Highly Accurate Data Value Prediction using Hybrid Predictors

Kai Wang
Datastream Systems, Inc.
50 Datastream Plaza
Greenville, SC 29605, USA

kaiw@dstm.com

Abstract

Data dependences (data flow constraints) preseni a
major hurdle to the amount of insiruction-level par-
allelism that can be exploited from a program. Recent
work has suggested that the limils imposed by data de-
pendences can be overcome to some extent with the use
of data value prediction. That is, when an insiruction
is felched, tts resull can be predicted so that subsequent
mstructions that depend on the result can use this pre-
dicted value. When the correct resull becomes avail-
able, all instructions that are data dependent on that
prediction can be validated. This paper investigaies
a variety of lechnigues to carry out highly accurate
data value predictions. The first technique investigates
the potential of monitoring the strides by which the
results produced by different instances of an instruc-
tion change. The second technigue investigates the po-
tential of patiern-based two-level prediction schemes.
Stmulation results of these two schemes show improve-
ments over the existing method of predicting the last
outcome. In particular, some benchmarks show im-
provement with the stride-based predictor and others
show improvement with the pattern-based predictlor.
To do uniformly well across benchmarks, we combine
these two predictors to form a hybrid predictor. Simu-
lation analysis of the hybrid predictor shows its overall
prediction accuracy to be betler than that of the com-
ponent predictors across all benchmarks.

1 Introduction

Instruction-level parallel (ILP) processing—executing
multiple instructions in parallel in a uniprocessor—is
a subject of great interest among the computer ar-
chitecture community now. Virtually every processor
released in the last 2-3 years and future processors
announced by major processor manufacturers exploit
ILP in a major way using a variety of techniques.

1072-4451/97 $10.00 © 1997 IEEE

Manoj Franklin

Department of Electrical and Computer Engineering

Clemson University
Clemson, SC 29634-0915, USA

mfrankl@blessing.ces.clemson.edu

A major hurdle to ILP processing is the presence
of data dependences, which preclude the execution of
instructions in parallel. If an instruction is data de-
pendent on a preceding instruction, then it can be
executed only after the preceding instruction’s result
becomes available. Recent studies [8] [9] have shown
that it 1s possible to overcome the hurdles imposed by
data dependences with the use of data value predic-
tion. That is, the result of an instruction is predicted
based on the past behavior of previous instances of the
instruction (i.e., previous dynamic instructions with
the same PC value), and passed on to subsequent in-
structions that depend on the result. Later, when the
actual operands of the instruction becomes available,
the struction is executed, and the correct result is
compared with the value predicted earlier. If the val-
ues match, then all of the instructions in the active
window that depended on the predicted value are in-
formed of the match. If the values do not match,
then the correct result i1s forwarded to the instruc-
tions that require this value, and those instructions
are re-executed. Simulation results presented in [9]
show value prediction accuracies of about 49%.

Another recently proposed technique that is sim-
ilar in spirit to data value prediction, but does not
involve any prediction, 1s dynamic instruction reuse
[14]. In this technique, the operands and result(s) of
recently executed instructions are stored in a buffer.
When the operands of an instruction become available,
they are compared with the operands of the previ-
ous instance of the same instruction. If the operands
match, then the execution part of the instruction is
skipped, and the result is read directly from the buffer.
Thus, this technique is useful for shortening the la-
tency of long-latency operations. Experimental results
reported in [14] show that the execution part of about
33% of the dynamic instructions can be skipped by
using a 1024-entry fully-associative buffer.

In this paper, we investigate various techniques
to carry out highly accurate data value predictions.

The schemes that we consider are last outcome-based
prediction, stride-based prediction, 2-level prediction
scheme, and various hybrids. Simulation results show
that hybrid schemes work well across all benchmarks.

Section 2 presents background material on data
value prediction. Section 3 describes stride-based
value prediction and two-level value prediction. Sec-
tion 4 presents simulation results obtained using a sim-
ulator that we developed. Section 5 presents ways
of combining these two schemes, and also gives sim-
ulations results for these hybrid schemes. Section 6
presents a summary of this work, and the conclusions
of the paper.

2 Background

2.1 Dependences and Their Effect on
Parallelism

Dependences between instructions impose a big hurdle
to the parallel execution of instructions. Dependences
comie in 3 kinds—name dependences, control depen-
dences, and data dependences. Name dependences
occur due to the reuse of storage locations such as
registers and memory locations, and can be easily re-
moved by static or dynamic renaming techniques.

Control dependences occur due to conditional
branch instructions that can cause a potential change
in control flow based on the outcome of the branch.
Three techniques are available to overcome the ef-
fects of control dependences: (i) predicated execution,
(ii) execute control-independent portions of code in
parallel, and (ii1) speculate the outcome of control-
changing instructions. The first technique converts
control dependences into data dependences as follows:
the branch condition outcome is evaluated and placed
in a predicate register, and the instructions that were
control-dependent on the branch are made conditional
on the value of the predicate register. The second tech-
nique identifies control independent portions of code
and executes them in parallel, possibly by means of
separate hardware sequencers. Parallelism limit stud-
ies in [7] show that executing control independent code
alone is not sufficient to overcome the barriers of con-
trol dependences. Speculative execution, by means of
predicting branch outcomes, should also be done to
get reasonable amounts of parallelism.

Like control dependences, data dependences also
impose a hurdle to the parallel execution of instruc-
tions, because an instruction cannot be executed un-
til the results of the instructions that it is data de-

282

pendent upon are available. As with control depen-
dences, three similar techniques are available to over-
come the effects of data dependences: (i) dependence
collapsing, (1i) execute data-independent instructions
in parallel, and (iii) speculate the result of data-
producing structions. The first technique combines
data-dependent instructions into a single instruction
with the use of fused functional units [10]. The sec-
ond technique has been widely used by ILP com-
pilers [6] and dynamically scheduled processors [13].
ILP compilers identify mutually data-independent in-
structions, and place them side by side to facilitate
their parallel execution by the hardware. Dynami-
cally scheduled processors buffer a large window of
instructions, and identify ready instructions (i.e., in-
structions that have their source operands available)
every cycle so as to execute them in parallel. Again,
parallelism limit studies [1] [2] [7] have shown that
with realistic size instruction windows, the amount of
parallelism exploitable with scheduling alone is lim-
ited. The third technique—data value prediction—
attempts to further overcome the hurdles imposed by
data dependences, and is the subject matter of this

paper.

2.2 Data Value Prediction

The essence of data value prediction is to predict the
result of data-producing instructions based on their
past behavior, just like predicting the outcome of con-
ditional branches. A good heuristic to use is to record
the recent results produced by previous instances of an
instruction, and predict the result of the instruction’s
next instance based on past results. The simplest such
scheme, which we call the last cutcome scheme, would
be to store the result produced when the instruction
was executed for the last time, and predict the same
value when the instruction is encountered in the fu-
ture. The block diagram of such a scheme is shown in
Figure 1. The main part of the predictor is a Value
History Table (VHT) that stores the last result pro-
duced by the instructions that are currently mapped
to it. Each VHT entry has two fields—Tag and Value.
The Tag field stores the identity of the instruction that
is currently mapped to that entry, and the Value field
stores the last result for that instruction.

Lipasti et al have measured the prediction accu-
racy obtainable with this approach, and found it to
be averaging about 49% for the PowerPC architecture
for a sample of benchmarks taken mostly from SPEC
’92 and SPEC ’95 [9]. That is, the results produced
by about 49% of the register result-producing instruc-
tions can be accurately predicted by storing the last

Tag Value

Instruction|
Addresg

E—

Hash
Function

!
/IJmUOOmO\

Preldictgd Data Value
7 pd

Vv

w
Prediction Valid

Figure 1: Block Diagram illustrating
Last Outcome-based Value Predictor

result of each register result-producing instruction. Li-
pasti et al also measured the theoretical upper limit on
the prediction accuracy obtainable by storing the last
4 results of each static instruction, and assuming that
the predictor is able to perfectly choose the required
result from these 4 values. This hypothetical scheme
provided an average prediction accuracy of 61%.

3 Schemes for Accurate Data
Value Prediction

Previous studies of realistic data value prediction
schemes [8] [9] considered storing the result of the last
instance of each register result-producing instruction,
and selecting one out of those results as the next pre-
diction. These studies obtained prediction accuracies
of only about 49%, with a large number of mispredic-
tions. It is important to decrease the number of mis-
predictions, because each misprediction causes some
instruction re-executions, which can lead to increased
structural hazards and increased execution time [9]. In
this section, we describe techniques that substantially
improve the accuracy of data value prediction.

It is important to note that a plethora of tech-
niques have been proposed for carrying out highly ac-
curate branch predictions. These techniques include
2-level predictors, correlation-based predictors, and
hybrid predictors [11] [12] [15]. However, it is not
possible to directly apply these techniques to data
value prediction, because branch prediction involves
merely a binary decision (i.e., an l-out-of-2 predic-
tion), whereas data value prediction involves a multi-

Value History Table (VHT)

283

value decision (i.e., an 1-out-of-2" prediction, where
W is the word size of the computer). Nevertheless,
it is worthwhile to take cues from the vast body of
research on branch prediction.

3.1 Data Value Locality

Qur initial objective is to study the amount of past
history that needs to be considered in making data
value predictions. Too little of history may result in
poor prediction accuracy. Too much of history, on the
other hand, may result in high hardware overheads,
high time overhead for accessing the history, dimin-
ishing returns in terms of prediction accuracy, and
sometimes even poorer prediction accuracies! As a
first step, we stored the most recent 16 value history
of each instruction in a separate 16-value buffer, and
measured how often the result of the next instruction
is present in its buffer. Table 1 gives the percentage of
register result-producing instructions that have their
result in their 16-depth history buffers. These values
are for the MIPS R2000 architecture and for the SPEC
’92 integer benchmark suite. From the table we can
see that, except for compress and eqntott, more than
70% of the register result-producing instructions have
their results available in their 16-depth history buffer.
Thus, there is good repeatability of register results.

Percentage of VP-FEligible
Dynamic Instructions
Program whose Results are available
in their 16-Depth History Buffers

compress 39.47%
eqntott 56.36%
espresso 75.26%
gec (ccl) 74.89%
sC 79.33%
xhisp 72.16%

Table 1: Register Value Locality
for a History Depth of 16

Storing 16 values per static instruction, and select-
ing one among the 16 values is still a cumbersome task
for the hardware. Perhaps many of the values present
in a 16-depth history buffer are even identical! If the
duplicate values are eliminated, then the number of
choices the predictor has to deal with is reduced. We
shall next see how many of the 16 values are unique.
Figure 2 presents a graph showing the cumulative dis-
tribution of dynamic instructions based on the number
of unique values among their 16-depth history buffers.
The X-axis denotes the number of unique values in the
16-depth history buffers, and the Y-axis denotes the

percentage of register result-producing instructions. A
particular data point (X1, Y1) on the graph indicates
that Y1 % of register result-producing instructions have
X1 or less number of unique value in their 16-depth
history buffers. The data points for the graph were
obtained as follows. A history buffer of 16 entries is
provided for each static instruction. Every time a reg-
ister result is produced by an instruction, the number
of unique data values in its history buffer 1s counted.
If the count is C, then the data sets for X > (' are
incremented by one instruction each.

From the data points for X = 1, we can see that
about 15-45% of the instructions have all of their pre-
vious 16 results to be the same. That is, there is little
change in the values produced by different instances of
those instructions. Therefore, it would be worthwhile
to exploit this behavior; the last outcome scheme that
we saw In section 2.2 attempts to do precisely this.
From the graph, we can also see that about 28-67% of
the instructions have 4 or fewer unique values in their
16-depth history buffer. That is, for a large number
of instructions, the results are constantly changing,
but are still circulating within 4 or fewer values. The
results produced by these instructions cannot be ac-
curately predicted by the last outcome scheme. We
shall next investigate schemes to accurately predict
the results of these instructions.

g

wm
[=}
53

IS
Q
®

30% »——X COmpress
XX QIO

A—mn espresso

Percentage of VP-Eligible Instructions
»N
Q
2

% Xnmmn x gee (cct)
10%
a-—a Xlisp

T 2 %3 4 & & 7 &8 5 o 11 12 i3 14 15
Number of Unique Values in 16-depth History Buffer

Figure 2: Cumulative Distribution of
VP-Eligible Instructions
Based on Number of Unique Values
in their 16-Depth History Buffers

284

3.2 Stride-based Value Prediction

One way to capture data value locality is by moni-
toring the stride by which the results of consecutive
instances of an instruction change. If the results vary
by a constant stride, then it is easy to predict the re-
sults of future instances of that instruction. The con-
cept of stride-based speculation is, by no means, new.
It works well because of loop induction variables and
programs stepping through arrays in a regular fashion,
and has been successfully employed for generating ad-
dresses for prefetching data into caches [3] [4].

Figure 3(a) gives a block diagram of a simple
stride-based value predictor. Its VHT entry has 4
fields—Tag, State, Value, and Stride. The state
can have one of 3 values—Init, Transient, and Steady.
The state transition diagram is given in Figure 3(b).
The basic step in a stride-based predictor is the stride
detection phase, which aims at detecting a stride se-
quence. The first time an instruction is encountered
(as evident from a miss in the VHT), no prediction is
made. When the instruction produces its result, an
entry 1s allocated in the VHT, and the following ac-
tions take place: (i) the result is stored in the Value
field of that entry, and (ii) the State of that entry is

Value History Table (VHT)

Tag State Value Stride

}—
D b
E |—i
Instruction c
Address Hash
] Function |} ©
D
E
R
—
Predicted Data Value
s
w
Prediction Valid
0]
VHT miss/ Any stride/ Same stride/
Update vaiue Update value and stride Update value

Transient
[Don't predict]

Steady
[Predict]

o5
'”s,s Different stride/
Update value and stride

(i)

Figure 3: Block Diagram and State Transition Dia-
gram for a Simple Stride-based Value Predictor

\Same stride/
pdate value

set to Init. While in the In:f state, if another instance
of the same instruction is encountered, no prediction
is made. However, when that instance produces a re-
sult (D1), that is potentially the beginning of a stride
sequence, and the following actions take place: (i) the
stride is calculated as S1 = D1 —Value in VHT entry,
(i1) D1 and S1 are entered in the Value and Stride
fields of the VHT entry, and (iii) the State is set to
Transient. While in the Transient state, if another in-
stance of the same instruction is encountered, no pre-
diction is made. When that instance produces a result
(D2), the following actions take place: (i) the stride
is calculated as 52 = D2 — Value in VHT entry, (ii)
D2 is entered in the Value field of the VHT entry, and
(i11) if S2 is same as previous stride, the State is set to
Steady, else S2 is entered in the Stride field. While in
the Steady state, predictions are made by adding to-
gether the Value and Stride fields; if a different stride
appears, then the State is set to Transient. This sim-
ple 3-state scheme can detect most strides.

3.3 Two-Level Value Prediction

Another scheme to capture the recurrence of a be-
havior pattern among instruction results is to use an
elaborate two-level prediction scheme. Although two-
level prediction schemes have provided high accuracy
for branch prediction [5] [15], incorporating the 2-level
prediction concept into data value prediction is not as

Value History Table (VHT)

Value

LRU History

Tag Info Data Values Pattern Pattern History
/__ Table {PHT)

— —-————

D |— D it]

E E o
Instruction c c

Address Hash |_4]
Function]] © o
D D
E E
R R
2p
W1 2
41

MUX

QRN

7] oovocooo0000
000000000601

A RERRRRRRRRRE

Predicted
Data Vaiu

straightforward as incorporating it into branch pre-
diction. The primary difficulty is that the result of
an instruction can take any one of 2% values, where
W is the width of a register. How do we aspire to
capture behavior patterns among 2% values, for rea-
sonable values of W such as 32 and 647 To solve this
problem, we took into consideration our earlier obser-
vation from Figure 1 that a substantial percentage of
the dynamic instructions have 4 or fewer unique values
in their most recent history. By storing a maximum of
4 most recent unique values for each instruction, and
by doing a binary encoding of these 4 outcomes, we
can capture behavior patterns using a 2-level predictor
that performs 1-out-of-4 predictions.

Figure 4 shows a block diagram of a 2-level value
predictor that stores up to 4 unique values for each
static instruction. The VHT has 4 fields—Tag, LRU
Info, Data Values, and Value History Pattern.
The Data Values field stores up to 4 most recent
unique values. The 4 values are associated with the
binary encoding {00, 01, 10, 11}. So long as the dif-
ferent instances of an instruction keep producing one
of these 4 values, the result can be predicted by se-
lecting one of the 4 outcomes from {00, 01, 10, 11},
and taking the value currently associated with that
outcome. When a fifth unique value is produced, it
replaces from the Data Values field the least recently
seen value. The LRU Info field keeps track of the or-
der in which the 4 data values were last seen. The
Value History Pattern field stores as a 2p-bit pat-
tern the last p outcomes of an instruction. Because
there are 4 possible outcomes for an instruction, 2 bits
are required to store each outcome. The second level
of the predictor is the Pattern History Table (PHT).
For each possible 2p-bit pattern, a condensed history
of the previous outcomes of the pattern is recorded
in a PHT entry by means of 4 independent up/down
counter values {Cq, C1, Cs, Cs}, as in [5].

The 2-level predictor works as follows. When a
prediction is to be made for an instruction, the appro-
priate VHT entry is selected, and its Tag field checked
to determine if the entry corresponds to that instruc-
tion. If so, its Value History Pattern value is used
to select the appropriate PHT entry. The PHT en-
try contains 4 count values, from which the maximum
value is determined. (If there is a tie, one of the values
can be selected at random, or based on last outcome.)

Jf the maximum value is greater than or equal to a spe-
=7~ cific threshold value, then the outcome corresponding

to that count value is selected as the next prediction.

Prediction vaid — 11 the maximum count value is less than the threshold,

Figure 4: Block Diagram of a 2-Level Value Predictor

285

then no prediction is made.

The 2-level predictor is updated as follows. The
Value History Pattern of the selected VHT entry is
shifted left by 2 bits, and the new outcome is entered
in the bits left vacant by the shift. The selected PHT
entry’s counter values are updated in the following
manner. The count value corresponding to the correct
outcomeis incremented by 3 (or less, if the counter sat-
urates), and all other counter values are decremented
by 1 (if they are non-zero).

4 Performance Evaluation

We have seen three schemes to carry out accurate data
value predictions. This section presents results ob-
tained from a simulation study of these schemes.

4.1 Experimental Setup

The simulation studies are conducted using the MIPS
instruction set architecture (ISA), a representative of
the class of streamlined ISAs that have emerged re-
cently. The simulator accepts executable images of
MIPS programs, and simulates the functional part of
their execution.

4.1.1 Benchmarks and Performance Metrics

For benchmarks, we use the SPEC ’92 integer suite.
All programs were compiled using the MIPS C com-
piler with the optimization flags distributed in the
SPEC benchmark makefiles. To get good insight on
the value predictor’s performance, we use 3 metrics:
(1) Percentage of instructions correctly predicted, (ii)
Percentage of instructions mispredicted, and (iii) Per-
centage of instructions not predicted. All of the met-
rics are expressed as percentage of the total number
of register result-producing instructions.

4.1.2 Default Parameters for the Study

e Number of instructions simulated: The bench-
marks were simulated up to 100 million in-
structions or up to completion, depending on
whichever occurred earlier.

o Value History Table: For all schemes, the VHT
has 4K entries, and is direct-mapped.

o 2-level predictor parameters: The default pattern
size is 6, and the number of values stored per
VHT entry is 4. Thus, the PHT has 4K entries.
The PHT counters saturate at 12. Three different

286

values are used for the PHT counter threshold—
3,6, and 9.

Data value prediction is carried out only for those
instructions that produce a single register result. Thus
branch instructions, store instructions, nops, and
double-precision instructions are not considered for
data value prediction. Table 2 gives the percentage of
dynamic instructions that are eligible for data value
prediction for each benchmark.

Program Percentage of Instructions
eligible for Value Prediction |

compress 64.05%
eqntott 60.82%
espresso 69.06%
gee {ccl) 57.22%
sc 54.07%
xlisp 45.66%

Table 2: Benchmarks and Percentage of Instructions
Eligible for Value Prediction

4.2 Experimental Results

Figure 5 presents the results that we obtained in
our simulation experiments. The X-axis denotes the
benchmarks, and the Y-axis denotes the percentage
of VP-eligible instructions. For each benchmark, 6
bar charts are given; these correspond respectively to
the (i) last outcome scheme, (ii) last outcome scheme
with confidence indicator, (iii) stride scheme, (iv) 2-
level scheme (with PHT counter threshold value 3),
(v) 2-level scheme (with PHT counter threshold value
6}, and (vi) 2-level scheme (with PHT counter thresh-
old value 9). Each bar consists of 3 or fewer parts.
The bottom-most part indicates the percentage of VP-
eligible instructions that are correctly predicted by a
scheme. The next part indicates the percentage that
is mispredicted, and the next part indicates the per-
centage that was not predicted by the scheme.

Let us go through the results of Figure 5 in some
detail. A comparison of the first and second bars of
each benchmark shows that when value prediction is
performed by monitoring the stride, the percentage of
mispredictions has dropped substantially, with a cor-
responding increase. in the percentage of instructions
that are not predicted. The net result is that the pre-
diction accuracy has increased substantially for the
predicted instructions. The last 3 sets of bars, for the
2-level prediction schemes, indicate that these schemes
also provide good improvement in prediction accuracy
for the predicted instructions. When the threshold is

varied from 3 to 9, there is a substantial drop in mis-
predictions, with a slight drop in number of correct
predictions. Thus, the stride-based value predictor
and 2-level value predictors provide reasonably high
percentage of correct predictions (about 50% of regis-
ter result-producing instructions), with very small per-
centage of mispredictions (about 5% of register result-
producing instructions).

5 Hybrid Predictors

The results of Figure 5 show that no single scheme can
get high prediction accuracies for every benchmark.
For eqntott and espresso, compared to the basic last
outcome scheme, the stride-based prediction scheme
does not give much improvement, whereas the 2-level

predictor gives good improvement. On the other hand,
for compress and sc, the stride-based predictor gives
good improvement, while the 2-level predictor fails to
give improvement. (The reason why 2-level predictor
performs poorly for compress can be deduced from
Figure 2, which shows that compress has much more
than 4 unique values in its recent history.) Because
different benchmarks have different data value locality
characteristics that can be exploited only by different
schemes, it is better to use hybrid predictors to get
good prediction accuracy over a set of benchmarks.

We investigate two hybrid predictors in this paper.
The first one is a combination of last outcome-based
prediction and stride-based prediction. The second
one 1s a combination of 2-level prediction and stride-
based prediction.

é}
&
@
@ (8]
o £
5 & X
3 OS § ‘(\‘65“0\ 5\\0\‘56\
7 58 ® T e g
3OS Ve 2,\e~1;_\eve\ (thresnod)
womd LT
90% 1
80% 1
(23
5 70%1
60% 1
50% 1

40% 1

30% 1

Percentage of VP-Eligible Instruct

20% 1

10%J

compress eqntott

espresso

Benchmarks

gec{cet)

Not predicted

Incorrectly predicted

Correctly predicted

sc xlisp

Figure 5: Simulation Results for Last Outcome, Stride-Based, and 2-Level Predictors

5.1 Hybrid of Stride-Based and Last
Outcome Predictors

In the stride-based predictor discussed in Section 3,
the predictor does not make any prediction if the se-
lected VHT entry is in state Init or Transii, because
a stride has not yet been registered. Our first hybrid
predictor is a modification of this stride-based predic-
tor. This hybrid predictor makes predictions even if
the VHT entry is in the Init state or Transitstate. In
the Transit state, 1t predicts the last outcome, and in
the Init state, it predicts a value of zero.

5.2 Hybrid of 2-Level and Stride-
Based Predictors

The second hybrid predictor that we investigate com-
bines a 2-level predictor and a stride-based predictor.
Figure 6 shows the block diagram of this hybrid pre-
dictor. Compared to the VHT of the 2-level predic-
tor, this hybrid predictor’s VHT entry has two addi-
tional fields—State and Stride. This hybrid predic-

Value History Table (VHT)

tor works as follows. When a prediction is to be made
for an instruction, the appropriate VHT entry is se-
lected, and its Tag field checked as before. In parallel,
the Value History Pattern and the State fields are
read out for the 2-level predictor and the stride-based
predictor. The 2-level predictor makes a prediction if
the maximum count value in the selected PHT entry
is greater than the specified threshold value. If the
2-level predictor makes a prediction, then that value
is selected as the hybrid predictor’s prediction. If the
2-level predictor does not make a prediction, then the
value predicted (if any) by the stride-based predictor
is selected. :

5.3 Experimental Results

We conducted simulation studies with the two hybrid
predictors. For forming the hybrid predictor, we used
the 2-level predictor with PHT counter threshold value
6. Figure 7 shows the simulation results obtained for
the two hybrid predictors. For ease of comparison, the
results for the last outcome predictor, the stride-based
predictor, and the 2-level predictor (with threshold 6)
are reproduced from Figure 5.

State (RU Value History
Tag Stride Info Data Values Pattern
/ Pattern History Table (PHT)
] 000000000000
— L 000000000001
D }— D t—-
E E
Instruction c C
Address Hash

Function o ™ o
D D
E E
R R

\ \ 111111111111

=g w 2
41
MUX :v:vz>
1 21 {Predicted Data Value
MUX
4:1
MUX A * v

Prediction Valid

Figure 6: Block Diagram of Hybrid (2-Level, Stride) Predictor

288

From Figure 7, we can see that with the first hy-
brid predictor, the percentage of correct predictions
is higher than that of both the last outcome pre-
dictor and the stride-based predictor. The percent-
age increase over that of stride-based predictor varies
from about 0.5% (for compress) to about 12% (for
espresso). But, there is a performance price to pay
here. Because this hybrid predictor predicts the re-
sults for all register result-producing instructions, the
percentage of mispredictions is very high. Therefore,
this predictor can be useful only in those microarchi-
tectures that permit negligible penalty for value mis-
predictions.

From Figure 7, we can also see that with the second
hybrid predictor, the percentage of correct predictions
has increased substantially. For eqntott and sc, this
percentage is now more than 80%. That is, the results
of more than 80% of the register result-producing in-
structions in these two benchmarks can be correctly

((\e.\
© \;\00
£ 2 O
g &)
E & NS
s ¢ ade)
3

100% 1

90% 1

80%1

70%1

60% 1

50% 1

40% 1

Percentage of VP-Eligible Instructions

30% 1

20%1

10% 1

COMPress eqntott espresso

predicted with this hybrid predictor. For the remain-
ing benchmarks, the percentage of correct predictions
varies from about 50% (for compress) to about 72%
(for espresso). The percentage of mispredictions with
this hybrid predictor ranges from about 5% (for com-
press) to about 18% (for xlisp).

6 Summary and Conclusions

We have investigated techniques to carry out highly
accurate data value prediction in ILP processors. The
central idea behind these techniques is to monitor the
behavior pattern of each instruction result in order to
do better predictions for the future. The stride-based
predictor monitors the stride by which the result val-
ues produced by successive instances of an Instruction
vary, and then uses this information to predict the re-
sult of future instances of that instruction. The 2-level
predictor stores the last 4 unique results produced by
different instances of an instruction, and uses a 2-levels
of history to predict the result of future instances. The
first level table stores the history of the previous re-
sults as a pattern, and the second level stores the his-
tory of each pattern.

Not predicted

Incorrectly predicted

Correctly predicted

gee(eet)

Benchmarks

Figure 7: Simulation Results for Hybrid Predictors

289

We also presented simulation results for these two
schemes. These results show that about 50% of the
register result-producing instructions can be correctly
predicted, with mispredictions averaging about 5%,
which 1s a marked improvement over the previously
proposed scheme of using the last outcome as the ba-
sis of prediction. Finally, we investigated two hybrid
predictors each of which is a combination of two of the
above three predictors. One of the hybrid predictors
was able to correctly predict the results of about 50-
82% of the register result-producing instructions. The
percentage of mispredictions with this hybrid predic-
tor ranged from about 5-18%. These results are very
promising because fewer mispredictions translates di-
rectly into fewer cycles wasted due to (i) instruction
re-execution and (ii) structural hazards.

Acknowledgements

This work was supported by the US National Science
Foundation (NSF) Research Initiation Award, CCR
9410706. We thank the reviewers for their helpful
comments, which have helped improve the quality of
the paper.

References

[1] T. M. Austin and G. S. Sohi, “Dynamic Depen-
dency Analysis of Ordinary Programs,” Proceed-
ings of 19th Annual International Symposium on
Computer Architecture, pp. 342-351, 1992.

[2] M. Butler, T. Yeh, Y. Patt, M. Alsup, H. Scales,
and M. Shebanow, “Single Instruction Stream
Parallelism Is Greater than Two,” Proceedings of

18th Annual International Symposium on Com-
puter Architecture, pp. 276-286, 1991.

[3] T. Chen and J-L. Baer, “Effective Hardware-
Based Data Prefetching for High-Performance
Processors,” IEEE Transactions on Computers,
vol. 44, no. 5, pp. 609-623, May 1995.

[4] F. Dahlgren and P. Stenstrom, “Evaluation of
Hardware-Based Stride and Sequential Prefetch-
ing in Shared-Memory Multiprocessors,” [EEE
Transactions on Parallel and Distributed Sys-
tems, vol. 7, no. 4, pp. 385-398, April 1996.

[6] S. Dutta and M. Franklin, “Control Flow Pre-
diction with Tree-like Subgraphs for Superscalar
Processors,” Proc. 28th International Symposium

290

on Microarchitecture (MICRO-28), pp. 258-263,
1995.

[6] W. W. Hwu et al, “Compiling for ILP Proces-
sors,” Proceedings of the IFEE, Vol. 83, No. 12,
December 1995.

[7]1 M. S. Lam and R. P. Wilson, “Limits of Control
Flow on Parallelism,” Proceedings of 19th Annual
International Symposium on Compuler Architec-
ture, pp. 46-57, 1992.

[8] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen,
“Value Locality and Load Value Prediction,” Pro-
ceedings of VIIth International Conference on Ar-

chitectural Support for Programming Languages
and Operating Systems (ASPLOS-VII), 1996.

[9] M. H. Lipasti and J. P. Shen, “Exceeding the
Dataflow Limit via Value Prediction,” Proceed-
mgs of 29th International Symposium on Mi-
croarchitecture (MICRO-29), pp. 226-237 1996.

[10] R. K. Montoye, E. Hokenek, and S. L. Runyon,
“Design of the IBM RISC Ssytem/6000 Floating-
Point Execution Unit,” IBM Journal of Research
and Development, Vol. 34, No. 1, pp. 59-70, Jan-
uary 1990

[11] R. Nair, “Dynamic Path-Based Branch Correla-
tion,” Proc. 28th Annual International Sympo-
sium on Microarchitecture (MICRO-28), 1995.

[12] S-T. Pan, K. So, and J. T. Rahmeh, “Improving
the Accuracy of Dynamic Branch Prediction Us-
ing Branch Correlation,” Proceedings of the Fifth
International Conference on Architectural Sup-
port for Programming Languages and Operating
Systems (ASPLOS-V), pp. 76-84, 1992.

[13] J. E. Smith and G. S. Sohi, “The Microarchitec-
ture of Superscalar Processors,” Proceedings of
the IEEE, Vol. 83, No. 12, pp. 1609-1624, De-
cember 1995.

[14] A. Sodani and G. S. Sohi, “Dynamic Instruction
Reuse,” Proceedings of 24th Annual International
Symposium on Computer Architecture, 1997.

[15] T-Y Yeh and Y. N. Patt, “Alternative Imple-
mentations of Two-Level Adaptive Branch Pre-
diction,” Proceedings of the 19th Annual Interna-

tional Symposium on Computer Architecture, pp.
124-134, 1992.

