
CSE 130: Programming Languages { Principles and Paradigms Fall 2000

Problem Set 3 - Solutions

Instructor: Daniele Micciancio Nov. 15, 2000

Problem 1 (5 points)

� substitution: X = f(a; a); Y = a; Z = a;W = a; instance: g(f(a; a); f(a; a))

� the terms do not unify;

� substitutionX = a; Y = Z; V = f(a; Z);W = a; instance: f(g(a; a; Z); f(a; Z))

Problem 2 (10 points)

The trees corresponding to the fourth programs in this problems are depicted in the
pictures that follow. For simplicity we wrote \c" instead of \connected". On the
arrows, the rule that is applied together with the unifying substitution is indicated.

aa(san,Z) c(Z,bos)

c(sfo,bos)

aa(sfo,Z) c(Z,bos)

c(nyc,bos)

aa(nyc,Z) c(Z,bos)

c(bos,bos)

success

c(san,bos)

7: X=san, Y=bos

1: Z=sfo

7: X=sfo, Y=bos

3: Z=nyc

7: X=nyx, Y=bos

1: Z=bos

5: X=bos

c(san,bos)

aa(san,bos)

fail

c(san,Z1),aa(Z1,Z),aa(Z,bos)

aa(san,Z),aa(Z,bos)

aa(sfo,bos)

c(san,Z2),aa(Z2,Z1),aa(Z1,Z),aa(Z,bos)

aa(san,Z1),aa(Z1,Z),aa(Z,bos)

aa(sfo,Z),aa(Z,bos)

aa(nyc,bos)

success

c(san,Z),aa(Z,bos)

7: X=san, Y=bos

7:X=san,Y=Z

6:Z1=san

1:Z=sfo

7: X=san,Y=Z1

6:Z2=san

1:Z1=sfo

3: Z=nyc

2

fail

6:Z=san

Figure 1: Execution tree for programs 1 and 2

The following �gure contains the execution trees for programs 3 and 4. One can
observe that program 3 loops. The reason is that in order to solve the goal c(san,Zi),
rule 6 is applied and this leads to a similar goal: c(san, Z(i+1)).

c(san,Z),aa(Z,bos)

c(san,Z1),aa(Z1,Z),aa(Z,bos)

c(san,Z2),aa(Z2,Z1),aa(Z1,Z),aa(Z,bos)

c(san,bos)

...

6: X=san, Y=Z

6: X=san, Y=Z1

6: X=san, Y=Z2

6: X=san, Y=bos

aa(san,Z) c(Z,bos)

c(sfo,bos)

aa(sfo,Z) c(Z,bos)

c(nyc,bos)

aa(nyc,Z) c(Z,bos)

c(bos,bos)

aa(bos,Z),c(Z,bos) us(bos,Z),c(Z,bos) success

c(san,bos)

7: X=san, Y=bos

1: Z=sfo

7: X=sfo, Y=bos

3: Z=nyc

7: X=nyx, Y=bos

1: Z=bos

7 X:bos, Y=bos 8: X=bos
6: X=bos,Y=bos

Figure 2: Execution tree for programs 1 and 2

Problem 3 (15 points)

(a) The predicate remove is de�ned as follows:

remove(X,[X|L],L).

remove(X,[Y|L],[Y|L1]):-remove(X,L,L1).

When called on (X,L1,L2), the predicate holds true if X is in the list L1 and L2 is L1
in which the �rst occurence of X has been removed. Now, one can de�ne permute as
follows:

permuted([],[]).

permuted(X,[Y|L]):-remove(Y,X,X1),permuted(X1,L).

(b) The predicate insert, on input a number X and a ordered list Ys should return
in Zs the result of inserting X in Ys. Inserting X should preserve the order.

One can de�ne insert as follows:

insert(X,[],[X]).

insert(X,[Y|Ys],[X|[Y|Ys]]):-X<Y.

insert(X,[Y|Ys],[Y|Zs]):-Y=<X,insert(X,Ys,Zs).

(c) The predicateshu�e(As,Bs,Xs), should split the list Xs in two smaller lists of
aproximately equal size. One possible de�nition is the following (the list is split in
the list of its odd order elements and the list of its even order elements).

shuffle([],[],[]).

shuffle([X],[],[X]).

shuffle([X|L1],[Y|L2],[X,Y|L]):-shuffle(L1,L2,L).

The predicate merge should take two lists (presumably sorted), Xs and Ys, and
produce Zs which has the same elements as the union of elements of Xs and Ys and
which are sorted.

merge([],L,L).

merge(L,[],L).

merge([X|Xs],[Y|Ys],[X|Rs]):-X=<Y,merge(Xs,[Y|Ys],Rs).

merge([X|Xs],[Y|Ys],[Y|Rs]):-Y=<X,merge([X|Xs],Ys,Rs).

