Point Matching as a
Classification Problem

(1) Lepetit, Pilet and Fua. Point Matching as a
Classification Problem.

(2) Lepetit, Lagger and Fua. Randomized
Trees for Real-Time Keypoint Matching.

Presenter: Boris Babenko
CSE 252C

Point Matching — Why?

m Many computer vision problems such as
tracking, pose estimation, and recognition,
require the knowledge correspondences.

m Local feature matching (as opposed to global
recognition via PCA, AdaBoost, etc) has been
shown to be more robust with view point, scale
and illumination changes, and occlusion.

m Getting correspondences is a very difficult
problem.

Point Matching — How?

m Two steps:

— Point detection: finds points or patches in the
iImage that have saliency (“interest” points).

— Point description: assigns a feature vector to
each point

m At run time, the NNs of a point in one
Image are found in another image

Point Matching — How?

m Example - NN

Distance = 0.02

DB image

_ Novel image
Distance = 0.3

Distance = 0.35

=lultiple - fiews
Ge=sinetry Distance = 0.6

in computer science

e

Point Matching — How?

m There are many existing point detection
and description algorithms.

m Some detection algorithms return not only
the location of the points, but also their
scale and orientation (e.g. SIFT).

m Lepetit et al. assume point locations are
given (they use Harris).

Point Matching as Classification

m Instead of computing feature vectors
for the points, and finding the NNs,
turn point matching into a
classification problem.

m Each point in the “training” image Is a
class.

Example

m Let's say a “training image” is given.
m First detect the points (Harris):

~ultiple “liew
Geometry

in computer science

Richard Hartley and Andrew Tisserman

Example

m Consider each point as a class

~ultiple “fiew
Geometry

in computer science

Richard Hartley and Andrew Tisserman

Example

m Now a novel image is presented. We detect a point in this image,
and we want to assign it a label y = {-1,1,2,3,4,5}

DB image

Novel image

=lultiple liew
G:ometry

in computer science

Richard Hartley and Andrew Zisserman

Example

m Now a novel image is presented. We detect a point in this image,
and we want to assign it a label y = {-1,1,2,3,4,5}

DB image

Novel image
Label =1

~lultiple -fiew
G:ometry

in computer science

Richard Hartley and Andrew Tisserman

Training

m Problem: in our training data there is only
one instance of each class (if there is one
training image).

m Solution: synthesize more training data.

— Planar objects: apply random homographies

— 3D objects: create 3D model by hand, and
use texture mapping to synthesize random
views of the object

Training

m Example — planar object

Note: patches are a constant 32 x 32 pixels

Training

m Example — planar object

Synthesized

Training

m Example — 3D object

Training

m Robustness to localization error:
while synthesizing more views of the
patch, the location of the patch is jittered

by a few pixels so that the final classifier is
robust to detection errors

Training

m Invariance to illumination changes:

— Paper 1: each patch is normalized so that max
and min values are the same for all patches

— Paper 2: the features themselves are invariant
to illumination changes

The Classifier

m This is where the two papers differ.

m Paper 1 (2004): Nearest Neighbor in
eigenspace. Prototypes are chosen by k-
means.

m Paper 2 (2005): Randomized Trees.

Randomized Trees

m Used successfully in shape classification

T

;ﬁ{ - a@(“ []
B @ i @ A ﬁ =

Joint Induction of Shape Features and
Tree Classifiers
Yali Amit, Donald Geman, and Kenneth Wilder

Randomized Trees

m A decision tree. Each node asks a
question of the form: “Is pixel (x;,y;)
brighter than pixel (x,,y,)?”

Randomized Trees

m At the leaves:

data

0 # of patches in the training

lass: 1 2 3 4 5

Randomized Trees

m How to build them?

— Optimal: recursively pick the feature that has
the highest expected information gain.

— Easy/Fast: pick the feature for each node
randomly

Randomized Trees

m How to build them?

Without With orientation normalization

Thick line: entropy optimization; Thin line: random

Randomized Trees

m Features

) If I,(p,my) < I,(p,msa) go to left child
Cy(my,my) =

otherwise go to right child '

, _ If L(p,my) — I (p,my) <I,(p,ms)—I,(p.my) go to left child;
Cy(my, me, mg, my) =

otherwise go to right child.

It Bin(uq,v1,07) < Bin(ug,v9,09) go to lett child;

Cr(uq,v1, 01, u2,v2,02) =
otherwise go to right child.

Randomized Trees

m Features

' Cy Ch

depth 10 | 60.7% | 57.7% | 66.6%

Title set | depth 12 | 69.2% | 65.1% | 75.0%

depth 15 | 77.0% | 73.7% | 82.4%
depth 10 | 72.7% | 70.0% | 74.5%
Eyes set | depth 12 [7T8.6% | 76.1% | 84.2%
depth 15 | 84.7% | 81.4% | 84.2%

Why this method is fast

m Computation is pushed into the training
stage, which is offline.

m At run time, feature vectors need not be
computed for each patch in the novel
Image, as they do in SIFT, etc.

m How fast? Pose recovery in 200 ms on a 3
GHz machine.

m SIFT took 1 second on the same machine.

Results

m In general, the method “usually gives a
little fewer matches, and has a little higher
outlier rate” than SIFT.

m This is enough for RANSAC to do it’s job,
and it’s faster!

Results — planar object

Lepetitetal. VS Lowe’s SIFT Lepetit et al. VS Lowe’s SIFT

, .
' .
o : o
s Hy
ot Yot 1 O
g ' oV y i
! l

Results — planar object

Lowe’s SIFT VS Lepetit et al.

Results — planar object

Results — 3D object

training

test

Results — 3D object

Questions?

