CSE252C - Object Recognition - Assignment #1

Instructor: Prof. Serge Belongie.
http://www-cse.ucsd.edu/classes/fa07/cse252c
Target Due Date: Thursday Oct. 11, 2007.

1. Handwritten Digits.

- (a) Download the MNIST training and testing data from http://yann.lecun.com/exdb/mnist.
- (b) Write a utility to extract the images (of size 28×28) and labels $(0, \dots, 9)$. Use it to import the first M = 2000 training digits and the first N = 1000 testing digits.
- (c) Display the first 40 training digits together with their labels, arranged in a 4×10 array.
- (d) Compute the prior probability of each digit in the training set. Is it uniform?
- 2. Measuring Similarity/Dissimilarity.

Let $x^i \in \mathbb{R}^d$ (with $d = 28^2$) denote the *i*th training example concatenated as a column vector.

- (a) Implement the following pairwise comparison functions of the form $\mathcal{D}(x^i, x^j)$:
 - $L_p \text{ norm: } \left(\sum_{k=1}^d |x_k^i x_k^j|^p \right)^{1/p}$
 - Inner product: $(\boldsymbol{x}^i)^{\top} \boldsymbol{x}^j$

 - χ^2 distance: $\frac{1}{2}\sum_{k=1}^d (x_k^i-x_k^j)^2/(x_k^i+x_k^j)$

Each is defined for $x \in \mathbb{R}^d$ except χ^2 , which requires x to be nonnegative and sum to 1.

- (b) Compute and display the best match (using max or min as appropriate) for the first 10 training digits (excluding self matches) vs. all M training digits using L_1 , L_2 , L_∞ , and inner product (both normalized and raw). Use an asterisk to indicate errors.
- (c) Which choice of $\mathcal{D}(\cdot,\cdot)$ gave the fewest errors? Which gave the most?

3. Confusion Matrices and ROC Curves.

- (a) Compute the L_2 distance from all N testing digits to all M training digits.
- (b) Assuming a 1-nearest neighbor classifier, compute the 10×10 confusion matrix for this experiment. Display it as an image and comment on what it reveals about the classification behavior for digits such as 5 and 8.
- (c) Compute the histogram of distances for genuine matches and for impostors. Use bins of size 10 on the range 0 to 250, and normalize the histograms to sum to 1. Plot the two histograms on the same set of axes.
- (d) Plot the ROC curve for this experiment. What is the equal error rate?

4. Color Histogram Matching.

- (a) Select 10 objects from the Amsterdam Library of Object Images (ALOI) at http://staff. science.uva.nl/ \sim aloi. For each object, download two images captured by the same camera under different illumination directions; call the resulting two sets of images \mathcal{A} and \mathcal{B} . The preview thumbnail resolution of 154×115 is sufficient for this exercise.
- (b) For each of the 20 downloaded images, compute the color histogram using a color space of your choice with 15 equally spaced bins per channel.
- (c) Compute the 10×10 matrix of χ^2 distances between the color histograms from \mathcal{A} to those of \mathcal{B} . Display the distance matrix, indicating the best matching entry in each row. Comment on the performance you observe, highlighting interesting successes or failures.