
1

SVM-KNN : Discriminative Nearest Neighbor
Classification for Visual Category Recognition

Hao Zhang, Alexander Berg, Michael Maire
Jitendra Malik

EECS, UC Berkeley

Presented by Adam Bickett

Objective

Visual Category Recognition
Use prototype category examples, and
measure similarity, or “perceptual
distance” to these examples

?
?

2

Why use prototypes?

Similar to human vision system
Human perception studies [Rosch, et
al] suggest categories are defined by
prototype similarity, not feature lists
Human category recognition scales well

Can recognize approx 30,000 objects
New categories require relatively little
training

Why use prototypes? - cont

Emphasis on similarity rather than
feature spaces

Allows for scaling up categories without
additional features
Perceptual distance only need be
defined for close enough objects
Training with few examples is possible
by building intra-class variation into
distance function

3

Nearest Neighbor - Strengths

Nearest neighbor often outperforms
more sophisticated techniques

Many other techniques require explicit
high-dimensional feature space, which
may be intractable for some distance
functions
NN naturally scales to multiple classes
Error rate of KNN asymptotically
approaches the Bayes optimal

Nearest Neighbor - Weakness

Dense sampling is required for
optimal behavior

In practical applications, decision
boundary can be jagged due to limited
available sampling from the category
distribution

4

Nearest Neighbor – Improvements

Attempts have been made to
remedy the limited sample issue by
warping the distance metric:

DANN uses LDA to weight distance
function based on neighborhood

Nearest Neighbor - Improvements

LFM-SVM trains a Support Vector
Machine (SVM) on the whole data set
to obtain a weighting
HKNN forms linear subspaces from
neighbors and measures distance to
these subspaces

5

Using SVM locally

What if we don’t want to distort our
distance metric?

Use SVM on a small collection of nearest
neighbors

Support Vector Machines

SVM is a powerful method using
hyperplanes to separate data with a
maximum margin

Because the minimization involved in solving SVMs
only involves inner products between data points, we
can readily use the “Kernel trick” to transform it to
work on our defined distance metric

6

Benefits of this approach

SVMs operate directly on the kernel matrix
K (basically the pairwise distance matrix)

Don’t have to deal with complex feature space
directly
Allows us to use complex distance functions (not
limited to L2!)
Training an SVM is slow for large datasets, but
performs very well with small neighbourhood,
few classes

SVM – KNN

Main Idea : Prune using NN, refine using
SVM

Motivated from psychophysics results: humans can
coarsely categorize fast, then take time to refine
Combines the efficiency of NN with a simple
distance function and the better decision
boundaries of SVMs

7

SVM-KNN – The Algorithm

1) Find a collection Ksl of neighbors using crude
distance function (Like L2) from query

2) Compute the “accurate” distance function on the
Ksl samples, pick the K nearest neighbors

3) Compute (or read from cache) the pairwise
“accurate” distance of K + {query}

4) Convert pairwise distance matrix into Kernel
matrix using the kernel trick

5) Train a multiclass SVM (DAGSVM) on the kernel
matrix, label the query with this classifier.

SMV-KNN - Analysis
SVM-KNN can be viewed as a continuum
between SVM and KNN

Small K behaves like KNN
K = n reduces to an SVM

DAGSVM becomes intractable for large n or
complex distance function
SVM-KNN remains feasible given an efficient
crude distance calculator, and reasonable local
SVM calculation

8

Distance Functions - Texture

Find the distance between textures of two
images

Textons [Leung, Malik] – refers to image
response to a bank of filters
Take the X2 distance between histograms of
textons

Distance Functions – Tangent Distance

Idea from [Simard et al]: find distance
between manifolds representing all
transformations of the input images

Approximate these manifolds by applying small
transformations to images, which forms the
tangent to the manifold at the image point.
Find the distance between the tangents.

9

Distance Functions – Shape Context

Idea: quantify distances between shapes
(from [Belongie et al])

Represent a shape as the relationships between its
contour points by creating histograms of relative
point locations for each point
Match points between the images, and find a
transformation which aligns them
Measure distance by the discrepancy between the
shapes and the amount of transformation required

Distance Functions – Geometric Blur

Blur by taking averages of geometric
transformations about an interest point
[Berg,Malik]

Reflects uncertainty of the effects of
deformations or viewpoint changes points
farther away from the point

10

Results – MNIST

Handwritten digits
60k training, 10k test
examples.
SVM-KNN improves
performance over NN

Results – USPS

Handwritten digits, 7291
training, 2007 test examples.
Human error at 2.5%!
SVM-KNN is only slightly
slower than NN
DAGSVM and HKNN can’t be
extended beyond L2 distance.

11

Results – CUReT

Database of 61 real-world
textures
46 images for training, 46
for testing for each texture
SVM-KNN has a slight edge
over DAGSVM, which must
train 1803 pairwise SVMs!

Results – Accuracy/Speed Tradeoff

By adjusting K, SVM-KNN can be tuned for
speed or performance

12

Results – Caltech 101

Images of 101
objects, and
background
Used texture
distance and
geometric blur
features
State of the art
performance

Summary

SVM-KNN gives a simple approach of
achieving excellent category recognition
results by refining local decision boundaries
using SVM
Much more efficient than SVM, and can be
adjusted to fine tune performance and
speed
The distance function used can easily be
tailored to the application
Can be viewed as a model of the
discrimination process in biological vision

