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LECTURE 9
Estimating Planar Transformations

9.1. Introduction

We'll begin this lecture by assuming the correspondences between two shapes
are known (e.g. from the Hungarian method for bipartite matching). As a
motivation, let’s think of estimating planar transformations as shape match-
ing with deformable templates. We’ll begin with affine transformations,
which we have never seen before, and then consider a class of transformations
that is flexible, and includes affine as a special case.

9.1.1. Shape matching with affine transformations

The basic strategy for shape matching is the following: choose a transforma-
tion model, fit the model (using an adequate number of correspondences),
and extrapolate the warp to all of R?. For example, let us look at the
simplest transformation model: an affine (linear) transformation with 6 de-
grees of freedom (rotation, translation, scaling and shear in 2D). The Eu-
clidean/similarity model is arguably simpler, but for non-obvious reasons,
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estimating them is more difficult. The affine model accounts for mappings
from squares to parallelograms; parallel lines are preserved (unlike perspec-
tive projection). The model is given by:

(91) Cc/ — Aw_i_t’A _ |:a/11 a12] ,t _ |:t1:| 7

az1 Q22 to

where © = [z,y]" in image 1, ' = [2/,9/]" in image 2, for a collection of k
points given by xq, ..., x.

We use least squares to estimate A and ¢, and to estimate the affine
transformation deterministically. At least 3 correspondences are needed,
forming the vertices of a triangle. First, the centroids are subtracted from
each point set (the optimal translation vector ¢ is given by the difference

between the centroids). Now let’s write the least squares problem in matrix
form Y = AX or:

) [xg 7 .. x;] _ [an am} {xl T .. xk]

YooYy e Y as ax| [ Y2 ... Yk

We then find A that minimizes )", ||x}. — Ax|[?, which in matrix form is A =
YXT. As a side note, by using homogeneous coordinates, the translation
component can be absorbed into a single step of solving for A and t together.

To get the rigid rotation component of A, use the singular value decom-
position (SVD): A =U Y. VT (here 3" contains the stretching deformation),
and we form R = UV". We verify that RR" = R"R = I, with det(R) = 1.
This is not quite the same as solving for R directly, but it works quite well
in practice.

Let’s now look at how to find R directly. Assuming centered coordinates,
we wish to find = argming || X — RY|[?, where R = R(0) (R and 6 are
interchangeable). Also, note that || X — RY||? = || X|]?+]||Y|]> = 2tr(X T RY'),
so we can instead solve

(9.3) 0 = arg max tr(X T RY).
It can be shown that this is maximized by choosing R such that X TRY is

symmetric and positive semi-definite, and this occurs for the following choice
of R:

(9.4) R=XY'(YX"Xy")~1/2
What is not obvious is how this method compares to the R = UV " method.

9.1.2. Other transformations

There exist many transformations that are more flexible. One avenue is
higher order polynomials, but this is not advised because: (i) numerically,
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Figure 1. Estimating smooth curve from discretely sampled points.

they are ill-conditioned (unpopular in statistics and computer science com-
munities); and (ii) when dealing with noisy or spurious correspondences, it is
not easy to modify the fit to behave in a desirable way. Thus, the preferred
solution to modeling flexible coordinate transformations is to use splines.

9.2. Splines

A spline is a special kind of function that is used in weighted combination
to express a transformation. Classically, splines have been used for curves
or surface fitting, so we’ll start by establishing a connection between these
the two problems.

Generally speaking, a coordinate transformation is a pair of functions,
one for each coordinate, of the form

(9.5) ' = fo(r,9),y = fy(2,9);

alternatively, each can be a function of both x and y.

Therefore, solving for a coordinate transformation given a set of corre-
spondences is equivalent to solving two independent surface fitting problems,
one for the desired x coordinates, and one for the desired y coordinates.

This was also true in the affine case: we were solving for two planes
that, together, specify the affine mapping. The elevation coordinates for
this surface fit represent the desired x or y coordinates, so displacements in
the plane get re-cast as z coordinates above the x-y plane. Therefore, in
order to understand the problem of finding planar transformations, we need
to understand the basics of surface interpolation.

9.2.1. Discrete case

For simplicity, we’ll start with the 1D case, and we will consider discretely
sampled curves (then we’ll do it for the continuous case). Let’s look at Figure
?7?7: the goal is to fit a smooth curve V' to noisy data d at a set of discrete
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Figure 2. 1D continuous curve fitting.

locations x;. We’ll use a cost functional of the following form to balance
between fidelity to the data and smoothness:

1

(9.6) HV) = 5 S (Vi Vi + A (Vi )

)

(Notation is from Hertz, Krogh, & Palmer, 1991.) Now let’s take the deriv-
ative of H with respect to V;:

OH
ov;
Note that the 2 terms in the first set of parentheses will survive, and we’ll get
a discrete 2nd derivative; in the second set of parentheses, one term survives

for the data fidelity component. One way to solve this is to use gradient
descent, i.e. :

(9.7)

= K(Vigr —2Vi+Viy) + Ad; — V).

OH
(9.8) Vf“ = V;t - Uw-
(Picturing H [V, Vs, ..., V,] as a surface in the N-dimensional V-space, we

want to take steps downhill until we settle into a minimum.)

9.2.2. Continuous case

This works OK, but there is a more versatile approach to finding the solution
that gives more insight into the effect of the choice of smoothness functional.
For this purpose, we’ll switch over to the continuous case, with yet another
notation. For an illustration, refer to Figure ??. Here we consider

1o 1
(9.9) [H] =5 > (Flm) — v + A50lf]

=1
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and

(9.10) =3 | (%)dm

(the bending energy).

We appeal to variational calculus to compute the “functional derivative”

of H with respect to f and set it equal to zero ':

(9.11) i—fj = 0.

First, we need to know that (( ,)) = d(x — '), so:

51N N

(9.12) 35 Z(f(xz) - yi)2 = Z(f(xz) — ¥:)o(z — x;)

=1

(this is analogous to the discrete case where only one term survived). Ex-
pression (?7) is only nonzero when = = ;.

Now let’s look at the functional derivative of the smoothness functional.
Define the linear operator D = 86—;2, then

913 olf)= [(DfPde=5IDfIF =5 < Df.Df >

and we have

0o 1, o~ -
9.14 = DDf = D+ DD
(9.14) % = Dby = 3(DD+ D)L,
where D is the adjoint of D (analogous to the transpose of a matrix inAa:).
The adjoint of 2 is &5 >, (it’s self adjoint), and the adjoint of 2 is — (due
to odd symmetry of the first derivative).
Therefore, g—? = %, SO

SH al O f
1) G = ) - -+ N

otf N oo N

B yi — f (xl)

where ¢; = %@)

ISome background material on variational calculus is available on the class website.
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9.2.3. Radial basis functions

Now we have a partial differential equation (a weighted sum of impulses) for
f and we need to solve for it. By linearity, if we solve the PDE for a single
impulse, we can add up the solutions with weights to get the full solution,
which suggests the method of Green’s functions. The Green’s function cor-
responding to this differential operator is the solution to % = 0(x). We
can solve this just by integrating both sides 4 times: g(z) = |z|>. After four
derivatives we are left with §(z) times a constant.

This specific Green’s function or radial basis function (RBF) is called a
cubic spline, and our solution to the original problem has the form:

(9.17) fz) = Z cig(x

a weighted sum of splines centered at the data points; we need to solve for
the ¢;’s. There is one thing we forgot, however, and that is that certain
functions are “invisible” to ¢[f], in particular, constants and ramps, so our
solution actually should have the form:

k
(9.18) Zczg Zda\lla(x),
=1 a=1
where Wy (z) =1, Uy(x) =z, for k = 2.
Writing down this equation for each x;,7 = 1,..., N, we get the following
linear system:
G+ VY| |c| |y
019 ailF ]
where (y); = vi, (¢); = ¢, (d); = d;, (G)i; = g(x; — ;) (the spline is
evaluated between all pairs of points), and (\I/) = V,(x;). Then we can

solve for the ¢;’s and d;’s by inverting the big matrix.

What is the effect of A7 If X is small, we get an exact interpolation
through the points. If it’s very large, it overwhelms G and something inter-
esting happens: the solution becomes purely linear, i.e. it reduces to affine
(try this at home). As A is varied from 0 — oo, we get a continuum of curve
fits that range from perfectly straight to maximally “wiggly.”

9.2.4. Thin plate splines

Now let’s go back to the 2D case. In 2D, the generalization on the bending
energy becomes:

0% f 2 O*f o 0*f. 2
(9.20) o[ f] :%/(a—;;) + (8x0fy) +(ay§) dxdy
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Figure 3. Fundamental solution of the biharmonic equation: a circular
fragment of the surface z(x,y) = —r?logr? viewed from above. The X
is at (0,0,0); the remaining zeros of the function are on the circle of

radius 1.

and the corresponding Green’s function is the “thin plate spline” (TPS),
g(z,y) =r?logr, r* = 22 + y?, as shown in Figure ??.

Of all interpolants passing through a set of data points, the one obtained
via TPS is the one that has the minimum bending energy. Finally, to es-
timate a planar transformation, we solve for two interpolated surfaces: one
for 2/, and one for 3.



