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Multiprocessors
• why would you want a multiprocessor?
• what things can it do well?
• What things can’t it do well?
• What things can it do that a bunch of computers can’t do?
• How much are you willing to pay?
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Classifying Multiprocessors

• Flynn Taxonomy

• Interconnection Network

• Memory Topology

• Programming Model
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Flynn Taxonomy
• SISD (Single Instruction Single Data)

– Uniprocessors

• MISD (Multiple Instruction Single Data)
– ???

• SIMD (Single Instruction Multiple Data)
– Examples: Illiac-IV, CM-2

» Simple programming model
» Low overhead
» All custom

• MIMD (Multiple Instruction Multiple Data)
– Examples: many, nearly all modern MPs

» Flexible
» Use off-the-shelf micros

CSE 240B Dean Tullsen

Interconnection Network

• Bus
• Network
• pros/cons?
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Memory Topology

• UMA (Uniform Memory Access)
• NUMA (Non-uniform Memory Access)
• pros/cons?

cpu

cpu

cpu

cpu

.

.

.

M

M

M

M

.

.

.

Network

Network

Cache

Processor

Cache

Processor

Cache

Processor

Memory Memory Memory

Cache

Processor

Cache

Processor

Cache

Processor

Single bus

Memory I/O

CSE 240B Dean Tullsen

Programming Model

• Shared Memory -- every processor can name every address location
• Message Passing -- each processor can name only it’s local memory.  

Communication is through explicit messages.

shared memory architecture with network interconnection sometimes called 
Distributed Shared Memory (DSM)
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Parallel Programming -- Review

Processor A

index = i++;

Processor B

index = i++;

• Shared-memory programming requires synchronization to 
provide mutual exclusion and prevent race conditions
– locks (semaphores)
– barriers

i = 47
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Communication Models
• Shared Memory

– Processors communicate with shared address space
– Easy on small-scale machines
– Advantages:

Model of choice for uniprocessors, small-scale MPs
Ease of programming
Lower latency
Easier to use hardware controlled caching

• Message passing
– Processors have private memories, communicate via messages
– Advantages:

Less hardware, easier to design
Focuses attention on costly non-local operations

• Can support either model on either HW base
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Small-Scale Multiprocessors
— Shared Memory

• Caches serve to:
– Reduce latency of access
– Preserve bus/memory 

bandwidth
– Valuable for both private 

data and shared data
• What about cache 

coherence/consistency?
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What Does Coherence Mean?
• Informally:

– Any read must return the most recent write
– Too strict and very difficult to implement

• Better:
– A processor sees its own writes to a location in the correct 

order.
– Any write must eventually be seen by a read
– All writes are seen in order (“serialization”).  Writes to the 

same location are seen in the same order by all processors.

• Without these guarantees, synchronization doesn’t 
work.
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Potential Solutions

• Snooping Solution (Snoopy Bus):
– Send all requests for unknown data to all processors
– Processors snoop to see if they have a copy and respond accordingly 
– Requires “broadcast”, since caching information is at processors
– Works well with bus (natural broadcast medium)
– Dominates for small scale machines (most of the market)

• Directory-Based Schemes
– Keep track of what is being shared in one centralized place
– Distributed memory => distributed directory (avoids bottlenecks)
– Send point-to-point requests to processors
– Scales better than Snoop
– Actually existed BEFORE Snoop-based schemes
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Basic Snoopy Protocols
• Write Invalidate Protocol:

– Write to shared data:  an invalidate is sent to all caches which snoop 
and invalidate any copies

– Read Miss: 
Write-through: memory is always up-to-date
Write-back: snoop in caches to find most recent copy

• Write Update Protocol:
– Write to shared data: broadcast on bus, processors snoop, and update

copies
– Read miss: memory is always up-to-date

• Write serialization: bus serializes requests
– Bus is single point of arbitration
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Basic Snoopy Protocols

• Write Invalidate versus Broadcast:
– Invalidate requires one transaction per write-run
– Invalidate exploits spatial locality: one transaction per block

– Broadcast has lower latency between write and read
– Broadcast: BW (increased) vs. latency (decreased) tradeoff
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An Example Snoopy Protocol

• Invalidation protocol, write-back cache
• Each block of memory is in one state:

– Clean in all caches and up-to-date in memory
– Dirty in exactly one cache
– Not in any caches

• Each cache block is in one state:
– (S)hared: block can be read
– (E)xclusive: cache has only copy, its writeable, and dirty
– (I)nvalid: block contains no data

• Read misses: cause all caches to snoop
• Writes to clean line are treated as misses
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Snoopy-Cache State Machine 
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Example

P1 P2 Bus Memory
step State Addr ValueState Addr ValueActionProc.Addr ValueAddrValu

P1: Write 10 to A1 E A1 10 I WM 1 A1 A1 old
P1: Read A1 E A1 10
P2: Read A1 abort RM

WB 1 A1 10 A1 10
S A1 10 S A1 10 RM 2 A1 10

P2: Write 20 to A1 I E A1 20 WM 2 A1 A1 10
P2: Write 40 to A2 I E A2 40 WB 2 A1 20 A1 20

WM 2 A2 40 A2 old

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

ESI Protocol
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Snoopy Cache: State Machine

Extensions: 
– Fourth State: Ownership
– Clean exclusive state (no miss for 

private data on write)
Illinois Protocol (also MESI)

– Cache-cache transfers
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Multiprocessors -- Key Points

• Network vs. Bus
• Message-passing vs. Shared Memory
• Shared Memory is more intuitive, but creates problems for 

both the programmer (memory consistency, requiring 
synchronization) and the architect (cache coherence).


