CSE 252C: Computer Vision III

Lecturer: Serge Belongie
Scribes: Andrew Rabinovich and Vincent Rabaud
Edited by: Catherine Wah

LECTURE 13
Matching with Constellations of Parts

13.1. Constellation based models

The last two lectures covered bag of features, which had distinguished fea-
tures but no location/geometric information, and shape matching, which
used undistinguished features (e.g. equally spaced samples along contours)
and strong geometric information (e.g. least squares estimates of the regu-
larized TPS transform).

Now we will examine a class of approaches that fall somewhere in be-
tween; these methods are sometimes called “constellation based” or “parts
based models,” in which the model accounts for two key properties:

e relative locations between parts
e appearance of parts

Some of the questions we have to answer:

e What is a “part,” and how do we find it?
e How do we model location?
e How do we handle occlusions/clutter?

IDepartment of Computer Science and Engineering, University of California, San Diego.

December 31, 2009



2 SERGE BELONGIE, CSE 252C: COMPUTER VISION III

Figure 1. Description of a human face with pictorial structures (Fischler
& Elschlager, 1973).

This part-based model matching is a highly active area in computer vi-
sion, with roots going back at least as far as Fischler & Elschlager’s classic
work on “the representation and matching of pictorial structures” (1973)
(Figure 1). As an introduction to this type of approach, we will study a
method developed by Geman, Amit, & Wilder (1997) and applied to digit
recognition.

As we've seen, the use of small bitmaps (binary) of digits simplifies the
image processing problems, and allows us to focus on other matters pertain-
ing to recognition (e.g. using SIFT on a 28 x 28 image would be overkill).
The method of Geman et al. is based on a specific kind of decision tree
that examines arrangements of small (4 x 4) tags. The arrangements encode
loose relative position information, allowing for invariance to substantial
affine /non-linear deformation.

13.1.1. Tag creation

We'll start by looking at how the features (or “tags”) are extracted. They
look like oriented edge fragments, but they’re simpler, in that they exploit
the binary nature of the pixels in the digit images.

The following is done to create the tags:

(1) Extract a large sample of 4 x 4 sub-images from the dataset at random
(without regard for class labels, which in this case are “0,” “1,”, ...,
“97).

(2) Cluster these sub-images using a decision tree. Each node considers 16
possible questions: “is site (i, j) black?” for i,j = 1,2,3,4. The question
chosen is the one that most nearly splits the set of subimages in half.
There is a tag type for each node of the resulting tree, except for the
root. For example, a depth 3 tag tree, has 2 + 4 + 8 tags (Figure 2).
(Geman et al. use a depth 5 tree, with 62 tags.)



LECTURE 13. MATCHING WITH CONSTELLATIONS OF PARTS 3

e
/N NN
2 R A

dm 1IdF"mEHFE

Figure 2. First three tag levels (Geman, Amit, & Wilder, 1997).

(3) Each pixel in the image is assigned all the tags encountered as the 4 x 4
sub-image containing that pixel at (1,1) (top-left corner).

In step 1, they restrict the population to sub-images that are not all white or
all black; the result is concentrated processing around boundaries (Figure 3).
They refer to generalizations from binary to grayscale patches (ca. 1995),
but the best bet is to use modern methods as described in the BoF lecture.

The resolution 4 x 4 sounds arbitrary, but they found empirically that for
resolutions of 10 x 10 to 70 x 70 for digits, the resulting tags work roughly
equally well.

13.1.2. Tag arrangement

Now the more interesting part is the analysis of tag arrangements — these are
the real “features” used for recognition. A tag arrangement is an attributed
graph; vertices are labeled by tag type and edges by angles (Figure 4).

The angle relationships are quantized into the 8 compass directions N,
NE, E, ... (or £ -sized angular intervals). Note in the “8” in Figure 4 that
the same “feature” (i.e. tag arrangement) can appear multiple times in the
same image, since the coarse quantization of tag types and angles offers some
leeway. In this sense, this “binning” provides some invariance to distortion,

in a manner similar to shape contexts and order structure (Carlsson, 1999).

13.1.3. Recursive partitioning of the shape space

Now that we’ve defined these features, how do we decide what number of
tags and which arrangements to use? Clearly some will be more useful than
others in a given task such as digit recognition.



4 SERGE BELONGIE, CSE 252C: COMPUTER VISION III

Figure 3. All instances of four depth 3 tags (top), and their refinements
as all instances of 4 depth 5 tags (bottom) (Geman, Amit, & Wilder,

1997).

Figure 4. Examples of an arrangement in 5’s (top) and the arrangement
in one 8 (Geman, Amit, & Wilder, 1997).

To build the tree for tag arrangements (via recursive partitioning of the
shape space):

(1) Start at the root and loop through all arrangements involving two tags
and a relation. Each one splits the data into 2 groups: those that have
the arrangement and those that don’t.

(2) Choose the arrangement using an “entropy-based splitting rule” — one of
many splitting rules, which we’ll study in more detail later in the course.



LECTURE 13. MATCHING WITH CONSTELLATIONS OF PARTS 5

Figure 5. Example of digit 5 passed through six different trees — each
tree provides its own structural description, or “point of view” on the
shape (Geman, Amit, & Wilder, 1997).

The entropy of a set (of digits, in this case) can be thought of as how
random the class distribution is in that set. We want the split that most
reduces the uncertainty, that is, we want the greatest “information gain.”

(3) Call this chosen feature Ap.

(4) Repeat this splitting procedure at the “yes” child nodes using a so-called
“minimal extension” to Ag, i.e. Ay plus one more tag and relation. This
is a useful heuristic that greatly reduces the number of arrangements one
must consider.

This is continued recursively until some stopping criterion is satisfied, e.g. the
number of data points falls belows a threshold.

13.1.4. Multiple randomized trees

There is a problem, though, when we look at the practicality of the above
method. Even though the minimal extension of pending arrangements helps
matters, we still have a huge number (62 x 62 x 8 = 30, 752) of arrangements
at the root node, and similar problems at internal nodes.

To solve this, we look to randomization, in particular, multiple random-
ized trees. This is not only more efficient, but it also provides insights into
different types of structural descriptions (Figure 5).



6 SERGE BELONGIE, CSE 252C: COMPUTER VISION III

If we use multiple trees, then we need to aggregate the results somehow.
There are many ways to do this; Geman et al. use a simple method:

e Think of each tree as a discrete random variable T' on the space of
digit images X . Each terminal node corresponds to a different value
of T. Let T1,..., Ty be the set of N trees.

e Use the training data to compute the empirical distribution (his-
togram) on the classes {0,1,...,9} based on the training data that
reaches each terminal node.

e For the n'” tree T), and an image =. Let

(13.1) pn(2) = (n(2,0), ..., n(2,9))
be the distribution stored at the leaf of T}, reached by the image ,
and let:
XN
(13.2) fi(r) = N;Mn(‘r)'

e To classify an image in the test set, we simply compute fi(z) and
take the mode of this distribution as the estimated class.

There are many more sophisticated ways of aggregating multiple trees, but
this one is about as simple as it gets, and works well even with limited
amounts of training data.

13.1.5. NIST experiments

Geman et al. performed experiments on the NIST Special Database 3 of
handwritten digits, which involved 2,000 writers who produced 100,000 train-
ing digits and 50,000 testing digits, with no overlap in writers.

Some simple preprocessing (slant and scale correction) were done; with-
out this, the error goes up a few tenths of a percentage. The single tree
error rate is &~ 7%. They used 25 trees T, ..., T, with an average depth
of about 9 and a maximum depth of 20 (i.e. no questions), and with about
600 terminal nodes on average. With aggregation, the error rate is about
0.8%, and with various rejection criteria in place, as low as 0.2% (e.g. based
on ratio between the mode and next highest value). In general, this method
is easy to train, using ~ 25MB of memory during training and negligible
memory during testing.



