Point Matching as a Classification Problem

- (1) Lepetit, Pilet and Fua. *Point Matching as a Classification Problem.*
 - (2) Lepetit, Lagger and Fua. Randomized Trees for Real-Time Keypoint Matching.

Presenter: Boris Babenko

CSE 252C

Point Matching - Why?

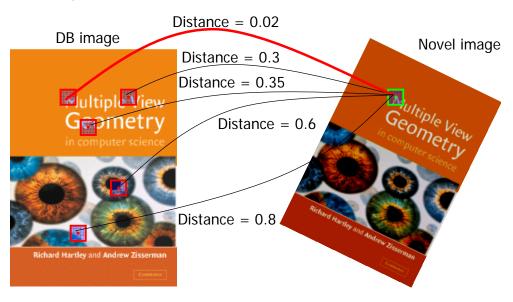
- Many computer vision problems such as tracking, pose estimation, and recognition, require the knowledge correspondences.
- Local feature matching (as opposed to global recognition via PCA, AdaBoost, etc) has been shown to be more robust with view point, scale and illumination changes, and occlusion.
- Getting correspondences is a very difficult problem.

Point Matching - How?

- Two steps:
 - Point detection: finds points or patches in the image that have saliency ("interest" points).
 - Point description: assigns a feature vector to each point
- At run time, the NNs of a point in one image are found in another image

Point Matching – How?

Example - NN



Point Matching – How?

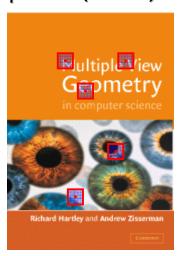
- There are many existing point detection and description algorithms.
- Some detection algorithms return not only the location of the points, but also their scale and orientation (e.g. SIFT).
- Lepetit et al. assume point locations are given (they use Harris).

Point Matching as Classification

- Instead of computing feature vectors for the points, and finding the NNs, turn point matching into a classification problem.
- Each point in the "training" image is a class.

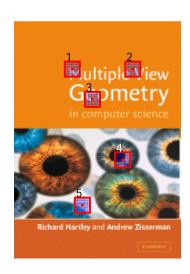
Example

- Let's say a "training image" is given.
- First detect the points (Harris):



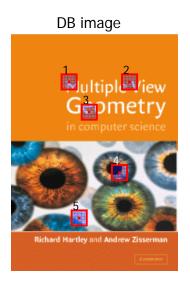
Example

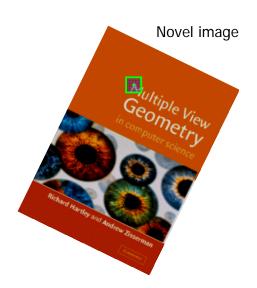
Consider each point as a class



Example

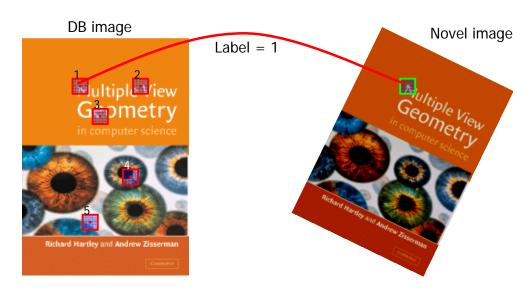
Now a novel image is presented. We detect a point in this image, and we want to assign it a label y = {-1,1,2,3,4,5}





Example

Now a novel image is presented. We detect a point in this image, and we want to assign it a label $y = \{-1,1,2,3,4,5\}$

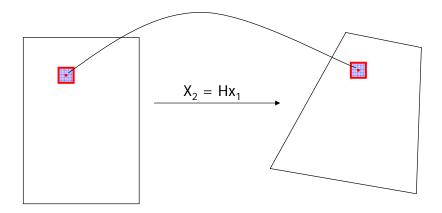


Training

- Problem: in our training data there is only one instance of each class (if there is one training image).
- Solution: synthesize more training data.
 - Planar objects: apply random homographies
 - 3D objects: create 3D model by hand, and use texture mapping to synthesize random views of the object

Training

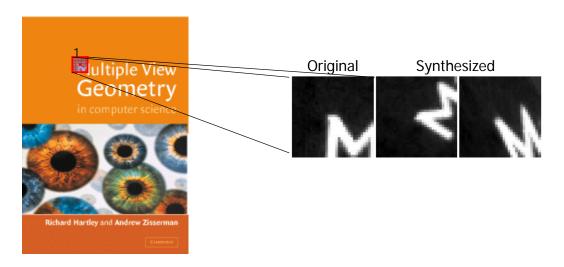
Example – planar object



Note: patches are a constant 32 x 32 pixels

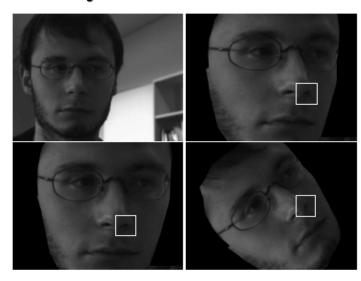
Training

Example – planar object



Training

Example – 3D object



Training

Robustness to localization error: while synthesizing more views of the patch, the location of the patch is jittered by a few pixels so that the final classifier is robust to detection errors

Training

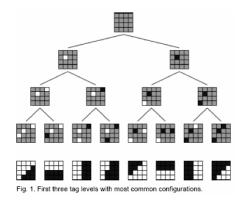
- Invariance to illumination changes:
 - Paper 1: each patch is normalized so that max and min values are the same for all patches
 - Paper 2: the features themselves are invariant to illumination changes

The Classifier

- This is where the two papers differ.
- Paper 1 (2004): Nearest Neighbor in eigenspace. Prototypes are chosen by kmeans.
- Paper 2 (2005): Randomized Trees.

Randomized Trees

Used successfully in shape classification

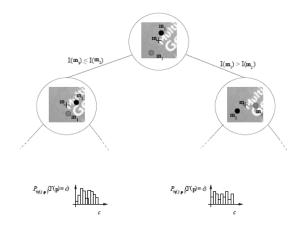


Joint Induction of Shape Features and Tree Classifiers

Yali Amit, Donald Geman, and Kenneth Wilder

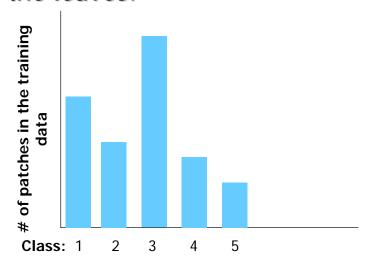
Randomized Trees

A decision tree. Each node asks a question of the form: "Is pixel (x₁,y₁) brighter than pixel (x₂,y₂)?"



Randomized Trees

At the leaves:

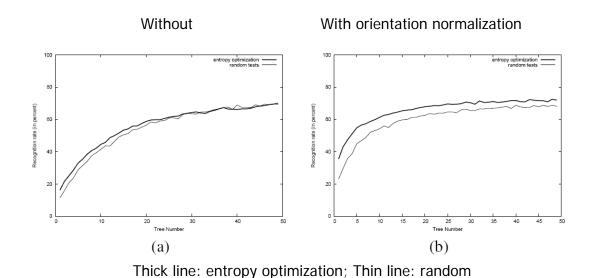


Randomized Trees

- How to build them?
 - Optimal: recursively pick the feature that has the highest expected information gain.
 - Easy/Fast: pick the feature for each node randomly

Randomized Trees

■ How to build them?



Randomized Trees

Features

$$C_2(\mathbf{m_1},\mathbf{m_2}) = \begin{cases} \text{ If } I_\sigma(\mathbf{p},\mathbf{m_1}) \leq I_\sigma(\mathbf{p},\mathbf{m_2}) & \text{go to left child} \\ \text{ otherwise} & \text{go to right child} \end{cases},$$

$$C_4(\mathbf{m_1},\mathbf{m_2},\mathbf{m_3},\mathbf{m_4}) = \begin{cases} \text{ If } I_\sigma(\mathbf{p},\mathbf{m_1}) - I_\sigma(\mathbf{p},\mathbf{m_2}) & \leq I_\sigma(\mathbf{p},\mathbf{m_3}) - I_\sigma(\mathbf{p},\mathbf{m_4}) & \text{go to left child;} \\ \text{ otherwise} & \text{go to right child} \end{cases}$$

$$C_h(u_1,v_1,o_1,u_2,v_2,o_2) = \begin{cases} \text{ If } \operatorname{Bin}(u_1,v_1,o_1) \leq \operatorname{Bin}(u_2,v_2,o_2) & \text{go to left child;} \\ \text{otherwise} & \text{go to right child.} \end{cases}$$

Randomized Trees

Features

		C_2	C_4	C_h
Title set	depth 10	60.7%	57.7%	66.6%
	depth 12	69.2%	65.1%	75.0%
	depth 15	77.0%	73.7%	82.4%
Eyes set	depth 10	72.7%	70.0%	74.5%
	depth 12	78.6%	76.1%	84.2%
	depth 15	84.7%	81.4%	84.2%

Why this method is fast

- Computation is pushed into the training stage, which is offline.
- At run time, feature vectors need not be computed for each patch in the novel image, as they do in SIFT, etc.
- How fast? Pose recovery in 200 ms on a 3 GHz machine.
- SIFT took 1 second on the same machine.

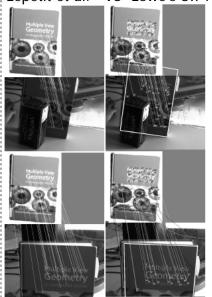
Results

- In general, the method "usually gives a little fewer matches, and has a little higher outlier rate" than SIFT.
- This is enough for RANSAC to do it's job, and it's faster!

Results – planar object

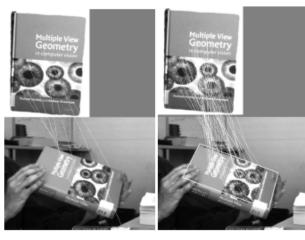


Lepetit et al. VS Lowe's SIFT Lepetit et al. VS Lowe's SIFT

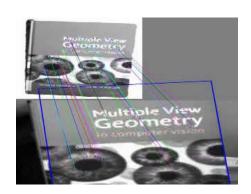


Results – planar object

Lowe's SIFT VS Lepetit et al.



Results – planar object

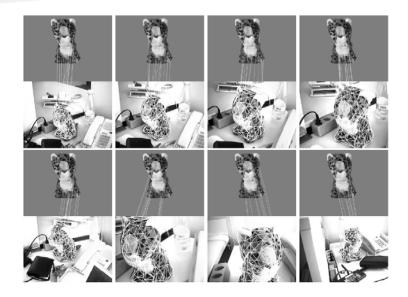


Results – 3D object

training

test

Results – 3D object



Questions?