CSE 208: Advanced Cryptography Fall 2002

Problem Set 1
Instructor: Daniele Micciancio Oct. 17, 2002

Due: Thu. Oct. 31, 2002

1 Zero-Knolwedge and Simulators

In class we specified that a proof system (P, V') for a language L is Zero Knowledge if for ev-
ery (possibly cheating) probabilistic polynomial time verifier V*, there exists a probabilistic
polynomial time simulator S such that for every input in the language z € L, and every
(polynomial size) auxiliary input a, the view of the cheating verifier Viewy+[P(z), V*(z,a)]
is computationally indistinguishable from the output of the simulator S(z,a).

A similar simulator based technique was used to define secure computation of general
functions, e.g., the security of the sender in the oblivious transfer protocol. The basic ideas
of this problem applies to general secure computation protocols, but for simplicity we will
concentrate on zero knowledge proofs, as a representative example.

A question that arose in class on several occasions is: how does the simulator depend
on the verifier? We answered this question saying that “typically” there is a polynomial
time computable transformation that on input a description (the “code”) of the verifier
V*, outputs a description of the corresponding simulator S. So, consider this alternative
(seemingly stronger) definition of zero knowledge: a prook system (P,V) is “transforma-
tion” zero knowledge (XZK) if there is a polynomial time computable function 7' such
that for any probabilistic polynomial time interactive program V*, outputs another prob-
abilistic polynomial time interactive program S = T'(V*), such that for every input in the
language = € L, and every (polynomial size) auxiliary input a, the view of the cheating
verifier Viewy«[P(z), V*(z,a)] is computationally indistinguishable from the output of the
simulator S(z,a).

As a special case, we noted that the simulator can use the verifier in a black-box manner,
and this will be the case for most proof systems used in this course. Specifically we gave the
following definition: a proof system (P, V) is black-box zero knowledge (BZK) if there is a
probabilistic polynomial time oracle machine S() such that for any probabilistic polynomial
time cheating verifier V*, and for every input in the language = € L, Viewy-[P(z), V*(z)]
is computationally indistinguishable from the output of the simulator S(V") (z), when given
black-box access to V*. (As a reminder, black-box access means that S can interact with
V*, possibly fix the value of the random tape of V*, restart the program V* multiple times,
but it does not have access to the actual code of V*.)

Notice that in the definition of BZK we omitted the auxiliary input, and said several
times in class that for BZK the auxiliary input is not necessary.

In this problem you are asked to compare these notions of zero knowledge.

Part (a) [5 points] Show that ZK is equivalent to XZK. The implixation X ZK = ZK is
trivial, the interesting direction is the opposite one: show that if for every cheating verifier
there exists a simulator, then there is also an efficient transformation that on input the code
of the cheating verifier, outputs a corresponding simulator. [Hint: this implication relies in
a substantial way on the use of the auxiliary input, i.e., if no auxiliary input in included
the implication is not necessarily valid.]

Part (b) [5 points] Show that BZK implies ZK. Here the main difficulty to be overcome
is that the definition of BZK does not include an auxiliary input.

Part (c) [1000 points!] Show that ZK does not implies BZK, i.e., there are proof systems
that satisfies definition ZK, but not BZK. I do not really expect anybody to answer this, I
just wanted to let you know that BZK is a seemingly stronger notion than ZK and XZK.

2 String Oblivious Transfer

2
1

strings. In class we gave a solution for the case (f) — OT" of single bit messages. A possible
solution (for semihonest receiver) for [> 1 is to repeat the bit OT protocol ! times, and
then enforce honest behaviour adding a ZK proof that the verifier always requested the
same message in all transfers. (This should be done in a careful way, as if the proof is
performed only at the end, the sender might find out that the verifier was cheating when it
is too late.)

This solution has the undesirable effect that the communication overhead grows lienarly
with the bit length /. In this problem we consider a more efficient solution directly inspired
to the protocol presented in class. For simplicity, we consider the case of strings of length
2.

Say we want to build an (7) — OT" protocol where the messages of the sender are I-bit

This is the protocol: (The input of the sender is v11v12,v21v22, and the input of the
receiver ¢, where all variables are single bits. The receiver should ger v.1v.2, but nothing
more, and the sender should not learn ¢. The formal definition is essentially the same as
the one given in class.)

1. The sender chooses a pair (f,¢) from a family of trapdoor permutations with hard
code predicate B, and send f to the receiver.

2. The receiver chooses z and y; at random (from the domain of f, and computes y. =
f(f(x)). The values ¥,y are sent to the sender.

3. The sender computes u;; = v;; & B(f~/(y;) for i,5 = 1,2, and send them all to the
receiver.

4. The receiver outputs us ® B(f(x)) and uc & B(x).

Part (a) [1 point] Show that the protocol is correct, i.e., if all parties follow the protocol,
the the receiver outputs the right messages.

Part (b) [2 points] Show that the protocol is secure for the receiver, i.e., for every possibly
cheating sender, the views of S’ in [S’, R(0)] and [S’, R(1)] are computationally indistin-
guishable. (In fact, they should be identical.)

Part (c¢) [5 points] Show that the protocol is secure for the sender, if the receiver is
semihonest.

Part (d) [2 point] Show how to transform the above protocol to one that is secure with
respect to malicious attacks. The transformation and proof of security, using ZKPK, is
essentially the same as the one described in class. You are not required to repeat the proof
of security. Just give a description of the protocol, including a clear definition of the NP
language and underlying NP relation for which the ZKPK is given.

3 1 out of many OT

In this problem we consider another possible extension of OT protocols. Instead of selecting
1 value out of 2, the receiver chooses 1 value out of k& possible ones.

Consider the following protocol for (}) — OT!. Assume a (?) — OT" protocol is given,
(S2, R2). We use it as a subprotocol to define a protocol (S3, R3). The input to S3 is a
triplet of values vg, v1, v, where each v; is a string of length [. The input to R3 is an index
i€{0,1,2}.

1. The sender choose a string w of length [uniformly at random, and then invokes
So(vo,w) and Sa(v1 & w,ve ® w).

2. If i = 0, the receiver invokes Ry(0) = z1, R2(0) = 22 and outputs z;.
3. If i = 1, the receiver invokes Ry(1) = 21, R2(0) = 22 and outputs 21 @ 25.
(

4. If i = 2, the receiver invokes Ro(1) = 21, Ro(1) = 25 and outputs z; @ zo.
Part (a) [l points] Show that the protocol (S3, R3) is correct.

Part (b) [3 points] Show that is (S2, Re) is secure for the receiver, then also (S3, R3) is
secure for the receiver, i.e., for any two indices %,j, and any possibly cheating sender S,
distributions Viewg[S, R3(i)] and Views[S, R(j)] are indistinguishable.

Part (c) [5 points] Show that if (S2, R2) is secure for the sender, then also (Ss, R3) is
secure for the sender, i.e., for any possibly cheating receiver R, there is simulator (Q, Z)
such that for any vp,v1,v2 and auxiliary information a, Z(a,vq(4)) is computationally in-
distinguishable from Viewg[Ss(vy, v1,v2), R(a)].

Part (d) [1 point] Show how the previous protocol can be generalized to (Ilc) —OT. (Both
the protocol and proof of security generalize the one for (S3, R3). You should prove the
correctness and security of the protocol on your own to make sure your protocol is good,
but no formal proof is required for the homework.)

4 OT and secure computation
In class we gave a ad-hoc definition of security for (?) — OT protocol (S, R) as follows:

e (Security for the receiver, R — sec— OT') For every possibly cheating sender S’, distri-
butions Viewg:[S’, R(0)] and Viewg[S’, R(1)] are computationally indistinguishable
(with respect to non uniform polynomial circuits).

e (Security for the sender, S — sec — OT') For every possibly cheating receiver R', there
is a simulator (Q, Z) such that for any inputs v, v1,¢, Viewg/[S(vo,v1), R'(a)] is
computationally indistinguishable from the output of S(a,vz(q))-

An alternative way to define OT is to consider it as a special case of secure two party
computation protocol, where the function to be computed is f((vg,v1),¢) = (L,v.). Here,
we define an ideal protocol where the idealized sender I.S sends (vg,v1) to a trusted party
T, and the idealized receiver IR sends ¢ to T, and in turns T sends v, to IR and 1 to IS.
Following the general definition of security, we say that (S, R) is a secure OT protocol if

¢ (Security for the receiver, R — sec — M PC) For any adversarial sender A, there is an
ideal adversary I A such that for any input ¢ and auxiliary input a, the joint output
of Ezec[A(a), R(c)] is indistinguishable from the output of Ideal[IA(a),IR(c)].

e (Security for the sender, S — sec — M PC) For any adversarial receiver A, there is an
ideal adversary I A such that for any input vy, v1 and auxiliary input a, the joint output
of Ezec[S(vy,v1), A(a)] is indistinguishable from the output of Ideal[IS(vg,v1), I A(a)]-

In this problem we study the relation between these two definitions.

Part (a) [l point] Prove that if (S, R) is S—sec— M PC secure, then it is also S —sec—OT
secure.

Part (b) [2 point] Prove that if (S, R) is S—sec—OT secure, then it is also S —sec— M PC
secure.

Part (c) [2 point] Prove that if (S, R) is R—sec— M PC secure, then it is also R—sec—OT
secure.

Part (d) [5 point] Prove that if (S, R) is R—sec—OT secure, then it is also R—sec—MPC
secure.

