CSE 130: Programming Languages Sep. 27, 2000

Lecture Notes on Operational Semantics

Instructor: Daniele Micciancio

1 Operational semantics for a language of expres-
sions

We have already studied how context free grammars can be used to formally specify
the syntax of programming languages, and also to resolve certain semantic issues, like
operator associativity and precedence, or the dangling-else problem. Of course, there
is much more to be said about the semantics of computer programs. Today we start
studying methods that can be used to formally specify the meaning of programming
language constructs.

Consider a simple imperative programming language with a Pascal/C style “for”
construct:

for v from F; to E; do S

with the intuitive meaning “execute statement S when variable v takes all values from
E; to E, (inclusive). (Here Fy, E, are integer valued expressions.) Take for example
the following program fragment:

y =0
for x from 1 to 5 do
Y = y+x;

The informal definition of the meaning of the “for” construct is enough to determine
that at the end of the computation the value of y is 15.
Now consider the similar program:

y =3
for x from 1 to y do
y = y+1;

What is the value of y at the end of the computation? There is not a unique answer to
this question. If the expression Fy = y is evaluated only once and forall at the begin-
ning of the for loop, the program terminate with y = 6, but if E; = y is re-evaluated
at each iteration the program does not even terminate! Both interpretations of the
“for” instruction are reasonable and have actually been used in real programming
languages (e.g. translate the above program in Pascal and C and try to run it. What
is the result?). Deciding wheather the test expression should be evaluated only once,



or it should be re-evaluated at each iteration is indeed a design choice, and formal
sematics can help in making these choices clear.

There are several methods to describe semantics. Today, we start with a method
called operational semantics. The idea is to describe the meaning of a computer
program showing how it is executed on an ideal computer.

Question: why to use an ideal computer instead of a real computer? There are
several reasons:

e We want the specification of the semantics to be independent of the particular
computer system that will be used to run the programs: e.g., a program written
in Java should produce the same result no matter which computer is used to
run it.

e Real computers can be extremely complex. Giving the semantics of a pro-
gramming language in terms of a real computer would not add much to our
understanding of the “meaning” of programs written in that language.

We first consider the simple language of expressions defined by the grammar:

E = T+FE|T
T w= F+«T|F
F == num(i) | (F)

where num(¢) is a token num with an attribute ¢ representing an integer value. The
computation associated to expression 5% 7+ 8/(2 + 2) is

5x7+8/(2+2) = 35+8/(2+2)
= 35+8/4
= 3542
= 37

We can think this expression as being executed (evaluated) by an idealized computer
whose internal state at any given instant is described by an expression. In general we
can model a computational device using

o A set States: the set of all possible internal states of the the computer

e A binary relation = over States that describe how the internal state of the
computer changes from one step to the other

e An input function I that specify how the program P to be executed is mapped
to the initial internal state I(P) of the computer



e An output function O that specify the result of the computation.

We call the tuple (States,=, I, O) a transition system. You can think the transi-
tion system as an infinite graph, with one node for every state, and arrows s; = s
between any pair of states (s, s9) such that s, can be obtained from s; in one com-
putational step. Given a program P we apply the input function I to obtain a node
sy = I(P) in the graph. We then follow the arrows s; = sy = --- until we reach
a node s, from which the is no outgoing arrow. The output of the computation is
O(sn)-

In the previous example, States is the set of all expressions (or subexpressions)
generated by the grammar, and we have an arrow E; = E, if expression E; can
be obtained from expression F; performing a single arithmetic operation. The input
function [ is simply the identity function: given an expression E to be evaluated, the
starting node is the one labeled with E. Following a path in the transition graph
corresponds to performing arithmetic operations, one at a time. At some point, when
all operations have been executed, we reach a node with a label num(7), and no other
operation can be performed. The result of the computation is O(num(i)) = i.

In general, for every node s there could be more than one outgoing arrow, and
a choice should be made when selecting an execution path. For simplicity, in this
course we will consider only deterministic transition systems, i.e., transition systems
where for each node s there is at most one (other) node s’ such that s = s'. If this is
the case, given a program P (e.g., an expression), there is a unique sequence of states
S1, S9, - .. such that

® S| = I(P)
® s5; = S;41 for all 7.

The operational semantics of program P is defined as the sequence of states sy, s9, . . ..
(This sequence is also called the computation associated to program P). If the
sequence is infinite, we say that P does not terminate, or loops. If the sequence
S1,---,8, is finite, and cannot be further extended (i.e., there is no s such that
Sp = §), then we say that the computation terminates and the final result is O(s,,).

We still didn’t specify how the relation = is defined. In the case of the arithmetic
expressions, we gave an informal definition saying that F; = Fj if expression Fs
can be obtained from expression F; performing a single arithmetic operation. The
relation can be formally specified by induction on the structure of the expressions
El, EQ.

For example we have that

num(i) + num(j) = num(i+ j) (1)
num(i) * num(j) = num(ix*j) (2)
num(i) — num(j) = num(i— j) (3)



num(i)/num(j) = num(i/j) (4)
(num(:)) = num(s) (5)

i.e., we can perform single arithmetic operations, or remove parenthesis from around
a number in one computational step. (We disregard for the moment the fact that
when dividing we should make sure that j # 0.) What if the expression is more
complex? Say, the expression to be evaluated in num(3) + num(7) * num(5). This
is an expression of the form E + T where £ = num(3) and 7' = num(7) * num(5).
The sum cannot be computed because one of the two operands (7") is not a simple
number. What we should do in this case is to use the above transitions to get

num(7) * num(5) = num(35)
and apply this transformation to a subexpression
num(3) + num(7) * num(5) = num(3) + num(35).

In general we can say that if 7= 7" then num(i) +7 = num(:) +7". This rule can
be compactly represented as

T=T
num(:) + 7 = num(:) + 7"

meaning that if the transition above the line is valid, then the transition below the
line is also valid.
Other rules for the above expression language are

E=F E=F
E+T=FE+T E-T=FF-T

T=T T=T

T«F=TxF T/F=>TxF
F=F F=F
num(i) * F' = num(s) * F" num(i)/F = num(i)/F"
E=F
(B) = (E")

All these rules together can be used to transform any expression E generated by
our grammar into an expression of the form num(s). In terms of the transition graph,
this means that from any node labeled with an expression, we can reach (following the
arrows) a node with label num(¢). Notice that the transition system is deterministic,
i.e., for any expression there is at most one rule that applies. Using this rules we can



give the following computation:

5%7+8/(2+2) 35+8/(2+2)

=
= 35+8/(4)
= 35+8/4
= 35+2
37

4

where at each step we have underlined the subexpression to which an basic trans-
formation has been applied. Notice that all underlined expressions matches the left
hand side of one of the transformation (1),(2),(3),(4),(5).

We now consider boolean expressions, as generated by the grammar

B := true | false
| E=E|E>FE|E<E

and extend the set States of the transition system to include also the “programs”
generated by the grammar for B. The operational semantics of boolean expressions
can be defined by the rules

num(i) = num(i;) = true (6)
num(i) = num(j) = false (if ¢ # 4) (7)
num(i) > num(j) = true (if i > j) (8)
num(i) > num(j) = false (if i < 7) 9)
num(i) < num(j) = true (if i < j) (10)
num(i) < num(j) = false (if i > 7) (11)

2 A simple imperative language

Now that we have defined the transition system for simple arithmetic and boolean
expressions, let’s move to an imperative programming language. Add the following
production to the grammar

S u= var(z):=F ||
| if B then S else S
| begin L end
| while Bdo S

L == S|S;L

where the non-terminal symbols S and L represents statements and lists of statements
respectively, and [] is the empty statements. Let’s also augment the expressions



grammar with a production
E := wvar(z)

to allow for expressions containing variables.

To define the operational semantics of this simple imperative language, it is not
enough to extend the set States with the string generated by the grammars for S and
L. In order to execute these programs we need to remember not only the program to
be executed, but also the value of all variables used in the program. This mapping
from variable names to values is called a “store”, and is usually denoted with the
letter o (sigma). You can think of the store as a two column table, containing
variable names in the left column and values (e.g., integer numbers in our example)
in the right column. If a row contains variable x on the left and integer j on the
right, than j is the value of variable x. It is convenient to represent stores as lists of
pairs, instead of using tables, e.g., 0 = [z : 5,y : 6,2 : 1] represent the store where z
as value 5, y has value 6 and z has value 1. Notice: each variable name can appear
at most once in the list. The store can also be represent as a function, e.g., o(x) = 5,
o(y) = 6, etc. If a variable “w” is not defined, then o(w) outputs a special symbol L
that represents an undefined value or error.

So, we define States as the set of all pairs (P,o) where P is a string generated
by the grammar corresponding to a program or subprogram in our language, and o
is a store, i.e., ¢ is a function from a set Names of variable names, to a set Values
of possible values for the variable. In our example Values is the set of the integer
numbers plus the special symbol L to denote undefined variables or error condition.
(e.g., L can also be used to define the result of a division by 0).

The transition system is a graph with a node corresponding to every pair (P, o).
Examples of transitions are

(if true then S else Sy,0) = (S1,0)
(if false then S; else S5,0) = (S,,0)

i.e., if the test in a conditional is the constant true, execute the “then” statement,
while if it is the constant false execute the “else” statement. Notice that in both cases
the store o does not change. If the test is a complex boolean expression, then first of
all we have to evaluate the test:

(B,o) = (B',0)
(if B then S; else S;,0) = (if B’ then S; else S, 0)

All the transitions defined for the language of arithmetic and boolean expressions
are still valid, if we add a “store” component to the state. In other words, if we
defined rule E = E' or B = B’ for the expression languages, then we define rules
(E,0) = (E',0) or (B,0) = (B',0) for the new language with statements. We only



need a new transition for the expression introduced by the new rule E ::= var(z).
The corresponding transition is

(var(z),0) = (o(x),0)

i.e., the result of evaluating expression var(z) when the store is o, is the integer value

o(x).
In all transitions that we have defined so far, the store never changes. The content
of the store can be changed using the variable assignment operation:

(var(z) := num(j),0) = ([],olj/z])

where o[j/z] is a notation for the store obtained from o changing the value of z to
J, i.e., o' = o[j/x] corresponds to the function

, ] if “X” — “y”
o'(y) = { o(y) otherwise

(Remember that we use notation [| for the empty statement.)
We still need to define rules for the compound statement (begin ... end), and the
while statement. Compound statements are easy:

(begin S end, o) = (S5,0)

i.e., if the compound statement consists of a single statement, then we can remove
the begin/end keywords. Other rules are
(S,0) = (5,0
(begin S;L end,o) = (begin S';L end,c’)

(begin [|; L end, o) = (begin L end, o)

i.e., if the compound statement contains more than one statement, then we should first
execute the first statement. Once the first statement has been completely executed
(i.e., it has been transformed to the empty statement []), then we should go on to the
other statements in the list.

Finally we can use the semantic definition of the if/then/else and begin/end con-
structs do define the semantics of while as follows:

(while B do S,0) = (if B then begin S;while B do Send else [],0)

For an example of use of this operational semantics to compute the meaning of a
program in this language, see last section.



3 The FOR operation

We now show how the operational semantics method can be used to specify un-
ambiguously the meaning of a new instruction. Extend our language with a FOR
instruction:

S ::= for var from F to E doS

We have seen in the first section that there are several possible interpretation
for this construct. In this section we give a possible semantics corresponding to the
case where expressions are evaluated only once. The transition relation for the for
instruction is defined as follows:

(E,o0) = (F',0)
(for var(z) from E to F; do S,0) = (for var(z) from E’ to F; do S, 0)

(E,0) = (F',0)

(for var(z) from num(i) to E do S,0) = (for var(z) from num(i) to E' do S, o)

(for var(z) from num(i) to num(j) do S, o)
= (begin var(z) := num(:); while var(z) < num(j) + 1 do
begin S;var(z) := var(z) + 1 end end, 0)

The first rule says that we should first evaluate the first expression. The second
rule says that once the first expression is evaluated, we should evaluate the second
one. The third rule shows how the “for” instruction can be translated into a “while”,
once the expressions have been both evaluated.

Defining the other possible semantics for the “for” instructions if given as an
exercise.

4 An example

We conclude with an example. Consider the program

begin n := 0;
s := 0;
while n > 0 do
begin s := s+n;
n :=n-1
end
end



and let W be the program fragment

W = while n > 0 do begin s:=s+n;n:=n—1 end

so that the entire program can be compactly represented as

P =begin n:=0;s:=0;W end

The input function maps the program P to the initial state I(P) = (P, o), where
o=[n:1,s: 1]is the empty store, i.e., the store where all variables are undefined.
The operational semantics of P is:

S O I R O A U

begin n:=3;s:=0;W end,[n: L,s: 1])

begin [|;s:=0;W end,[n:3,s: 1])

begin s:=0;W end,[n:3,s: 1))

begin [|;W end,[n: 3,s:0)])

begin W end,[n: 3,s:0])

W,[n:3,s:0]) = (while n >0 do begin s:=s+mn;n:=n—1end,[n:3,s:0])

if n > Othen begin begin s:=s+n;n:=n—1end;W end else [|,[n:3,s:0])
if 3 > Othen begin begin s:=s+n;n:=n—1end; W end else [],[n:3,s:0])
if truethen begin begin s:=s+mn;n:=n—1end;W end else [|,[n:3,s:0])

begin begin s:=s+n;n:=n—1end;W end,[n:3,s:0])

begin begin s:=0+n;n:=n—1end;W end,[n:3,s:0])
begin begin s:=0+3;n:=n—1end;W end,[n:3,s:0])

(

(

(

(

(

(

(

(

(

(

(

(

(begin begin s:=3;n:=n—1end;W end,[n:3,s:0])
(begin begin [;n:=n—1end;W end,[n:3,s:3)])
(begin begin n:=n—1end;W end,[n:3,s:3)])
(
(
(
(
(
(
(
(
(
(
(
(
(

begin n:=n—1;W end,[n:3,s:3])

begin n:=3—1;W end,[n:3,s:3])

begin n:=2;W end,[n:3,s:3])

begin [;W end,[n:2,s: 3])

begin W end,[n:2,s: 3])

W,[n:2,s:3]) = (while n >0 do begin s:=s+n;n:=n—1end,[n:2,s: 3|
if n > Othen begin begin s:=s+n;n:=n—1end;W end else [|,[n:2,s:3])

if 2 > Othen begin begin s:=s+n;n:=n—1end;W end else [|,[n:2,s:3])
if truethen begin begin s:=s+n;n:=n—1end;W end else [|,[n:2,s:3])

begin begin s:=s+n;n:=n—1end;W end,[n:2,s:3])
begin begin s:=3+n;n:=n—1end;W end,[n:2,s: 3])
begin begin s:=3+2;n:=n—1end;W end,[n:2,s: 3])
begin begin s:=5n:=n—1end;W end,[n:2,s: 3])



begin begin [;n:=n—1end;W end,[n:2,s:5])

begin begin n:=n—1end;W end,[n:2,s: 3])

begin n:=n—1;W end,[n:2,s:5))

begin n:=2-1;W end,[n:2,s:5])

begin n:=1;W end,[n:2,s: 5])

begin [|;W end,[n:1,s:5])

begin W end,[n:1,s:5])

W,[n:1,s:5]) = (while n > 0 do begin s:=s+n;n:=n—1end,[n:1,s:5])

if n > Othen begin begin s:=s+n;n:=n—1end;W end else [|,[n:1,s:5])
if 1> Othen begin begin s:=s+n;n:=n—1end;W end else [|,[n:1,s:5])
if truethen begin begin s:=s+mn;n:=n—1end;W end else [|,[n:1,s:5])

(
(
(
(
(
(
(
(
(
(
(
(begin begin s:=s+n;n:=n—1end;W end,[n:1,s:5])
(begin begin s:=5+n;n:=n—1end;W end,[n:1,s:5])
(begin begin s:=3+1;n:=n—1end;W end,[n:1,s:5])
(
(
(
(
(
(
(
(
(
(
(
(
(

begin begin s:=6;n:=n—1end;W end,[n:1,s:5)])

begin begin [|;n:=n—1end;W end,[n:1,s:6])

begin begin n:=n—1end;W end,[n:1,s:6])

begin n:=n—-1;W end,[n:1,s:6])

begin n:=1—1;W end,[n:1,s:6])

begin n:=0;W end,[n:1,s: 6])

begin [;W end,[n:0,s: 6])

begin W end,[n:0,s: 6])

W,[n:0,s:6]) = (while n >0 do begin s:=s+n;n:=n—1end,[n:0,s: 6])
if n > Othen begin begin s:=s+n;n:=n—1end;W end else [|,[n:0,s: 6])
if 0 > Othen begin begin s:=s+n;n:=n—1end;W end else [|,[n:0,s: 6])

S O R T O e A e

if falsethen begin begin s:=s+n;n:=n—1end;W end else [|,[n:0,s: 6])
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and the computation terminates with final store [n : 0, s : 6]. If the output function
is O(P,0) = o(s) (i-e., the value of s at the end of the computation), the final result
is O([],[n: 0,s: 6]) = 6.

The above example show how, although the operational semantics has the advan-
tage of formally and unambiguously specifying the meaning of a program, reasoning
about a program using the operational semantics can be quite lengthy and cumber-
some. In the next lecture we will start studying a different method do define the
semantics of computer programs (called aziomatic semantics) that is more suited to
prove properties about computer programs.



