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Point Matching Point Matching –– Why?Why?

Many computer vision problems such as Many computer vision problems such as 
tracking, pose estimation, and recognition, tracking, pose estimation, and recognition, 
require the knowledge correspondences.require the knowledge correspondences.
Local feature matching (as opposed to global Local feature matching (as opposed to global 
recognition via PCA, recognition via PCA, AdaBoostAdaBoost, etc) has been , etc) has been 
shown to be more robust with view point, scale shown to be more robust with view point, scale 
and illumination changes, and occlusion.and illumination changes, and occlusion.
Getting correspondences is a very difficult Getting correspondences is a very difficult 
problem.problem.



Point Matching Point Matching –– How?How?

Two steps:Two steps:
–– Point detectionPoint detection: finds points or patches in the : finds points or patches in the 

image that have saliency (image that have saliency (““interestinterest”” points).points).
–– Point descriptionPoint description: assigns a feature vector to : assigns a feature vector to 

each pointeach point

At run time, the At run time, the NNsNNs of a point in one of a point in one 
image are found in another imageimage are found in another image

Point Matching Point Matching –– How?How?
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Point Matching Point Matching –– How?How?

There are many existing point detection There are many existing point detection 
and description algorithms.and description algorithms.
Some detection algorithms return not only Some detection algorithms return not only 
the location of the points, but also their the location of the points, but also their 
scale and orientation (e.g. SIFT).scale and orientation (e.g. SIFT).
Lepetit et al. assume point locations are Lepetit et al. assume point locations are 
given (they use Harris).given (they use Harris).

Point Matching as ClassificationPoint Matching as Classification

Instead of computing feature vectors Instead of computing feature vectors 
for the points, and finding the for the points, and finding the NNsNNs, , 
turn point matching into a turn point matching into a 
classification problem.classification problem.
Each point in the Each point in the ““trainingtraining”” image is a image is a 
class.class.



ExampleExample

LetLet’’s say a s say a ““training imagetraining image”” is given.is given.
First detect the points (Harris):First detect the points (Harris):

ExampleExample

Consider each point as a classConsider each point as a class
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ExampleExample
Now a novel image is presented.  We detect a point in this imageNow a novel image is presented.  We detect a point in this image, , 
and we want to assign it a label y = {and we want to assign it a label y = {--1,1,2,3,4,5}1,1,2,3,4,5}
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TrainingTraining

ProblemProblem: in our training data there is only : in our training data there is only 
one instance of each class (if there is one one instance of each class (if there is one 
training image).training image).
SolutionSolution: synthesize more training data.: synthesize more training data.
–– Planar objects: apply random homographiesPlanar objects: apply random homographies
–– 3D objects: create 3D model by hand, and 3D objects: create 3D model by hand, and 

use texture mapping to synthesize random use texture mapping to synthesize random 
views of the object views of the object 

TrainingTraining

Example Example –– planar objectplanar object

X2 = Hx1

Note: patches are a constant 32 x 32 pixels



TrainingTraining

Example Example –– planar objectplanar object
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Original Synthesized

TrainingTraining

Example Example –– 3D object3D object



TrainingTraining

Robustness to localization errorRobustness to localization error::
while synthesizing more views of the while synthesizing more views of the 
patch, the location of the patch is jittered patch, the location of the patch is jittered 
by a few pixels so that the final classifier is by a few pixels so that the final classifier is 
robust to detection errorsrobust to detection errors

TrainingTraining

Invariance to illumination changesInvariance to illumination changes::
–– Paper 1: each patch is normalized so that max Paper 1: each patch is normalized so that max 

and min values are the same for all patchesand min values are the same for all patches
–– Paper 2: the features themselves are invariant Paper 2: the features themselves are invariant 

to illumination changesto illumination changes



The ClassifierThe Classifier

This is where the two papers differ.This is where the two papers differ.
Paper 1 (2004): Nearest Neighbor in Paper 1 (2004): Nearest Neighbor in 
eigenspaceeigenspace.  Prototypes are chosen by k.  Prototypes are chosen by k--
means.means.
Paper 2 (2005): Randomized Trees.Paper 2 (2005): Randomized Trees.

Randomized TreesRandomized Trees

Used successfully in shape classificationUsed successfully in shape classification

Joint Induction of Shape Features and
Tree Classifiers

Yali Amit, Donald Geman, and Kenneth Wilder



Randomized TreesRandomized Trees

A decision tree.  Each node asks a A decision tree.  Each node asks a 
question of the form: question of the form: ““Is pixel (xIs pixel (x11,y,y11) ) 
brighter than pixel (xbrighter than pixel (x22,y,y22)?)?””

Randomized TreesRandomized Trees

At the leaves:At the leaves:
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Randomized TreesRandomized Trees

How to build them?How to build them?
–– Optimal: recursively pick the feature that has Optimal: recursively pick the feature that has 

the highest expected information gain.the highest expected information gain.
–– Easy/Fast: pick the feature for each node Easy/Fast: pick the feature for each node 

randomlyrandomly

Randomized TreesRandomized Trees

How to build them?How to build them?

Without                           With orientation normalization

Thick line: entropy optimization; Thin line: random



Randomized TreesRandomized Trees

FeaturesFeatures

Randomized TreesRandomized Trees

FeaturesFeatures



Why this method is fastWhy this method is fast

Computation is pushed into the training Computation is pushed into the training 
stage, which is offline.stage, which is offline.
At run time, feature vectors need not be At run time, feature vectors need not be 
computed for each patch in the novel computed for each patch in the novel 
image, as they do in SIFT, etc.image, as they do in SIFT, etc.
How fast? Pose recovery in 200 ms on a 3 How fast? Pose recovery in 200 ms on a 3 
GHz machine.GHz machine.
SIFT took 1 second on the same machine.SIFT took 1 second on the same machine.

ResultsResults

In general, the method In general, the method ““usually gives a 
little fewer matches, and has a little higher 
outlier rate” than SIFT.
This is enough for RANSAC to do it’s job, 
and it’s faster!



Results Results –– planar objectplanar object
Lepetit et al.   VS  Lowe’s SIFT Lepetit et al.   VS  Lowe’s SIFT

Results Results –– planar objectplanar object

Lowe’s SIFT   VS   Lepetit et al. 



Results Results –– planar objectplanar object

Results Results –– 3D object3D object
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test



Results Results –– 3D object3D object

Questions?Questions?


