
CSE 252C: Computer Vision III

Lecturer: Serge Belongie
Scribe: Catherine Wah

LECTURE 14
Generative Models

14.1. Introduction

The last part of the course is on techniques of statistical pattern recognition
relevant to object recognition. Today we’ll talk about “generative models,”
in contrast to “discriminative models”(for recognition). The distinction be-
tween the two is that generative models explicitly or implicitly model the
distribution of inputs as well as outputs; by sampling from them, it is possible
to generate synthetic data points in the input space.

For example, you could have a generative model of each handwritten
digit from 0 to 9 (pixel brightnesses or pen strokes) and use it to determine
the probability each one could have generated a novel test example. If we
call the classes Ck, k = 0, . . . , 9, then the generative model expresses the
posterior class probability (using Bayes rule):

(14.1) p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
,

where p(Ck) are the prior class probabilities, p(x|Ck) is the class conditional
densities, and p(x) =

∑
k p(x|Ck)p(Ck) is the marginal density. The vector

1Department of Computer Science and Engineering, University of California, San Diego.

December 31, 2009

1

2 SERGE BELONGIE, CSE 252C: COMPUTER VISION III

x is the pattern (i.e. , the image, or a description of the image). In our early
experiments with digit classification we encountered p(k) (which was almost
uniform in that case) but didn’t use it; the distance based classification
methods we used didn’t look at any probabilities (unless we think of k-NN
voting as a probability).

More generally, methods that skip the part about modeling class condi-
tional densities are known as “discriminative models,” discussed later in the
course. At a high level, which type of approach is better is a matter of some
debate.

There are several potential advantages of generative models. For training,
only positive examples are needed. Also, these models allow for synthesis,
that is, we can “look under the hood” at what is learned. Lastly, p(x) allows
“novelty detection,” i.e. , the data points with low probability under the
model, for which predictions may be of low accuracy.

14.2. Mixture of Gaussians (MoG)

Now let’s look at an example of a generative model, and how to learn its
parameters from training data. One of the most widely used models is the
Gaussian mixture:

(14.2) p(x) =
K∑

k=1

πkN (x|µk,Σk)

where K is the number of components or “modes,” which could be the
number of classes, or a finer distinction. The priors are represented with πk

or p(Ck), and N (·) is the normal density with mean µ and covariance matrix
Σ.

For example, one can use MoG to to model content in an image, as in
Blobworld (1998), as an alternative to nonparametric density estimation. In
this case, the feature vector x could contain position, color, texture, etc. for
a pixel.

14.3. The EM algorithm

Given some training data, how do we “fit the model”? That is, how do we
find values of πk, µk, and Σk? We formulate this as a “missing data” or
“latent variable” problem, by introducing a soft indicator vector z ∈ Rk,
zk ∈ {0, 1},

∑
k zk = 1. We’ll assume for now that k is known, but just as in

clustering (to which the approach we study here is closely related), choosing
k is a difficult problem in itself.

LECTURE 14. GENERATIVE MODELS 3

In particular, p(zk = 1) = πk. What does it gain us to introduce this new
vector? It turns out that z will allow us to set up a chicken-and-egg problem
in which we can express the mixture density as if we had complete data.

The method we use to solve this problem is called “Expectation- Maxi-
mization” or “The EM Algorithm” (Dempster, Laird, and Rubin, 1977). We
will skip the derivation and outline its application to MoG.

First, let’s look at the steps in abstract:

Given : a joint distribution p(X,Z|θ)

Goal : maximize p(X|θ) w.r.t. θ, a.k.a. the likelihood.

X is all observed data, θ is all parameters, and Z is all the latent variables.
Note that we will have to perform gradient descent on the likelihood, which
is greedy, so we can only hope for a local optimum.

1. Initialize θ as θold

2. Expectation step: evaluate p(Z|X,θold)
3. Maximization step: evaluate θnew as

θnew = arg max
θ

Q(θ,θold)

where

Q(θ,θold) =
∑
Z

p(Z|X,θold) ln p(X,Z|θ).

By convention, we work with the log likelihood.
4. Check for convergence, either of the log likelihood or parametric values;

if not satisfied, let θold ← θnew and return to step 2.

Now let’s apply this to MoG: in this case, the “complete data” likelihood
reduces to:

(14.3) p(X,Z|µ,Σ,π) =
N∏

n=1

K∏
k=1

πznk
k N (xn|µk,Σk)znk

withN data points andK components, where znk denotes the kth component
of zn. In the discrete {0, 1} case, it selects out exactly one component per
data point; when relaxed, you get a soft, convex combination.

Now take the log:

(14.4) ln p(X,Z|µ,Σ,π) =
N∑

n=1

K∑
k=1

znk[lnπk + lnN (xn|µk,Σk)].

The second log term on the right is convenient as N (·) is a member of the
exponential family.

4 SERGE BELONGIE, CSE 252C: COMPUTER VISION III

Since we don’t know the true values of the latent variables Z, we instead
use their expected value, denoted γ(znk), which one can show is given by:

(14.5) γ(znk) =
πkN (xn|µk,Σk)∑K
j=1 πjN (xn|µj,Σj)

,

a.k.a. the “responsibilities.”
Now let’s look a the above four steps for MoG:

1. Initialize µk, Σk, πk for all k
2. Expectation step: evaluate responsibilities γ(znk) using current parameter

values
3. Maximization step: re-estimate parameters:

µnew
k =

1

Nk

N∑
n=1

γ(znk)xn

Σnew
k =

1

Nk

N∑
n=1

γ(znk)(xn − µnew
k)(xn − µnew

k)T

πnew
k =

Nk

N
where Nk =

N∑
n=1

γ(znk)

4. Evaluate log likelihood:

ln p(X|µ,Σ,π) =
N∑

n=1

ln

{
K∑

k=1

πkN (xn|µk,Σk)

}
and check for convergence; if necessary, return to step 2.

An exercise for the reader: show that the k-means algorithm is equivalent
to a hard-thresholded version of EM applied to MoG, where all

∑
’s are εI

an ε→ 0.
Cases with more interesting density shapes, e.g . , an annulus, prompt

the question of how suitable MoG might be for such distributions; this fore-
shadows kernel-based methods.

14.4. Hidden Markov Model

Another important model is something we encounter when we have sequen-
tial data, e.g . , a time series, or text (e.g . , OCR) scanned from left to right:
the Hidden Markov Model (HMM). Consider the plot of clumps, and now
generalize it to include “time” steps. Visualize this as a point hopping around
with transition probabilities defined over k modes, each approximately a

LECTURE 14. GENERATIVE MODELS 5

Gaussian in this case. Alternatively, we can visualize it as a graphical model
(Figure 1).

Figure 1. Graphical model of a Hidden Markov Model. The value of the
observed variable y(t) only depends on the value of the hidden variable
x(t). (http://en.wikipedia.org/wiki/Hidden Markov model)

HMMs are very widely used in speech recognition and handwriting recog-
nition. We can again apply the EM algorithm, now with the extra require-
ment of estimating transition probabilities; in this context, it is known as
the “forward-backward” or “Baum-Welch” algorithm. The hard thresholded
version is called the “Viterbi algorithm.”

Recall that model selection is a difficult problem; however, if adequate
domain knowledge is available to do this, then this can be highly effective.
We can train up one generative model per class and check the likelihood of
the data w.r.t. each model. Next class we will cover discriminative models.

