BoostMap: A Method for
Efficient Approximate
Similarity Rankings

Vassilis Athitsos, Jonathan Alon,
Stan Sclaroff, and George Kollios
CVPR'04

Presenter: Boris Babenko
CSE 252C, FALL2006

The Problem

m For any general recognition task, there is
usually a database of labeled images

m When a novel image is seen, a distance is
computed between this image and every
image in the database.

The Problem: an illustration

database

RS 1101
aueny ne d\sta“ce N ue. = 1
SO s

The Problem

m The distance function can be anything!
Can be non-metric, bizarre, etc.

m Each query requires » distance
calculations for a database of size 7.

m What if the distance function is very
complicated and expensive
computationally?

The Solution: BoostMap

m BoostMap is a method that can reduce the
number of expensive distance calculations
down to some d << n

m It works for ANY distance function

Formalities

m Let X'be a set of objects, and D,(x1,x2) be a distance
measure between objects of this set.

m Let (g x1,x2) be a triplet of objects from the set
m Define the Proximity Function P,(qg,x1,x2)

I 1 Dx(q,21) < Dx(q,x2)
Px(q,z1,29) = 0 ifDx(q.x1) =Dx(q.ax2)
I 1 Dx(q,2z1) > Dx(q,x2)

Formalities

m Suppose we had an embedding F- X -> R

m Let P, be proximity function of ~(X) that
uses some metric distance D, (e.g. L,, L,,
etc)

L 1 Dr (g, 1) < Dr (g, x2)
Fr (g, 21, 29) = 0 1D, (q.21) = D, (q.22)
L 1 Dr (g, 1) > De (g, x2)

Formalities

m Define a Proximity Classifier F(g,x1,x2)

F(q,21,22) = Ppa(F(q), F(x1), F(x2))

m We want £ to output the same thing as Py

Computing Error

m For a single triple (g x1,x2)

(?(F.g.::'-,.:rg)

2

m For all your data

Z(q.:l‘l.:z‘Q)EXB G(F: q.x1,22)
‘X‘B)

G(F) =

How do we get the embedding F?

m Let’s think about simpler embeddings £~ X
= R

m Generate many random simple
embeddings and throw them into
AdaBoost

m Our final embedding will be a linear
combination of the simple embeddings

1D Embeddings

m Use a reference object r

@
) -
o0
b
LR

o
@ ¢

m Classifies 46 out of 60 triplets correct.
Incorrect: (b, a, c); (c, b, d); (d, b, r)

1D Embeddings

m Use “pivot points”

Fx,, %.(>) Dy (¢4,X%2)

Boost 1D embedding

m How many people are not familiar with
boosting?

m Use training data (which can be generated
by using the original distance function D,)

m AdaBoost outputs a set of d 1D
embeddings, and a weight for each.

Final BoostMap Embedding

m Weghted L1 distance that combines the
chosen 1D embeddings and their weights.

m Suppose we chose dembeddings. To
compute the embedded distance between
X,and X

d
(oyjluy —vy]) -
—1

DRJ(:(:UL ud). (:t‘l. t‘lf)) =

J

What do we end up with?

m An embedding F- X -> RZwhich uses up to
Zd reference objects.

m A weighted L1 metric in this /7 space.

m We know that the embedding in some
sense preserves the proximity.

At Run-time

m Suppose we want to compare object Q
(query) to objects X1, X2... Xnin the DB.

m Need to compute dembeddings of Q-
O(d) calls to D,

m Compute weighted L1 distance between Q
and X1, X2... Xn— much cheaper than
computing D, n times.

Does it work?

m Hand experiment

== Boos'lMap'“

163
> 81920~ | ~m FastMap ”
Z 4086 't { == Roligain j
% 2048 * i
S 1024+ n; 1
5 512 1
- 256} " P | n
§ 128 e 1
B 64 i 1
= 32 b - |
LS |

16 . _.i

1 2 4 8 16 32 64 128 256
number of dimensions

m Original distance measure: Chamfer
distance (takes 260s to query)

Does it work?

m Hand experiment

ENN retrieval accuracy and efficiency for hand database

Method BoostMap FastMap Exact Dx
ENN-accuracy 95% | 100% | 95% 100% 100%
Best d 256 256 13 10 N/A

Best p 406 3850 3838 [17498 | N/A

D~ # per query 823 4267 3864 | 17518 | 107328
seconds per query | 2.3 10.6 9.4 42.4 260

Does it work?

m Shape contexts

U fi]ifa]zf2]2f>

Method Distances per | Speed-up | Seconds per Error . . .
query object factor query object rate E ﬂ ﬂ
brute force 20,000 1 1232 0.63% ‘

vp-trees [24] 8594 2.3 572 0.66%
CNN [10] 1060 18.9 70.6 2.40% D

Zhang [25] 50 400 3.3 2.55%
BoostMap 800 25 533 0.74%
BoostMap-C 800 25 53.3 0.72%
Cascade 149 134 9.9 0.75%
Cascade-C 92.5 216 6.2 0.74%

Questions?

10

