CSE 252C: Computer Vision III

Guest Lecturer: Lawrence Cayton
Scribes: Andrew Rabinovich and Vincent Rabaud
Edited by: Catherine Wah

LECTURE 4

Efficient NN Search: Dimensionality
Reduction and Data Structures

4.1. Introduction
4.1.1. Why NN search?

Nearest Neighbor (NN) search is a core operation that is performed in many
approaches to object recognition. Once images in the database are repre-
sented as vectors or histograms (by whatever means), one way to label the
unknown data is by comparing the novel images to the database of training
examples; if there is a image that is “close,” then it is likely to have the
sample label (i.e. be the same object).

Although NN is a very simple classification scheme, when coupled with
a proper dissimilarity measure, it often outperforms many sophisticated ap-
proaches to classification (for instance, SVM or boosting). The main draw-
back of NN, however, is its complexity, in both time and space. Brute force
NN search of a database requires a comparison of the query to all the training

I'Department of Computer Science and Engineering, University of California, San Diego.

September 20, 2009

2 SERGE BELONGIE, CSE 252C: COMPUTER VISION III

examples. In this lecture, we look at speeding up NN search by (i) reducing
the dimension of the space the database exists in, and by (ii) using spatial
data structures that allow one to calculate distances only to a portion of the
database.

4.1.2. Notation and Problem Formulation

Consider some database of points, where each point represents an image,
X ={xy,...,2,} CRP. For a novel query, ¢ € RP we want to find a point
xr; € X that is “nearest” or “most similar” to q.

The notion of “nearest” is dependent on the dissimilarity measure used
to compare elements in the database. Here we’ll focus on the Lo-norm, but
the efficient approaches presented later on will also work with other L,-
norms. As a side note, the popular tree-based method for NN searching can
be extended to arbitrary metric spaces (i.e. can be made to work for any
dissimilarity notion as long as it obeys the metric constraints such as the
triangle inequality, nonnegativity, symmetry, etc.).

Returning to our problem and using the Ls;-norm, we wish to find the
shortest distance between the query ¢ and z;: argmingex||q — x;||2. The
brute force search runs in O(nD) time, where n is the size of the database and
D is the dimensionality. This naive approach is too slow, and often becomes
useless for searches in very large databases (e.g. bioinformatics, computer
vision, and web applications).

To speed up the naive NN search, two general approaches are possible.
Since the complexity of NN-search depends on D and n, we’ll try to either
reduce the dimension of the data (smaller D), or decrease the number of
candidate elements in the database (smaller n).

4.2. Dimensionality Reduction

In reducing the dimensionality of a particular dataset, the key objective is
to ensure that the distances between all the data points remain unchanged;
the absolute position of the point is not important.

As an excellent candidate for dimensionality reduction, consider the
MNIST dataset of handwritten digits. While this dataset is fairly simple,
it is still of very high dimension. Each image is 28 x 28 pixels, resulting in
a image that is represented as a point in 784-dimensional space. However,
most of the pixels in the image are black, resulting in a highly sparse vec-
torial representation of the image, which may potentially be compressed to
reduce the dimensionality.

More formally, we want to find a mapping f : R? — R?, where d << D,
sit. [|f(x) — f(y)|] = ||x — yl||, or the distance in the d-dimensional space is
approximately equal to the distance in D-dimensional space. We will store

LECTURE 4. EFFICIENT NN SEARCH: DIMENSIONALITY REDUCTION AND DATA STRUCTURES

only {f(z1),..., f(x,)} in the database; to compute ¢’s NNs, we map ¢ to
f(q) and compare f(q) to f(z1),..., f(x,). Next, we show how to find such

a mapping f.
4.2.1. Johnson-Lindenstrauss Theorem

The Johnson-Lindenstrauss theorem gives a formal justification for dimen-
sionality reduction. Suppose that X = {zy,...,2,} C RP. Then 3f : R —
R? such that distances are well-preserved:

(41) (1 = ollws = zjlle < |If () = f@)ll < U+ @)l|s = 25l Vi, j,

where d = O(loegz”). Note that subtracting and adding an arbitrary € in
Eq. (4.1) only contracts and expands the distances by a small amount. Also,
observe that d, the reduced dimension of the dataset, is completely inde-
pendent of the original dimension, D, of the dataset, and in fact is quite
small.

So, how do we find this mapping f7 As it turns out, we can pick it
at random! In particular, f(z) el Gz, where G € R>P, G;; ~ N(0,%),
will satisfy Eq. (4.1) with high probability. This transformation essentially
projects the data onto a random d-dimensional subspace (a hyperplane). An
illustration of such a projection is shown in Fig. 1. The matrix G' will have

/O
O’O/ "
o, ’
X
// .

Figure 1. Projection of 2-D points onto a 1-D plane (dashed line).

close to full column rank with high probability if the vectors are chosen at
random. Overall, this approach can randomly reduce data dimensionality
significantly (to about logn dimensions) without too much loss of quality.

4.2.2. Other Dimensionality Reduction Methods

There are a number of other approaches to dimensionality reduction. Some
assume that the data lies on a low dimensional hyperplane (e.g. a linear
subspace for PCA), while others relax that assumption and aim to find

4 SERGE BELONGIE, CSE 252C: COMPUTER VISION III

Figure 2. Motivation for kd-tree: 1-D binary search example. Search is
accomplished in O(logn).

a low dimensional manifold (e.g. Isomap, MVU, LLE). These approaches
are typically expensive compared to random projections, especially for large
databases, but produce better results in some situations.

4.3. Data Structures

The basic idea in designing a data structure to be used in NN-searching
is to carve up the space R? into regions containing only a few points. To
find a query ¢’s NNs, we look only at points that fall in some region. Now
we consider two of the most common data structures used for NN-search in
object recognition.

4.3.1. kd-Trees

The motivation for using this approach is based on a binary search. Suppose
we have X = {1,...,2,} € RY: how would we find a query ¢’s NN? In
Fig. 2, we see that performing only O(logn) comparisons is sufficient to find
NN, which is much cheaper than the brute force NN-search. It is very easy to
perform this search in 1-D, since we can sort the points. kd-trees generalize
binary search to R”, decomposing the D-dimensional space using median
splits over multiple axes.

This procedure (Algorithm 4.1) is essentially a binary search tree ap-
proach. The value m refers to the actual median or split value, while 7 refers
to the dimension to compare to. Fig. 3 is an example of 2-D partitioning,
where D = 2 and MinSize = 1. Note that non-leaf nodes correspond to the
splits, while the leaves are the regions containing the data points.

In searching this data structure for a NN to ¢, we take the following
approach:

(a) Descend to the leaf node containing ¢ by comparing to all the median

lines.
(b) Find the NN to ¢ in that cell.

LECTURE 4. EFFICIENT NN SEARCH: DIMENSIONALITY REDUCTION AND DATA STRUCTURES

Algorithm 4.1 BuildTree(S), where S C R”

if |S| < MinSize then
return leaf

else
pick axis i of maximum spread, i € {1,...,D}
m «— median ({s; | s € S})
LeftTree «— BuildTree({s € S | s; < m})
RightTree «— BuildTree({s € S| s; > m})
return ({LeftTree, RightTree, m,i})

end if
3a
] T
¢ !
4r----- : ! °
o 1
oal----- iere--
L
L @ T 3c
b
}]
® | | e
! Fommmmoos a----2b
P! ;@
L e
3b 1 3d
(a)

Figure 3. (a) kd-binary partitioning. (b) kd-tree. Non-leaf nodes cor-
respond to the splits, while the leaves are the regions containing the data
points.

(c) Backtrack up the tree: at each node, if the distance from ¢ to the
current NN is greater than the distance to the split, explore with
the other subtree. This is illustrated in Fig. 4.

The complexity of this approach lies between logn and n distance cal-
culations. Depending on how much backtracking is required, one may end
up exploring the entire tree in the worst case, which would be the same
as brute force search with bookkeeping. Empirically, excellent results have
been reported for this approach for up to D = 20, and sometimes as high
as D = 100. There are a number of variations of kd-trees, for instance,
combining them with random projections.

6 SERGE BELONGIE, CSE 252C: COMPUTER VISION III

Figure 4. Example of kd partitioning that requires backtracking up the
tree. The nearest neighbor of ¢ (at the center of the dotted circle) is not
in the same cell as itself, so backtracking is needed, mkaing this worse
than binary search.

4.3.2. Locality Sensitive Hashing (LSH)

Based on the idea of approximate NN-search, LSH is the only algorithm that
works provably well in arbitrary dimensions. With a user-specified radius R
and error tolerance €, LSH will return a point z s.t. ||¢ — z|| < R(1 + €).
Note that this is only true under the assumption that there is a point in the
database within distance R(1 — €) of the query. Essentially, R is our best
guess as to the distance to ¢’s NN. R can be found exactly with O(log %)
searches.

In constructing the data structure for LSH, all points are randomly pro-
jected down to about d = logn dimensions, and an equi-spaced grid is placed
over R? where the bin width is a free parameter — see Fig. 5 for an example.
To search for ¢’s NN, we calculate ¢’s hash value and return the nearest x
with the same hash value.

[(]
3 [J
2 ° ®
L °
1| o d [J

1 2 3 4 5

Figure 5. LSH. Uniform binning hashes together nearby points. Bin
coordinates are the hash values used in searching. For example, the hash
value of the bottom left points is (1,1).

In practice, if the dimensionality is decreased dramatically, too many
points will fall in the same bin; another failure mode is when no points fall

LECTURE 4. EFFICIENT NN SEARCH: DIMENSIONALITY REDUCTION AND DATA STRUCTUREY

in the bin. To overcome these issues, we can increase the number of hash
functions, or run the search multiple times and vote.

Theoretical results show that the complexity of LSH requires n? distance
calculations, where p < 1 (p depends on a variety of factors and is diffi-
cult to calculate exactly). This is the only data structure with guaranteed
sublinear retrieval time that requires only polynomial space. In theory, for
LSH to work, one must use a number of these data structures in parallel (all
with different initial conditions), yet in practice, it is sometimes possible to
successfully use only one.

