Multi-Scale Contour Extraction Based on Natural Image Statistics

Francisco J. Estrada and James H. Elder Centre for Vision Research, York University

Presented by Iman Mostafavi

Problem

 Compute bounding contours of salient objects in a natural image

Input

Single vs. Multi-Scale

- Most approaches: single scale
 - Work at highest level of detail
 - "miss the forest for the trees"
- Estrada & Elder approach: multi-scale
 - Coarse to fine approach
 - Reduces complexity

Training & Test Data

Berkeley Segmentation Database

12,000 hand-labeled segmentations of 1,000 images by 30 human subjects.

Training: Test : 37 / 200 images 20 / 100 images

• At least one salient, unoccluded object contained within image bounds

• Human produced ground truth

Definitions

Sequence of tangents

Set of tangent indices for current hypothesis *s*

Set of index pairs for directly successive tangents in *s*

Observable cues (data)

Definitions

Posterior probability of the hypothesis:

$$p(s \in C^{0}|D) \ \alpha \ F(s,D) = \prod_{i \in I_{1}^{o}} p_{i}^{o} \prod_{\{i,j\} \in I_{1}^{c}} p_{ij}^{c}, \qquad (1)$$

p_i^o	Posterior probability that tangent t_i lies on an object of interest
p_{ij}^c	Posterior probability that tangents t_i and t_j are directly successive tangents on a real contour
F(s,D)	Foreground term

Definitions

$$p_i^o = \frac{1}{1 + (L_i^o P_i^o)^{-1}}$$
 and $p_{ij}^c = \frac{1}{1 + (L_{ij}^c P_{ij}^c)^{-1}}$,

$$L_{i}^{o} = \prod_{k=1}^{m^{o}} \frac{p(d_{i}^{k} | t_{i} \in T^{o})}{p(d_{i}^{k} | t_{i} \notin T^{o})} \qquad L_{ij}^{c} = \prod_{k=1}^{m^{c}} \frac{p(d_{ij}^{k} | \{t_{i}, t_{j}\} \in C)}{p(d_{ij}^{k} | \{t_{i}, t_{j}\} \notin C)}$$

 m^{o} - set of unary cues m^{c} - set of binary cues

 $d^k_i\,$ - observed value of $\,k^{th}$ unary cue at tangent t_i

 d_{ij}^k - observed value of $\,k^{th}\,$ binary cue for pair of tangents $\{t_i,t_j\}$

$$P_i^o = \frac{p(t_i \in C)}{p(t_i \notin C)} \qquad P_{ij}^c = \frac{p(\{t_i, t_j\} \in C)}{p(\{t_i, t_j\} \notin C)}.$$

Background

Unary cues measure salience of individual tangents

Compute "boundary energy" (Martin et al) at each pixel based on:

Probability distributions for boundary energy ON ground truth contours

• Brightness, color, and texture

Background

Binary cues (pairwise between two tangents) measure:

- Proximity
- Smooth continuation
- Similarity of brightness/contrast between pair of tangents

Learned from natural scene statistics (Elder and Goldberg, 2002)

Single Scale Grouping Algorithm

- 1. Start with a set of tangents
- 2. Keep a table of *M* best possible continuations for each tangent
- 3. Iteratively expand list of hypotheses

Single Scale Grouping Algorithm

Iterate:

- For each of the K current hypotheses of length I, generate a set of M expanded contours of length I + 1 by adding to that hypothesis one of the M tangents in its list of best continuations
- Remove any self-intersecting or duplicate contours
- Compute the term F(s,D) for each of the remaining hypotheses
- Sort the new set of hypotheses, and keep only the K contours with the highest F(s,D)
- · Detect and store any closed contours found among the new hypotheses

Terminate:

• When none of current hypotheses can be expanded

Evaluate:

• All closed contours sorted in order of decreasing "quality" (geometric mean of F(s,D))

Single Scale Grouping Algorithm

• Quality of a given contour determined by geometric mean of $F(s, D) = \prod_{i \in I_1^o} p_i^o \prod_{\{i,j\} \in I_1^c} p_{ij}^c$,

For contour length
$$\gamma$$
 geometric mean = $\ F(s_k|D)^{1/\gamma}$

General Idea:

- Start at coarse scale
- Refine until detailed contours achieved at finer scales

Multi Scale Grouping Algorithm

- Generate W level pyramid
- For each image, detect edges and fit line segments
- Yields W sets of tangents that are input to multi-scale algorithm

Gaussian Pyramid

- 1. Run single scale algorithm at coarsest level
- 2. The best P contours are stored and used as priors for the next scale
- 3. Run algorithm P + 1 times at next scale
- 4. Repeat until contours at highest resolution obtained

Multi Scale Grouping Algorithm

Using coarse contours as a spatial prior

Two tasks:

- Need contour representation that can be easily transported across scales
- Need to study relationship between coarse and fine scale contours to derive appropriate statistical distributions

Contour Representation:

Model contours using Fourier descriptors (See Staib, L. H., and Duncan, J. S., 1992)

- Transfers contours across scales
- Added bonus smoothes out noise and discretization artifacts

Fourier Shape Descriptors

- Generate Fourier model, project reconstruction scaled by 2X onto image at next finer scale
- Grouping algorithm should favor lines whose orientation and spatial location match projected contour

Multi Scale Grouping Algorithm

Building the Spatial Prior

- Generate Fourier model for lower resolution ground truth contours
- Project onto image of highest resolution
- Measure deviation in position and orientation between the scaled Fourier contours and the ground truth contours at the fine scale

Estimate four probability distributions

Complete run of multi scale algorithm

Comparison

Best contours extracted by several algorithms

Conclusions

- Multi scale approach outperforms single scale and other methods
 - Coarse contours capture general shape, refined until detailed contours obtained at finest scale
 - Captures complex boundaries where single scale approach fails
 - Provides robustness to texture and clutter

Room for improvement:

- Better contour quality metric than geometric mean
- Degraded performance at high resolutions
- Add global shape prior based on natural scene statistics

Questions?