
CSE 252C: Computer Vision III

Lecturer: Serge Belongie
Scribes: Andrew Rabinovich and Vincent Rabaud

Edited by: Catherine Wah

LECTURE 16
Boosting

16.1. Introduction

Since Viola & Jones (2001), boosting – and AdaBoost (Freund & Schapire,
1997) – has taken on a prominent role in computer vision, in particular for
object detection. The idea behind boosting is to combine the outputs of
many “weak learners” in a weighted fashion to produce a “strong” classifier.
We’ll focus on the 2-class case in this lecture; a generalization to multiclass
exists.

Definition 16.1. A weak learner is a classifier that is correct at least a bit
more than half of the time, i.e. it is slightly better than chance.

Formally, suppose we are given a training set:

D = {(x1, y1), (x2, y2), . . . , (xn, yn)} with xi ∈ RD, y = {−1, 1} .

1Department of Computer Science and Engineering, University of California, San Diego.

October 11, 2009

1



2 SERGE BELONGIE, CSE 252C: COMPUTER VISION III

Figure 1. Exponential loss is the upper bound on the 0/1 loss.

A weak learner is a function hk : x 7→ y, and the strong classifier has the
form:

(16.2) H(x) =
T∑
k=1

αkhk(x).

The problem is how to set the weights αk and train the weak learners hk(x).
We’ll examine now how this is done with AdaBoost, specifically, discrete
AdaBoost (Adaptive Boosting).

16.2. AdaBoost

Ideally, one would like to minimize what’s known as the 0/1 loss, i.e. a
penalty of 1 for incorrect classification, and no penalty for correct classifi-
cation. A 0/1 loss is not differentiable, however, which makes it difficult to
work with. AdaBoost uses the so-called exponential loss (see Figure 1):

(16.3) L(H) =
n∑
i=1

e−yiH(xi).

Observe that yi ∈ {−1, 1}, and H(xi) is multiplied by this; thus, we want it
to be the same sign as yi.

Now, suppose we are given the first t weak classifiers, and we want to
specify ht+1 and αt+1. Let Ht(x) =

∑t
k=1 αkhk(x) denote the strong classi-

fier, made up of the first t weak learners. Iteration t + 1 can then be posed
as follows:

(ht+1, αt+1) = arg min
h,α
L(Ht + αh)(16.4)

= arg min
h,α

n∑
i=1

e−yi(Ht(xi)+αh(xi))(16.5)

= arg min
h,α

n∑
i=1

wt(i)e
−yiαh(xi)(16.6)



LECTURE 16. BOOSTING 3

where wt(i) = exp(−yiHt(xi)) doesn’t depend on the min arguments; we can
think of it as a per-point weighting at iteration t.

Furthermore, we can assume the weights have been normalized to sum
to 1, w.l.o.g.:

∑n
i=1wt(i) = 1. (The arg min is not affected.) Now, let’s do

some more manipulations:

(16.7) (ht+1, αt+1) = arg min
h,α

n∑
i=1

wt(i) exp(−yiαh(xi))

and break this into two cases:

(ht+1, αt+1) = arg min
h,α

e−α
∑

i|yi=h(xi)

wt(i) + eα
∑

i|yi 6=h(xi)

wt(i)

= arg min
h,α

(eα − e−α)
n∑
i=1

wt(i)1[yi 6= h(xi)] + e−α
n∑
i=1

wt(i)︸ ︷︷ ︸
1

= arg min
h,α

(eα − e−α)︸ ︷︷ ︸
pos.constant

n∑
i=1

wt(i)1[yi 6= h(xi)] + e−α︸︷︷︸
pos. constant

.

Therefore:

(16.8) ht+1 = arg min
h

n∑
i=1

wt(i)1[yi 6= h(xi)].

Note how the errors are weighted differently per sample.
How about αt+1? We define

(16.9) εt =
n∑
i=1

wt(i)1[yi 6= h(xi)],

one weighted error of the new weak classifier. We need to solve αt+1 =
arg minα(eα − e−α)εt + e−α. Taking the derivative and setting it to zero we
get:

∂

∂α

(
(eα − e−α)εt + e−α

)
= eαεt + e−αεt − e−α = 0

e2αεt + εt − 1 = 0

e2α =
1− εt
εt

.

Hence:

(16.10) αt+1 =
1

2
log

1− εt
εt

.



4 SERGE BELONGIE, CSE 252C: COMPUTER VISION III

Now we’re close to being able to state the AdaBoost algorithm, or more
accurately, meta-algorithm. Recall we normalized the weights, which we
could denote:

wt(i) =
1

Zt
exp (−yiHt(xi)) ,

where Zt is the normalization factor. On the next iteration, we could set the
weights as:

wt+1(i) =
1

ZT+1

exp (−yi(Ht(xi) + αt+1ht+1(xi)))

and normalize again, but we can do more simplification. Notice the redun-
dancy:

wt+1(i) =
1

Zt+1

exp (−yi(Ht(xi) + αt+1ht+1(xi)))

= wt(i)
Zt
Zt+1

exp (−yiαt+1ht+1(xi)) .

Now we use a simple trick:

−yh(xi) = 2 · 1[yi 6= h(xi)]− 1

⇒ wt+1(i) = wt(i)
Zt
Zt+1

exp (2αt+11[yi 6= ht+1(xi)]) e
−α.

Note that Zt and e−α are constants, and they don’t affect the above arg min,
so we can just absorb them into Zt+1:

wt+1(i) = wt(i)
1

Zt+1

exp (2αt+11[yi 6= ht+1(xi)])

= wt(i)
1

Zt+1

exp

(
log

1− εt
εt

1[yi 6= ht+1(xi)]

)
.

Finally, observe that:

Zt+1 =
∑

i|yi 6=ht+1(xi)

wt(i)
1− εt
εt

+
∑

i|yi=ht+1(xi)

wt(i)

= εt
1− εt
εt

+ 1− εt

= 2(1− εt),

which leads to a simple expression for setting the value of the new weight:

(16.11) wt+1(i) =

{
wt(i)

2(1−εt) if yi = ht+1(xi)
wt(i)
2εt

otherwise.



LECTURE 16. BOOSTING 5

16.2.1. Discrete AdaBoost

Now we can state the Discrete AdaBoost algorithm (Schapire, 1997) (Algo-

rithm 16.1). The empirical error is upper-bounded by
∏T

t=1 Zt (exercise for
the reader: why is this the case?).

Algorithm 16.1 Discrete AdaBoost

Input: Training data D, number of iterations T , initial distribution w0(i)
(e.g . uniform) over data points
Output: A strong classifier H(x)
for t = 1, . . . , T do

train a weak classifier: ht = arg minh
∑n

i=1wt−1(i)1[yi 6= h(xi)]
calculate error: εt =

∑n
i=1wt−1(i)1[yi 6= ht(xi)]

set: αt = 1
2

log 1−εt
εt

set: wt+1(i) =

{
wt(i)

2(1−εt) if yi = ht+1(xi)
wt(i)
2εt

otherwise

end for
return H(x) =

∑T
k=1 αkhk(x)

16.2.2. Discussion

Some of the pros of AdaBoost are that it is very simple to implement, it
supports feature selection on very large sets of features, and has fairly good
generalization. However, it can overfit in presence of noise and outliers, and
yields a suboptimal solution for αt’s.

Many variants of AdaBoost have been proposed (e.g . LogitBoost, Gen-
tleBoost, BrownBoost, . . . ); they are not covered in this class. These address
some of the cons listed above.

A notable example of AdaBoost applied to the problem of object de-
tection is Viola-Jones, which combined AdaBoost, cascade, and Haar-like
filters.


