Databases of a Schema

The following is the basis for defining the databases of a schema:
Definition 6. The specification Spec(S) of a schema S: N — T(N) has:

1. as its sorts, the necessary type expressions of S;

2. as its operations, those of the instantiated polytypes that appear in some
necessary type expression of S;

3. as its equations, those of the instantiated polytypes that appear in some
necessary type expression of S, plus EP.

The signature of S consists of the first two items, and the top name of S is
called the top sort of its specification. O

Thus the sorts of Spec(S) are the type expressions that are actually used in S.

Example 10. Bibliographic Schema Specification. For S the schema of Ex-
ample 6, the constructors in its specification include the following:
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cons: Book Bib — Bib
cons: author Author — Author
¢3: Title Year Author — Book

where ¢3 constructs 3-tuples (plus a couple of empty list constants). The equa-
tions include head(cons(a,L)) = a for a a variable of sort Book and L of sort
Bib; another such equation is tail(cons(a, L)) = L. O

There is a confusion about the word “model”: some authors use it for schemas
(e.g., the “model management” of [5]), while others use it for the databases that
conform to a schema, by analogy with use of this word in model theory (in logic)
for a structure that satisfies a theory. This analogy is better than the schema
analogy, but is still not exact, as the following shows:

Definition 7. Given a schema species and a schema §: N — T(N) of that
species, then a database implementation of S is an initial algebra I of the
specification of S such that its restriction® to X is D; we will write Is for such
an I. A database state of I is an element B of the carrier of the top sort of I,
and we also say that B is a conforming database for S and write B |=S. O

While abstract data type theory [27] abstracts away from how the elements of
an initial algebra are represented, for a schema S, we are interested in different
concrete initial algebras, since they correspond to different implementations of
databases of S, with the elements of each such algebra being the database states
in that representation, where data sorted subterms are given by constants from
D. The following illustrates these ideas:

Example 11. A Student Database. Among the database implementations of
the student schema in Example 4 is an initial algebra that uses conventional
notation for the tuples resulting from product constructors and for the sets
resulting from set constructors. In this algebra, a typical small student database
looks as follows:

({ (215, Muir 129, Math, 3.2) , (329, Revelle 774, CS,3.8) } ,
{ (215, 130), (215, 220), (329, 130}, (329,87) } ,
{(130, ...}, (87,...),(220,...) })

where ... indicates omitted text that describes courses. O

Constraints and schema morphisms need notation for selectors. If there is a
standard notation, we can use it, e.g., head and tail for lists; selectors for the
product type constructor x will be denoted by pj where the desired argument is
in the k" place, or by their argument type names prefixed by & (e.g., two selectors
from Example 4 are &Enrolled and &GPA). The following is also needed:

Definition 8. Given a schema species, a schema S: N — T(N) of that species,
and reachable n € N, then the set extractor from Top to n, denoted ##n, is
defined by the formula below, in which B is a database conforming to S and
p = $1...8p the sequence of selectors (no collectors) on a path from Top to n, in
the parse tree ¢ of the complete type expression for S,

3 Because D is also an initial algebra, this does not compromise the initiality of I.
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##n(B,p) = {er | er in sk(eg—1),...,e2 in s1(B)}

where e’ in s(e) means ¢ = e when there is no collector directly above s in ,
and means e’ in s(e) using in of the collector directly above s if there is one. O

Note that ##n is an iterator over the element insertion operation for the set
polytype. Usually there is a unique path from Top to n, in which case we write
just ##n(B). The following illustrates how ## works:

Ezample 12. For the structure of Example 4, the selectors on the path from
SDB to CourselID are p3,p2. Therefore ##CourseId(B) = {e | e = p2(5),S €
p3(B)} = {p2(S) | S € p3s(B)}, which for B the database of Example 11 has the
value {130, 87,220}. O

3.5 Queries and Constraints

Definition 9. Given a schema species and a schema S: N — T(N) of that
species, a query over S is a set valued expression with a single variable of the
top sort of S, constructed from the sets ##n for reachable n € N, plus standard
Boolean operations, standard set operations, and operations in £P. O

Set comprehension over Boolean expressions is especially important; because
databases in our theory are terms in an initial algebra, these are necessarily
finite, and set comprehension is just iteration over single element insertion, which
is assumed to be in P.

Example 13. The following is a query over the schema of Example 4:

{p1(S) | S € &Student(B) A &GPA(S) > 3.5}
N {p1(E) | E € &Enrolled(B) A 87 € p2(E) A 130 € pa(E)}

It asks for the IDs for all students with GPA more than 3.5 who are enrolled in
both 87 and 130. O

Although not very user friendly, this notation is convenient for our theory; it is
not part of the user interface of our tool discussed in Section 3.7. The database
literature distinguishes among a number of different kinds of query; for example,
the above is a conjunctive query, constructed using conjunction as the only
Boolean operation and intersection as the only set operation. Constraints often
use Boolean valued iterators, which are abbreviated as “bounded quantifiers,”
e.g., (Ve € ##n(B)) t abbreviates A cgs,(5) €(t), the iteration of conjunction over
the elements of ##n(B). Similarly, (Je € ##n(B)) t abbreviates \/ cyp,(p) €(t),
the iteration of disjunction over the elements of ##n(B).

Definition 10. Given a schema species and a schema S: N — T(N) of that
species, a constraint for S is a Boolean term with one free variable B of sort
Top, built from set extractors, standard Boolean functions, standard set oper-
ations, and operations in X7 usually written (VB: Top) t(B). A database M
conforming to S satisfies a constraint (VB: Top) t(B) iff t(B + M) = true in
Is, where « indicates substitution.

A data integrity constraint for S has the form
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(VB: Top) (Ve; € ##nq(B))...(Vey € ##ny(B)) t(B)
where ¢ is a Boolean term built from set extractors and operations in X7,

A constrained schema is (S,C) where S is a schema and C is a set of
constraints for S. A database satisfies (S,C) if it conforms to S and satisfies
every constraint in C, in which case we write B |= (S,C). O
Example 1. Data Integrity Constraints. The following are typical of data
integrity constraints that might be used for Example 6,

(VY : Year) Y < 2005

(VA: Author) |A| >0
where |_| is a length function assumed to be in the list specification. These do not
have the required form, but can be put into it by viewing < and > as Boolean
valued functions, and using bounded quantifiers:

(VB: Top) (VY € ##Year(B)) Y < 2005

(VB: Top) (VA € ##Author(B)) |A| >0
Constraints that have more than one variable have explicit forms with more than
one ## operation. Letting C contain the two constraints above, a bibliography
database B satisfies (S, C) iff in fact the year of each book is 2005 or less, and
every book has at least one author. O

Example 15. Equality Constraints. Another important class of constraints
are defined by equations, which can be conditional. For example, in the relational
species, what are called functional constraints have the form

(VR,R': Rel) Fi(R) = Fi(R') = F»(R) = F>(R')
where Rel names some type of tuple and where F, F» are fields (i.e., selectors)
for that type of tuple. Similarly, a key constraint has the form

(VR, R': R.el) Fl(R) = Fl(RI) =R=R
in which Fj functions as a “key” for the type Rel.

3.6 Schema Morphisms and Data Translation

In a series of papers (e.g., [5,1,7]), Philip Bernstein has presented a vision of
“model management” (though it might better be called “schema management”),
arguing that schema mappings are the key to many important applications,
including generating a website wrapper, populating a data warehouse from data
sources, translating relational to XML schemas, integrating a collection of data
sources into a single virtual source, and more. Our schema morphisms are more
general and more precise than the mappings of Bernstein, but perform the same
functions, since they induce translations between databases that conform to the
schemas. This section focuses on schema morphisms of a single species, while
Section 4.2 extends the theory to “heteromorphisms” which relate schemas of
different species.

Before giving the formal definition of schema morphism, we give an infor-
mal example to illustrate both semantic functions, which manipulate data
values (e.g., for combining first and last names to get a full name), and con-
ditions, which restrict the application of translation formulae; these are not
usually treated in either theory of tools.
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Ezxample 16. An Author Database Translation. Let the schema S; be like
S of Example 6 except for adding the following type definitions,

S1(author) = fname X lname
Si1(fname) = NString
S1(1lname) = NString

where NString is a basic type having no space character, and where fname and
lname are elements for the first and last names of authors. Let S» be a second
schema built on S of Example 6 by adding the following type definition and
constraint

Sy (author) = List0f(NString)
(Va: author) 0 < |a| < 3

Now we can define M: §; — S2 to map S; databases to S databases, using
functions that preserve the structure of the components in Example 6, plus

Moautnor(a) = &fname(a) @ &1lname(a)

where author is the type name from Sy, a is a variable of sort author from Sy,
&fname and &lname are selector functions for the author product type in Sy,
and e is the append operation on lists of strings (using the second list polytype
in Example 1 instantiated with String, which therefore becomes a subsort of
List).

The converse translation for these schemas involves both conditions and se-
mantic functions,

rathor(@) = a  if |a| =1 ! (a) = tail(a) if |a| =2

author
Mlauthor(a) =1 if |a| =1 Mlauthor(a) = head(a) if |a| =2
where a is a variable of type author from Ss and L is a null value. (Formally,
each pair of equations should be one equation with a polymorphic conditional
operation.) O

The first step to schema morphisms is defining a joint explicit type algebra
Tg’f f, for schemas S, S’ of the same species: it is the free unsorted algebra with
constants the elements of N, N’ and S”; with unary function symbols #n for
n € N and #n' for n’ € N'; plus all the (unsorted) type constructors for that
species. Now let Tjﬁf s be the quotient of T;f if, by the type equations of both &
and &'; it is the joint explicit reduced type algebra, and its elements will
serve as sorts for an algebra of possible translation functions.

The basic translation algebra T's s/ is defined as follows: (1) its sorts are the
complete elements of Tf’ s> (2) its operations are those of Cp instantiated with
the sorts of Ts sr; and (3) its equations are those of EP, plus Cp instantiated
with the sorts of T's s/. Given a set P and a function p: P — T;f s, let %P be a
set of new constants %p of sort u(p) for p € P, and given a function M defined
on P, let ¥ M be a set of new unary function symbols %M, of argument sort

u(p) for p € P. Now we are ready for the main concept of this paper, which uses
the extnesion Ts s (hP,%hM) of Ts s by the symbols in %P and %M:

20



Definition 11. Given a schema species, a schema morphism of that species
from S: N — T(N) to 8': N' — T(N') consists of a set P containing N, a
function p: P — T;f s such that p(n) =n for n € N, and a function M: P —
Ts s (hP,%M) such that each M(p) has just one free variable %p, of sort u(p),
and such that M(Top) has sort Top'; we may also use the notations M, and
M, (%p). A schema morphism M: § — §' is simple if the terms M,, contain
no operations from £, no selectors from &', and no constructors from S.

A schema morphism M defines a match relation matchp on N x N' by
matchp(n,n') iff the term S'(n’) occurs (modulo equations) in M, in which
case we say that n and n' match. O

Intuitively, a schema morphism M : S — S’ describes a way to select structures
from S databases and then put them together to form S’ databases. The function
symbols %M, allow recursion in schema morphism definitions, since they will
be replaced by the terms M,; they also allow the use of auxiliary functions.
Schema, morphisms may have semantic functions, conditions and null values,
because terms in Ts s can contain operations on data (from D) as well as
conditionals (e.g., if _then_else_) and nulls; however, these are excluded from
simple schema morphisms.

Definition 12. The rewrite rules of a schema morphism M from S to S’
are: %p — Mp(%p) for all p € P, where %p matches terms of type u(p) (and in
particular, %n matches terms of type n for n € N); and %M, (%p) — M, (%p)
for all p € P. The translation of an S database B to a S’ database, denoted
M(B), is obtained by successively applying* the rewrite rules of M to B, and
evaluating any SP-sorted terms in D. The same procedure may be applied to
substructures By of S databases, for the result of which we write M, (By), where
By has type n; we may also drop the overbar from M. Under these conventions,
M = MTop-

A schema morphism M: S — &' is correct iff M(B) conforms to S’ when-
ever B conforms to S. If (S,C) and (S',C') are constrained schemas of the same
species, then a correct morphism M : S = S’ is a constrained schema mor-
phism if B |= (S,C) implies M(B) = (§',C"). O
From now on, we shall consider correctness to be part of the definition of schema,
morphism.

Example 17. The schema morphism M: &1 — S»2 of Example 16 is obtained
by using tupling for the product constructor, and using iteration for the seman-
tic function over list elements to the list constructor. This yields the following
formulae, where B is a database conforming to S

MBib(B) = .KeBMBook(K)
MBook(K) <MTit1e (pl (K))J MYear (p2 (K))’ MAuthor (pS (K))>
MAuthor(A) = .aeAMauthor(a)
Mautnor (@) = &fname(a) e &1name(a)
4 Because of the form of morphisms, this process is necessarily terminating and
Church-Rosser, and hence (by a basic theorem of term rewriting theory) always
produces a unique result.
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where @ is the iterated list insert operation, and where %s are omitted from
%M operations on the right sides. Putting all the formulae together yields the
following master formula,
Maip(B) = Okep(p1(K),p2(K), ®,cpy(k)p1(a) @ p2(a)) .

Note that the variables K, A, a do not strictly speaking occur in this formula, but
are just part of a conventional notation for iterators. The last formula can be used
directly to translate databases in the S; format to databases in the So format.
It is unfortunate that the formula looks so complex, because for the higher level
types Book and Author, all it does is copy over and rebuild structures; the only
changes are for the type author. But as with queries, although this notation is
not so good for users, it is good for theory, and our SCIA tool, briefly described
in Section 3.7, provides a very nice graphical interface for helping users define
schema morphisms that avoids complex notation. O

Example 18. The morphism M below removes year data from bibliographic
databases that conform to the schema of Example 6; it raises an interesting
issue, which we then show how to resolve.

MBib(B) = .KEBMBook(K)

MBook(K) = <MTit1e (pl (K)), MAuthor (p3 (K)))
Miitie (T) =T

MAuthor(A) =A

MYear(Y) =Y

One might think the last equation is not needed, because year data is not being
translated. But the definition of schema morphism requires that M be a total
function on N, so something must be done. However, this raises another problem,
because the definition of morphism requires Mye..(Y) to be a term of a sort in
the target schema. A simple solution to this dilemma is to add Year to the
target as an unreachable name, with S'(Y') = Int; the resulting schema is then
r-equivalent (see Definition 13 just below) to the original, and M is a constrained
schema morphism for it. O

Definition 13. Two schemas of the same species are r-equivalent iff they are
equal as functions when restricted to their reachable names. O

Proposition 1. Every schema §: N — T(N) is r-equivalent to a unique reach-
able schema §: N, — T(N,), and r-equivalent schemas have exactly the same
databases. O

We say that schema morphisms (of the same species, between the same
schemas) are translation equivalent iff they define the same transformation
on databases. The following makes available many powerful concepts and results
from category theory:

Theorem 1. For a given species, its schemas and its schema morphisms modulo
translation equivalence form a category, where the identity morphism 15 on §
is given by (15)»(%n) = %n, and where the composition of morphism M: P —
Ts,s with M': P' = Ts/ g has index set Q = P& P’ (disjoint union), and is
defined by
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(M;M"), =M, forpe P

(M; M)y = M,, for p' € P’
Let Sch(D,P,R) denote the category of all schemas of the species (D,P,R). O
The proof is straightforward, but note that the identity laws would fail with-
out translation equivalence. Due to the generality allowed for R, the categories
Sch(D,P,R) do not necessarily have colimits, although the familiar practical
cases admit finite colimits.

Theorem 1 immediately gives the following: schemas §; and S» are isomor-
phic if there are morphisms M: S; = Sy and M': Sy — S; such that M; M’
and M'; M are both (translation equivalent to) identity morphisms. For exam-
ple, 81,82 of Example 16 are not isomorphic, because S; has more structure. As
an exercise, the reader might find the compositions M; M’ and M'; M of the
morphisms in Example 16; one is an identity, the other is not. Schema isomor-
phism is structural equivalence (in the sense of programming language theory).

It cannot be expected that every kind of constraint can be translated by
schema morphisms, even for relatively familiar and simple species. For example,
the morphism in Example 18 that drops year data from the bibliographic schema
of Example 6 cannot preserve the constraint that there cannot be two books with
the same title and authors in the same year (this constraint might be used to
force new editions of a book to be at least one year later).

Theorem 1 also provides the correct notions of product, sum, and more gen-
erally, limit and colimit, for schemas. All these concepts apply to any species of
schema, and colimits give an elegant and extremely general notion of heteroge-
neous schema integration.

Definition 14. Given a species of schema, a family of constraints for schemas
of that species is translatable iff for any morphism M: S — S’ and any
constraint set C of that family for S, there exists a constraint set C' of that
family for S’ such that for any database B of S, we have B =5 C iff B' s/ C'
where B’ is r-equivalent to M(B). An effective translatable constraint family
includes an effective procedure for computing C' from M and C, in which case
we may write M(C) for C'.

A translatable constraint family is composable iff whenever C is a constraint
set of that family for M and M': &' = §", then M'(M(C)) and (M; M')(C)
are semantically equivalent, in the sense that a S” database B" satisfies one iff
it satisfies the other. A constraint family is a suitable family for a species iff it
is composable and effective translatable. A constrained species consists of a
schema species (D, P, R) plus a suitable family F of constraints for that species,
written (D, P, R, F); a constrained schema of constrained species (D,P,R,F)
is a constrained schema over (D, P,R) that uses only constraints from F. O
Theorem 2. The constrained schemas of a given constrained species form a
category under the composition of Theorem 1. O
For constrained schemas, isomorphism implies that the constraint sets are se-
mantically equivalent. An interesting research programme is to determine what
constraint families are suitable for various important schema species. The fol-
lowing is a beginning:
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Theorem 3. Data integrity constraints are a suitable family for the essential
XML schema species with simple schema morphisms. O

Constraints for the relational species have been studied in many papers,
including [32, 38, 30], and it seems that results in [30] can be lifted from the level
of database translations to that of schema morphisms, and given an elegant
formulation with final morphisms in a 2-category of schemas, though details will
have to wait for a future paper.

3.7 A Schema Morphism Tool
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Fig. 1. Overview of the Mapping Process

Our laboratory at UCSD is designing and buiding a GUI-based interactive tool
called sci1a, for translating, integrating and querying data with associated DTD
or XML Schema metadata [36,42]. Since experience shows that fully automatic
schema morphism generation is infeasible, SCIA attempts to minimize total user
effort by identifying critical decision points, where a small user input can yield
a large reduction of future effort. More precisely, a critical point is where a
core context has either no good matches, or has more than one good match,
where core contexts are the most important contextualizing elements for tags
within their subtrees [42]; core contexts are determined by heuristics and/or user
input, and typically have a large subtree. In interactive mode, the tool solicits
user input at critical points, and iterates until both the user and the tool are
satisfied; in automatic mode, it does just one pass using default strategies.
Each pass has five steps: linguistic and data type matching; structural match-
ing; context checking; combining match results; and view generation. Figure 1
depicts the mapping process for one source and one target schema. Other tools
only do schema matching, and in fact, only find the easiest matches, leaving
the most difficult matches for the user to do by hand [39]; semantic functions
and conditions are not treated, or else are left for the user to supply using a
different view generation tool, whereas our tool integrates all these features. A
major experimental result is that using critical points can significantly reduce
total user effort [36]. As far as we know, SCIA is the only tool to support complex
matches having semantic functions and conditions, as well as the only tool to
utilize critical points. Planned extensions to SCIA are discussed in Section 5.
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4 Institutions, Ontologies and Heterogeneous Integration

Institutions arose in computer science in response to the explosion of logics
being used there, and the desire to do as much theoretical computer science
as possible, independently of the choice of logic [20]. In particular, a general
collection of operations for structuring theories was developed for applications
to modularization in languages for specification, programming, and knowledge
representation, which also applies to ontologies [14,15,28, 25, 18].

Institutions axiomatize the notion of logical system by extending Tarski’s idea
that the satisfaction of a sentence by a model is fundamental. The extension
parameterizes models, sentences, and satisfaction over signatures, rather than
assuming a single fixed signature, as Tarski did. Institutions can be seen as
a theory of truth and proof that is relativized by context, where contexts are
represented by objects in the category of signatures; these need not be anything
like the signatures used in logic, since they can come from any category at
all. Institutions have been successfully applied to give semantics for powerful
module systems [25], and to multi-logic specification languages [10], as well as to
databases [1, 18], and to behavioral types and semantics for the object paradigm
[21,16]; a recent programme of Diaconescu seeks to generalize as much classical
model theory as possible, e.g., Craig interpolation [11] and Beth definability.

This section uses institutions for two main purposes: to handle the hetero-
geneity of logics used for ontologies, and to handle translation and integration
of databases over heterogeneous schema species. Section 4.3 discusses ways at-
tach ontologies to databases. The machinery is a bit heavy, but the resulting
generality is great, and the applications important.

4.1 Institutions and their Morphisms

An ontology is just a theory over a logic, i.e., a set of sentences in that logic.
Integrating ontologies raises issues analoguous to those discussed in Section 2.1:
Morphisms of ontologies over a single logic are well enough understood, so that
co-cones and colimits of ontologies can be used (see [1-3,18]), but to integrate
ontologies over different logics, the notion of logic must be formalized, along
with morphisms of theories over different logics, for which morphisms of logics
are also needed. Such issues can be addressed using institutions. Here is the
formal definition, in which Set denotes the category of sets and functions:

Definition 15. An institution consists of an abstract category Sign of signa-
tures, a functor Sen: Sign — Set for sentences, a functor Mod: Sign°® — Set
for models, and a satisfaction relation =y between models and sentences such
that for every signature morphism f: X — X', we have f(M) Ex e iff
M k5 f(e), for every X-model M and every X'-sentence e, where f(M) abbre-
viates Mod(f)(M) and f(e) abbreviates Sen(f)(e). O

This version of the institution notion does not include proofs. However, it is
natural to consider proofs as morphisms of sentences, so that the target of Sen
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becomes the category Cat of small categories. Similarly, homomorphisms of mod-
els can be included by letting the target of Mod be Cat. More detail can be found
in [20] and especially [35].

Example 19. Equational logic as described in Section 3.1 is a relatively simple
institution: its signatures are as defined there; its X-sentences are X-equations;
its models are X-algebras; and satisfaction is as described there. First order logic
is quite similar: for the simplest unsorted case with only predicates, signatures are
sets of predicate symbols with their arities, X'-sentences are the usual first order
sentences over Y, Y-models are the usual first order structures, and satisfaction
is the usual Tarskian semantic truth. See [20] for details of these and several
other institutions for formal logics. O

A careful argument that every logic can be represented by an institution is given
in [35]; because in general more than one institution represents a given logic,
a notion of logical equivalence of institutions is also an important part of that
development. Institutions arise from databases in several different ways, some
of which are described in [19]. The following is the most straightforward in the
context of this paper:

Theorem 4. Given a schema species, an institution is formed with the schemas
S of that species as signatures, with a class of suitable constraints as S-sentences,
with S-databases as S-models, and with satisfaction as in Definition 10. O

In database theory, schema mappings and the database translations that they
induce go in the same direction. Because this is opposite to what institutions do,
we use the opposite of the category of sets for the target of the model functor
in the institution of Theorem 4 (technically, this gives a “variant institution”
in the sense of [24])%. For databases, institutional duality between sentences
and databases was first discussed in [1], but Theorem 4 is more precise and
more general, and differs from [1] in that its constraints and databases are both
covariant.

The following allows us to treat ontologies over arbitrary logics, and also
provides some very useful further concepts:

Definition 16. A theory over an institution Z is a pair (X, E) where E is a
set of X-sentences. A ¥-model M satisfies (X, E) iff M =5 e for all e € E.
The model class of a theory (X, E)* is the class of all models that satisfy that
theory, and the theory M* of a class M of models is the class of all sentences
that are satisfied by all models in M. This situation is a Galois connection,
which gives us notions of closed theory, i.e., such that (X, E)** = (X, E), and
closed model class.

A theory morphism (X,E) — (X', E') over 7 is a signature morphism
f: ¥ — X' such that f(E) C E™**. O

The following is an important result from [20]:
Theorem 5. Theories and their morphisms over a fixed institution Z form a
category denoted Th(Z), which has whatever colimits Sign has.

5 Essentially all properties of institutions carry over to variant institutions, but the
details are a bit technical and are omitted here.
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A significant benefit of this result is a powerful method for structuring ontologies
into modules, including inheritance and sums of modules, shared submodules,
and (most usefully) modules parameterized by other modules, in the style made
popular by the ML programming language, but originating in the Clear spec-
ification language [9], and further developed under the name parameterized
programming [14]; such features are important for structuring large and/or
complex theories (or programs) to better support reuse and reasoning.

In order to get the same powerful module system for ontologies over het-
erogeneous logics, we need to be able to translate between different logics. The
following provides a basis for this:

Definition 17. An institution morphism from 7 to Z' consists of a functor
&: Sign — Sign' and two natural transformations, ax: Sen(X) — Sen'/(®(X))
and By : Mod'($(X)) = Mod(X), such that M' =g (5 ax(e) iff Bo(M') Ex e,
for all signatures X of Z, all #(X)-models M’ of 7', and all X-sentences e of Z. An
institution 7 is a subinstitution of another 7' if & and each ax are inclusions,
and the Sy are forgetful functors. Institutions with institution morphisms form
a category, denoted Ins. O

Several other notions of institution morphism, and properties of the resulting
categories, are discussed in [24].

4.2 Heterogeneous Integration

Situations in which one kind of structure is indexed by another are common
in mathematics, computer science, and their applications, and are the essence
of many information integration problems. Alexander Grothendieck developed a
very general way to deal with this kind of structural heterogeneity, as part of his
brilliant reformulation of algebraic geometry into the language of category the-
ory, in order to solve a number of important outstanding problems. “Structures”
are of course formalized by categories with their structure-preserving morphisms,
and indexing is given by a functor F': I°? — Cat. Grothendieck flattening
turns an indexed family of categories into a single category. This is an elegant
and very general way to deal with the many kinds of heterogeneity that can be
considered to arise from an indexed family, which is a functor F': 1°? — Cat,
assigning to each object ¢ in the index category [ a structure represented by the
category F (7).
Definition 18. The Grothendieck category of an indexed family F': [°? —
Cat, denoted Gr(F), has as its objects pairs (i, A) where 7 is an object in | and A
is an object in F'(i), and has as its morphisms (i, A) — (i', A") pairs (f, h) where
f:i—id inland h: A — F(f)(A") in F(i); we call such morphisms hetero-
morphisms. Given also (f',h'): (i',A") — (i", A"), define the composition
(£, h); (f', 1) = (i, A) = (i, A") to be (f; f', b; F(f)(R')). O
It is easy to check that this gives a category. Several useful results about col-
imits and limits in Grothendieck categories® are given in [41], although a better
exposition is given in Section 2.1 of [24].
5 Gray [31] gives the basic results for a much more general notion of indexed category,
but this extra complexity is not needed for this paper.
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Example 20. As a first application of Grothendieck flattening, we build the cat-
egory of all algebras over all signatures; for simplicity, we treat only the unsorted
case. The index category [ is the category ASign of algebraic signatures, which
consist of a set X of operation symbols with an arity function a: ¥ — w (where
w is the set of natural numbers), and where a morphism from X to X' is a
function f: X — X' such that o/(f(0)) = a(o) for all 0 € X. Now let F(X) be
the category Alg(X) of all X-algebras with X-homomorphisms. The reader may
check the functoriality of F': ASign°® — Cat.

Then an algebra heteromorphism, or cryptomorphism, (X, 4) — (X', A)
is (f,h) where f: X — X' and h: A — F(f)(A") in Alg(X). It is not difficult,
using general results (relatively easy expositions are given in [41,24]) to show
that Gr(Alg) has both limits and colimits; this allows integrating algebras over
different signatures. O

Similarly, we can deal with the logical heterogeneity of multiple institutions with
the following Grothendieck theory construction, which simplifies [10]:

Definition 19. Given a category O of institutions, let GTh(0O) have objects
(Z,X,E) where T isin O and (X, E) is a theory of Z, and have morphisms from
(Z,X,E) to (I', X', E') consisting of an institution morphism (¢,a,3): Z — T’
in O and a signature morphism f: X' — &(X) in Z' such that E C ax(f(E'))**.
Composition is defined as for heteromorphisms in the general Grothendieck flat-
tening construction, making GTh(OD) into a category. O

In fact, GTh(O) is the Grothendieck category of the theory functor Th: O —
Cat; it is also the theory category of the Grothendieck institution [10] of O
viewed as a diagram, i.e., a (contravariant) functor from a small category to the
category of institutions. The Grothendieck institution of [10] is a remarkable
construction of a single institution from an indexed family of institutions; its
category of signatures is the Grothendieck category of the indexed category of
signatures of the institutions involved, and similarly for its models and sentences.
The Grothendieck institution construction also tends to lift significant logical
properties from individual institutions to the whole, e.g., Craig interpolation [11].
If O satisfies some reasonable conditions, then GTh(O) is cocomplete (because it
is the theory category of an institution, or more directly, using methods in [24,
41)).

We are now in a position to apply Grothendieck constructions to our abstract
database theory. The first step is to extend Theorem 2 to all the schemas and
databases of a given species, using some suitable class of constraints:

Theorem 6. Applying the Grothendieck theory construction to the categories
of Theorem 2 using schema morphisms over a given schema species yields a
category of all suitably constrained schemas over that species. O

We can also apply the construction of Definition 19 to the institutions of Theo-
rem 4, to obtain an heterogeneous institution of constrained schemas over con-
strained species. To further extend integration to all possible species, we need
the following;:
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Definition 20. Given schema species (D,P,R) and (D',P',R'), a species
morphism (D,P,R) — (D',P',R') consists of an injective algebra hetero-
morphism D — D' and a theory morphism P — P’ such that for any function
f: N— N' ift € T(N) and” R(n,t) then R'(f(n),t'), where ¢ is the image in
T'(N") of t under the map T(N) — T(N') induced by the maps D — D' and
P — P’ (this exists because T(N) is the initial algebra generated by D, P and
N). O

It is not difficult to check the following:

Proposition 2. Species with species morphisms form a category. O

Definition 21. Given constrained species (D,P,R,F) and (D',P',R',F) a
morphism consists of a species morphism (D,P,R) — (D',P',R') plus an
effective procedure for translating F constraints to F' constraints. O

Theorem 7. Applying Grothendieck flattening to the categories of Theorem
6 using schema species morphisms, yields a category of suitably constrained
schemas over all species. O

Now we can use colimits of co-cones (i.e., co-relations) for the global-as-view case,
or limits of cones for the local-as-view case (see Section 2.1 for these concepts),
to integrate schemas of heterogeneous species, which are pairs (£,S), where S is
a schema of species £. The index category is the category of all species with their
morphisms. By using the Grothendieck institution construction instead of the
Grothendieck theory and flattening constructions, we could get an institution
with heterogeneous databases as well as heterogeneous schemas, but we have
preferred to avoid the technicalities that would be required for this.

An alternative approach to ontology semantics, e.g., in [33], uses the infor-
mation® flow theory of Barwise and Seligman [2], with its classifications, info-
morphisms, and local logics. However, classifications are actually a special case
of institutions, where the category of signatures has just one object and one
morphism, sets of tokens are models, types are sentences, classification is satis-
faction, and the infomorphisms are institution (co)morphisms. Moreover, local
logics form a pleasant institution with classifications as models. See [19, 18] for
details, including a number of new results about information flow theory that
arise from using a categorical framework.

4.3 Ontologies for Databases

The motivation for attaching an ontology to a dataset is to enable more powerful

query and integration capabilities for that data; this can be done in several

different ways [19, 8]. Perhaps the simplest are based on the observation that

ontologies can be seen as schemas; this also can be done in several ways, as

illustrated in the following:

T Recall that R(n,t) means that ¢ is admissible for n under R.

8 The Barwise and Seligman [2] use of the word “information” is consistent with their
realist position, that information exists independently of human beings, whereas this
paper takes a constructivist position and therefore uses the word “data.”
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Ezample 21. A schema S: N — T(N) of a given species can be extended with
an ontology, by adding to N new constants OntoData, Onto, and BRel; for 7 =
1,..., M, letting OntoData be the new top, renaming the old top of S to Data,
and adding the following to the definition of S,

S(OntoData) = Onto x Data
S(0nto) = BRel; X ... X BRely,
S(BRel;) = Set0f(F;; X Fin)

where F;; are in SP. Note that in general this may require modifying the species
of §. Database instances of the extended schema will instantiate the F;; with
unique identifiers. This is essentially an encoding of RDF notation, and typical
BRel’s would be is_a and has_a. It is also possible to impose axioms on relations
with constraints, such as transitivity of is_a,

(VX,Y,X) is_a(X,Y) and is_a(Y, Z) implies is_a(X, Z),

where the variables X,Y,Z are of the universal (maximum) sort. A perhaps
subtle point is that axioms in ontologies are meant to be used to support the
use of reasoning, rather than to constrain what must be in the schema; that is,
axioms like the above generate “virtual” database entries, instead of requiring
that they are actually present.

RDF triples can also be encoded more directly, with

S(Onto) = Set0f(Triple)
S(Triple) = String x URI x URI

but this is less explicit about the relations involved, and also requires some way
to connect URI’s the unique identifiers in databases.

These declarations could be placed into the species from the beginning, which
would require that every database of that species has an ontology; in this case,
schema morphisms would also have to translate ontologies. We could even encode
one particular ontology into the species definition. Yet another approach is to
have a separate species of ontologies, which are then related to database schemas
by heteromorphisms. O

It is interesting to ask to what extent more expressive ontology languages
can be encoded as schemas, so that tools like SCIA can be used for ontology
integration. The full generality of institutions is certainly too great, but perhaps
one can abstractly characterize the institutions such that their theories can be
encoded as constrained schemas.

It may be interesting to notice that is_a and has_a are inherent to order
sorted algebra, and in fact have been used in our formalization of database
schemas: the subsort hierarchy is an is_a hierarchy, and the subterm relation
defines a has_a hierarchy that is correctly related to the is_a hierarchy [23].

5 Conclusions and Future Work

We are extending our SCIA tool (Section 3.7) to handle additional schema species,
such as spreadsheet, object oriented, etc. This is relatively straightforward for
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schema matching and mapping, because it is only necessary to write a pre-
processor to convert schemas into the internal form of the tool (which consists
of a tree and a graph in RDF notation). We have done this for the relational
species, but additional effort is needed for data transformation and integration,
especially writing new view generation code. A next step is to extend the tool
to make use of ontologies, using the semantics developed in this paper. We will
also explore applications to workflows.

Theoretical issues that need further investigation include the properties of
various categories discussed above, including schemas and constrained schemas
over a fixed species, and the various Grothendieck categories. It would be good
to simplify the definition of schema morphism, if possible. Relationships to ap-
proaches based on local logics [2] should also be explored further than in [19].
It would also be interesting to determine suitable constraint families for various
species of schema, under various subcategories of schema morphisms.
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