BoostMap: A Method for Efficient Approximate Similarity Rankings

Vassilis Athitsos, Jonathan Alon, Stan Sclaroff, and George Kollios CVPR'04

Presenter: Boris Babenko CSE 252C, FALL2006

The Problem

- For any general recognition task, there is usually a database of labeled images
- When a novel image is seen, a distance is computed between this image and every image in the database.

The Problem

- The distance function can be anything! Can be non-metric, bizarre, etc.
- Each query requires *n* distance calculations for a database of size *n*.
- What if the distance function is very complicated and expensive computationally?

The Solution: BoostMap

- BoostMap is a method that can reduce the number of expensive distance calculations down to some d << n</p>
- It works for ANY distance function

Formalities

- Let X be a set of objects, and $D_X(x1,x2)$ be a distance measure between objects of this set.
- Let (q, x1, x2) be a triplet of objects from the set
- Define the Proximity Function $P_X(q,x1,x2)$

$$P_X(q, x_1, x_2) = \begin{cases} 1 & \text{if } D_X(q, x_1) < D_X(q, x_2) \\ 0 & \text{if } D_X(q, x_1) = D_X(q, x_2) \\ -1 & \text{if } D_X(q, x_1) > D_X(q, x_2) \end{cases}$$

Formalities

- Suppose we had an embedding F: X -> R^d
- Let P_R be proximity function of F(X) that uses some metric distance D_R (e.g. L_1 , L_2 , etc)

$$P_{\mathcal{R}}(q, x_1, x_2) = \begin{cases} 1 & \text{if } D_{\mathcal{R}}(q, x_1) < D_{\mathcal{R}}(q, x_2) \\ 0 & \text{if } D_{\mathcal{R}}(q, x_1) = D_{\mathcal{R}}(q, x_2) \\ -1 & \text{if } D_{\mathcal{R}}(q, x_1) > D_{\mathcal{R}}(q, x_2) \end{cases}$$

Formalities

■ Define a Proximity Classifier $\overline{F}(q,x1,x2)$

$$\bar{F}(q, x_1, x_2) = P_{\mathbb{R}^d}(F(q), F(x_1), F(x_2))$$

• We want \overline{F} to output the same thing as P_X

Computing Error

■ For a single triple (q,x1,x2)

$$G(\bar{F}, q, x_1, x_2) = \frac{|P_X(q, x_1, x_2) - \bar{F}(q, x_1, x_2)|}{2}$$

■ For all your data

$$G(\bar{F}) = \frac{\sum_{(q,x_1,x_2) \in X^3} G(\bar{F}, q, x_1, x_2)}{|X|^3} .$$

How do we get the embedding F?

- Let's think about simpler embeddings F: X-> R
- Generate many random simple embeddings and throw them into AdaBoost
- Our final embedding will be a linear combination of the simple embeddings

1D Embeddings

Use a reference object r

Classifies 46 out of 60 triplets correct. Incorrect: (b, a, c); (c, b, d); (d, b, r)

1D Embeddings

Use "pivot points"

Boost 1D embedding

- How many people are not familiar with boosting?
- Use training data (which can be generated by using the original distance function D_x)
- AdaBoost outputs a set of d 1D embeddings, and a weight for each.

Final BoostMap Embedding

- Weghted L1 distance that combines the chosen 1D embeddings and their weights.
- Suppose we chose d embeddings. To compute the embedded distance between X_u and X_v :

$$D_{\mathbb{R}^d}((u_1,...,u_d),(v_1,...,v_d)) = \sum_{j=1}^d (\alpha_j |u_j - v_j|) .$$

What do we end up with?

- An embedding $F: X \rightarrow \mathbb{R}^d$ which uses up to 2d reference objects.
- \blacksquare A weighted L1 metric in this \mathbb{R}^d space.
- We know that the embedding in some sense preserves the proximity.

At Run-time

- Suppose we want to compare object *Q* (query) to objects *X1, X2... Xn* in the DB.
- Need to compute d embeddings of Q: O(d) calls to D_x
- Compute weighted L1 distance between Q and X1, X2... Xn much cheaper than computing D_x n times.

Does it work?

Hand experiment

Original distance measure: Chamfer distance (takes 260s to query)

Does it work?

Hand experiment

ENN retrieval accuracy and efficiency for hand database					
Method	BoostMap		FastMap		Exact D_X
ENN-accuracy	95%	100%	95%	100%	100%
Best d	256	256	13	10	N/A
Best p	406	3850	3838	17498	N/A
D_X # per query	823	4267	3864	17518	107328
seconds per query	2.3	10.6	9.4	42.4	260

Questions?