

Benefits of this approach

- SVMs operate directly on the kernel matrix
 K (basically the pairwise distance matrix)
 - Don't have to deal with complex feature space directly
 - Allows us to use complex distance functions (not limited to L₂!)
 - Training an SVM is slow for large datasets, but performs very well with small neighbourhood, few classes

- 1) Find a collection K_{sl} of neighbors using crude distance function (Like L_2) from query
- 2) Compute the "accurate" distance function on the K_{sl} samples, pick the K nearest neighbors
- 3) Compute (or read from cache) the pairwise "accurate" distance of K + {query}
- Convert pairwise distance matrix into Kernel matrix using the kernel trick
- 5) Train a multiclass SVM (DAGSVM) on the kernel matrix, label the query with this classifier.

 SMV-KNN - Analysis SVM-KNN can be viewed as a continuum 			
between SVM and KNNSmall K behaves like KNN			
• K = n reduces to an SVM			
	DAGSVM	SVM-KNN	
Training	$O(C_{accu}n^2)$	none	
Query	$O(C_{accu}#SV)$	$O(C_{\text{crude}}n + C_{\text{accu}}(K_{\text{sl}} + K^2))$	
 DAGSVM becomes intractable for large n or complex distance function SVM-KNN remains feasible given an efficient crude distance calculator, and reasonable local SVM calculation 			

