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LECTURE 15
Kernel Machines

15.1. Kernels

We will study two methods based on a special kind of function k(x,y) called
a kernel :

• Kernel PCA (to help build our intuition) and
• Support Vector Machines, which are a powerful discriminative learn-

ing method.

What is a kernel? In this context, it is a function that satisfies the following
condition:

(15.1)
∑
i,j

k(xi,xj)cicj ≥ 0,

for some set of feature vectors x and any vector c. We say the kernel is
positive semi-definite, or that it satisfies Mercer’s condition.
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15.2. Kernel Trick

What’s interesting about this, and what forms the basis of the so-called “ker-
nel trick” (Aizerman et al . , 1964), is that kernels that satisfy this condition
are equivalent to a simple dot product in some higher dimensional space:

(15.2) k(x,y) = φ(x) · φ(y),

where φ(·) maps a vector from “input space” to “feature space” (usually
higher, or infinite, dimensional). In some cases we specify φ(·), in other
cases, it’s implicit for a choice of k(·, ·). The “kernel trick” refers to the idea
of swapping in k(x,y) for x · y in algorithms that call for a dot product
between two vectors, for example, the perceptron, SVMs (supervised), PCA
(unsupervised).

In some cases, it may not be obvious that the algorithms, at their heart,
come down to dot products, but these and several others have been formu-
lated in such a way to exhibit this characteristic. So what does this buy
us? In the supervised case, classes that aren’t linearly separable in input
space might be linearly separable in feature space (Figure 1). Consider the

Figure 1. The clump and annulus problem. These classes are linearly
inseparable in the input space. Note: a quadratic surface would do the
trick here, but linear algorithms are simpler and better understood.

mapping Φ : (x1, x2)
T 7→ (x1, x2, x

2
1 + x2

2)
T, where x ∈ R2 and φ(x) ∈ R3.

In this way, by adding a new dimension, it becomes possible to separate the
clump from the annulus.

This hints to us that high dimensionality can be good (greater classifi-
cation power)! Your instinct might be telling you that high dimensionality
can also get you into trouble, conceptually or computationally; this instinct
is correct.
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This idea is the subject of Vapnik-Chervonenkis (VC) theory, a critical
component of statistical learning theory, which addresses questions such as
how best to perform classification given nothing but labelled example data
(with no prior knowledge). We won’t study VC theory in this class, but it
provides us with answers to questions such as “under what conditions are
high dimensional representations good?”

Supposing we restrict ourselves to cases in which the high dimensional
mapping is good, there is still the problem of computation time. For example,
a simple polynomial mapping on 28 × 28 MNIST digits can easily explode
the dimensionality into the billions. This is where the kernel trick comes in.
Except for these toy examples, in practice, one never makes explicit use of
Φ(·), or even necessarily needs to know what it is. We only need to know
that it exists, which Mercer’s condition answers for us.

This was foreshadowed in the second homework, where we considered the
Mahalanobis distance between two vectors:

(15.3) (xi − xj)TΣ−1(xi − xj) = (yi − yj)T(yi − yj) = ‖yi − yj‖2

where, if
∑−1 is positive semi-definite, we can write

∑−1 = QQT and set
y = QTx. In this case, Q represents a simple case of a feature mapping; the
Mahalanobis distance is equivalent to a dot product in a different space.

15.3. Kernel PCA

Now let’s look at an application of the kernel trick: Kernel PCA (Schölkopf
et al . , 1998). This is an unsupervised example, used for dimensionality
reduction when the data doesn’t live on a linear manifold. We use the kernel
trick to perform “classic” PCA in high dimensional space, then map it back
to input space, where the “axes” will appear curved (Figure 2).

Before we “kernelize” PCA, let’s review how classic PCA works (assuming

centered data:
∑N

i=1 x
i = 0). PCA finds the eigenvectors of the covariance

matrix C:

(15.4) C =
1

N

N∑
i=1

(xi)(xi)T.

By construction, C is positive semidefinite. Eigenvectors λv = Cv are used
to capture principal axes of variation.

We can use C in the following way:

(a) Find the eigenvectors and eigenvalues, sorted in decreasing order by
eigenvalue, possibly truncating

(b) Project test data onto eigenvectors
(c) Use the projections for classification, denoising, compression, etc.
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Figure 2. The basic idea of kernel PCA with 2D inputs. In some high-
dimensional feature space F (bottom right), we are performing linear
PCA, just like a PCA in input space (top). Since F is nonlinearly related
to the input space (via Φ), the contour lines of constant projections onto
the principal eigenvector become nonlinear in input space (Schölkopf et
al . , 1998).

We’d like to be able to do this for nonlinear data, therefore, the solution is
to kernelize. In order to do so, we start by expressing PCA in terms of dot
products:

(15.5) Cv =
1

N

∑
i

xixiTv = λv,

therefore

(15.6) v =
1

Nλ

∑
j

xjxjTv =
1

Nλ

∑
j

(xj · v)xj.

(Note here that (xj ·v) is just a scalar.) By using dot products, all solutions
v with λ 6= 0 lie in the span of {xi}, or v =

∑
i αix

i, where the αi’s are the
dot products.
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Now suppose we pick some mapping φ(·). Assume we center the data (a
homework problem), and as before, we write

(15.7) C =
1

N

∑
i

φ(xi)φ(xi)T,

which is possibly high dimensional, and we diagonalize it as λv = Cv. Like
before, v lies in the span of φ(xi)’s.

Now we dot both sides by φ(xj):

(15.8) λ(φ(xj) · v) = φ(xj) · Cv, ∀j
and note that v =

∑
i αiφ(xi). The motivation for this is that we want to

avoid explicit use of φ(·); we only want to use it via k(·, ·).
Therefore,

(15.9)

λ
∑

i

αi

(
φ(xj) · φ(xi)

)
=

1

N

∑
i

αi

(
φ(xj) ·

∑
l

φ(xl)

)(
φ(xl) · φ(xi)

)
,∀k

or

(15.10) NλKα = K2α

where Kij = φ(xi) ·φ(xj) and α is a vector of αi’s. Note that since K is full
rank, it follows that

(15.11) Nλα = Kα.

This is our eigenvector problem, now on K instead of the covariance matrix.
So in the end, kernel PCA just requires us to diagonalize K instead of

C, a different (and bigger) covariance matrix defined on vectors in a high
dimensional space. In practice, the data needs to be centered first, which
can be done wia a simple operation on K; see Homework 4.

How do we use these principal components? Consider some test point x
(e.g . , any point in R2). To project it onto eigenvectors, we compute:

(15.12) vk · φ(x) =
∑

i

αik(xi,x)

for the kth kernel principal component coefficient. We demonstrate this for
a 2D toy example with 3 gaussian clumps, using a gaussian kernel (Figure
3). Recall that regular PCA would just give two orthogonal axes in R2.
Surface brightness shows the value of the kth enigenvector projection; for
linear PCA you would just have 2 ramps. Note the similarity to spectral
clustering; NCut used D−1/2WD−1/2 instead of centering in feature space.
It allows extrapolation to the full plane; this is the same thing as the Nyström
extension, which is used in spectral clustering. Note in this example, each
cluster is first “found,” then a local x-y coordinate system is extracted for
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Figure 3. Toy example with three data clusters; first eight nonlinear
principal components are extracted with a radial basis function (i.e. ,
Gaussian) for the kernel. Note that the first two principal components
(top left) nicely separate the three clusters (Schölkopf et al . , 1998).

it. For denoising, we use a fixed point iteration to find the preimage; this is
related to mean-shift.

15.4. Support Vector Machines

Now let’s look at a discriminative example: the support vector machine
(SVM). Now we have data labeled (positive and negative):

(15.13) {(x1, y1), (x2, y2), . . . , (xN , yN)}, y ∈ {+1,−1}

In the linear case, we want to find a separating hyperplane with maximum
margin, i.e. , we want a hyperplane with maximal distance to the nearest
data point (Figure 4). The linear classifier (decision boundary) has the form:

(15.14) w · x− b = 0,

where w is the normal vector for the hyperplane and b is the offset.
SVM learning requires the solution of a quadratic programming problem

(beyond the scope of this class) that returns the data points that “prop up”
the hyperplanes that define the margin, parallel to the separating hyperplane.
This can be generalized to the soft-margin case, when perfect separation is
not possible.

The extension to cases requiring a nonlinear separation boundary re-
quires kernelizing; the linear separating boundary looks curved in input
space. When testing what side of the decision boundary you are on, we
use a kernel in place of the dot product, which we can think of as the dis-
tance (or similarity) to exemplars right on either side of the margin; e.g . ,
for face gender classification, these are highly hermaphroditic faces ±ε.
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Figure 4. Maximum-margin hyperplane and margins for a SVM trained
with samples from two classes. Samples on the margin are called the
support vectors. (http://en.wikipedia.org/wiki/Support vector machine)

To summarize, SVMs are a highly general method with excellent results.
The usual questions of what kernel to use, what value of σ, etc. can be
addressed with experience and cross validation.


