CSE252C - Object Recognition - Assignment #4 Instructor: Prof. Serge Belongie. http://www-cse.ucsd.edu/classes/fa07/cse252c Due Date: Friday Dec. 7, 2007.

- 1. Experimenting with AdaBoost.
 - Use generate_data_1.m with n = 1000 to create a synthetic training and testing set.
 - Implement Discrete AdaBoost using a weak learner of your choice, and demonstrate it on the above synthetic data using 60 boosting iterations.
 - As a function of the number of iterations, plot the training error, the testing error, and the upper bound on the empirical error.
- 2. Suppose you and your homework partner obtain a dataset $\boldsymbol{x}^i \in \mathbb{R}^d$, i = 1, ..., n, from which you assemble a data matrix $X = [\boldsymbol{x}^1, ..., \boldsymbol{x}^n] \in \mathbb{R}^{d \times n}$ and compute the inner product matrix $Q = X^{\top}X \in \mathbb{R}^{n \times n}$. After you compute Q, you realize you wanted to center the data before computing the inner products, i.e., to use $\boldsymbol{x}^i \boldsymbol{\mu}$ in place of \boldsymbol{x}^i , where $\boldsymbol{\mu} = \frac{1}{n} \sum_{i=1}^n \boldsymbol{x}^i$. Unfortunately, you deleted the dataset.

Show your partner that hope is not lost, since Q', the inner product matrix for the centered data, can be obtained from Q via the expression Q' = HQH with $H = I - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}$, where $\mathbf{1}_n$ denotes a column vector of n ones.

- 3. Kernel PCA Experiment on Toy Data.
 - (a) Implement Kernel PCA using a Gaussian kernel.
 - (b) Reproduce the result in Fig. 4 of Schölkopf et al. (1999).