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Objective

Visual Category Recognition
Use prototype category examples, and 
measure similarity, or “perceptual 
distance” to these examples

?
?
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Why use prototypes?

Similar to human vision system
Human perception studies [Rosch, et 
al] suggest categories are defined by 
prototype similarity, not feature lists
Human category recognition scales well

Can recognize approx 30,000 objects
New categories require relatively little 
training

Why use prototypes? - cont

Emphasis on similarity rather than 
feature spaces

Allows for scaling up categories without 
additional features
Perceptual distance only need be 
defined for close enough objects
Training with few examples is possible 
by building intra-class variation into 
distance function
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Nearest Neighbor - Strengths

Nearest neighbor often outperforms 
more sophisticated techniques

Many other techniques require explicit 
high-dimensional feature space, which 
may be intractable for some distance 
functions
NN naturally scales to multiple classes
Error rate of KNN asymptotically 
approaches the Bayes optimal

Nearest Neighbor - Weakness

Dense sampling is required for 
optimal behavior

In practical applications, decision 
boundary can be jagged due to limited 
available sampling from the category 
distribution
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Nearest Neighbor – Improvements 

Attempts have been made to 
remedy the limited sample issue by 
warping the distance metric:

DANN uses LDA to weight distance 
function based on neighborhood

Nearest Neighbor - Improvements 

LFM-SVM trains a Support Vector 
Machine (SVM) on the whole data set 
to obtain a weighting
HKNN forms linear subspaces from 
neighbors and measures distance to 
these subspaces
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Using SVM locally

What if we don’t want to distort our 
distance metric?

Use SVM on a small collection of nearest 
neighbors

Support Vector Machines

SVM is a powerful method using 
hyperplanes to separate data with a 
maximum margin

Because the minimization involved in solving SVMs
only involves inner products between data points, we 
can readily use the “Kernel trick” to transform it to 
work on our defined distance metric
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Benefits of this approach

SVMs operate directly on the kernel matrix 
K (basically the pairwise distance matrix) 

Don’t have to deal with complex feature space 
directly
Allows us to use complex distance functions (not 
limited to L2!) 
Training an SVM is slow for large datasets, but 
performs very well with small neighbourhood, 
few classes

SVM – KNN   

Main Idea : Prune using NN, refine using 
SVM

Motivated from psychophysics results: humans can 
coarsely categorize fast, then take time to refine 
Combines the efficiency of NN with a simple 
distance function and the better decision 
boundaries of SVMs
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SVM-KNN – The Algorithm

1) Find a collection Ksl of neighbors using crude 
distance function (Like L2) from query

2) Compute the “accurate” distance function on the 
Ksl samples, pick the K nearest neighbors

3) Compute (or read from cache) the pairwise
“accurate” distance of K + {query}

4) Convert pairwise distance matrix into Kernel 
matrix using the kernel trick

5) Train a multiclass SVM (DAGSVM) on the kernel 
matrix, label the query with this classifier.

SMV-KNN  - Analysis
SVM-KNN can be viewed as a continuum 
between SVM and KNN

Small K behaves like KNN
K = n reduces to an SVM

DAGSVM becomes intractable for large n or 
complex distance function
SVM-KNN remains feasible given an efficient 
crude distance calculator, and reasonable local 
SVM calculation
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Distance Functions - Texture

Find the distance between textures of two 
images

Textons [Leung, Malik] – refers to image 
response to a bank of filters
Take the X2 distance between histograms of 
textons

Distance Functions – Tangent Distance

Idea from [Simard et al]:  find distance 
between manifolds representing all 
transformations of the input images

Approximate these manifolds by applying small 
transformations to images, which forms the 
tangent to the manifold at the image point.
Find the distance between the tangents.
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Distance Functions – Shape Context

Idea: quantify distances between shapes 
(from [Belongie et al])

Represent a shape as the relationships between its 
contour points by creating histograms of relative 
point locations for each point
Match points between the images, and find a 
transformation which aligns them
Measure distance by the discrepancy between the 
shapes and the amount of transformation required

Distance Functions – Geometric Blur

Blur by taking averages of geometric 
transformations about an interest point  
[Berg,Malik]

Reflects uncertainty of the effects of 
deformations or viewpoint changes points 
farther away from the point
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Results – MNIST 

Handwritten digits
60k training, 10k test 
examples.
SVM-KNN improves 
performance over NN

Results – USPS

Handwritten digits, 7291 
training, 2007 test examples.
Human error at 2.5%!
SVM-KNN is only slightly 
slower than NN
DAGSVM and HKNN can’t be 
extended beyond L2 distance.
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Results – CUReT

Database of 61 real-world 
textures
46 images for training, 46 
for testing for each texture
SVM-KNN has a slight edge 
over DAGSVM, which must 
train 1803 pairwise SVMs!

Results – Accuracy/Speed Tradeoff 

By adjusting K, SVM-KNN can be tuned for
speed or performance
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Results – Caltech 101

Images of 101 
objects, and 
background
Used texture 
distance and 
geometric blur 
features
State of the art 
performance

Summary

SVM-KNN gives a simple approach of 
achieving excellent category recognition 
results by refining local decision boundaries 
using SVM
Much more efficient than SVM, and can be 
adjusted to fine tune performance and 
speed
The distance function used can easily be 
tailored to the application
Can be viewed as a model of the 
discrimination process in biological vision


