
CSE 240B Dean Tullsen

CSE 240B
Advanced Computer Architecture

Dean Tullsen

CSE 240B Dean Tullsen

Multiprocessors and Multiprocessing

CSE 240B Dean Tullsen

Multiprocessors
• why would you want a multiprocessor?
• what things can it do well?
• What things can’t it do well?
• What things can it do that a bunch of computers can’t do?
• How much are you willing to pay?

Cache

Processor

Cache

Processor

Cache

Processor

Single bus

Memory I/O

CSE 240B Dean Tullsen

Classifying Multiprocessors

• Flynn Taxonomy

• Interconnection Network

• Memory Topology

• Programming Model

CSE 240B Dean Tullsen

Flynn Taxonomy
• SISD (Single Instruction Single Data)

– Uniprocessors

• MISD (Multiple Instruction Single Data)
– ???

• SIMD (Single Instruction Multiple Data)
– Examples: Illiac-IV, CM-2

» Simple programming model
» Low overhead
» All custom

• MIMD (Multiple Instruction Multiple Data)
– Examples: many, nearly all modern MPs

» Flexible
» Use off-the-shelf micros

CSE 240B Dean Tullsen

Interconnection Network

• Bus
• Network
• pros/cons?

Cache

Processor

Cache

Processor

Cache

Processor

Single bus

Memory I/O

Network

Cache

Processor

Cache

Processor

Cache

Processor

Memory Memory Memory

CSE 240B Dean Tullsen

Memory Topology

• UMA (Uniform Memory Access)
• NUMA (Non-uniform Memory Access)
• pros/cons?

cpu

cpu

cpu

cpu

.

.

.

M

M

M

M

.

.

.

Network

Network

Cache

Processor

Cache

Processor

Cache

Processor

Memory Memory Memory

Cache

Processor

Cache

Processor

Cache

Processor

Single bus

Memory I/O

CSE 240B Dean Tullsen

Programming Model

• Shared Memory -- every processor can name every address location
• Message Passing -- each processor can name only it’s local memory.

Communication is through explicit messages.

shared memory architecture with network interconnection sometimes called
Distributed Shared Memory (DSM)

Network

Cache

Processor

Cache

Processor

Cache

Processor

Memory Memory Memory

CSE 240B Dean Tullsen

Parallel Programming -- Review

Processor A

index = i++;

Processor B

index = i++;

• Shared-memory programming requires synchronization to
provide mutual exclusion and prevent race conditions
– locks (semaphores)
– barriers

i = 47

CSE 240B Dean Tullsen

Communication Models
• Shared Memory

– Processors communicate with shared address space
– Easy on small-scale machines
– Advantages:

Model of choice for uniprocessors, small-scale MPs
Ease of programming
Lower latency
Easier to use hardware controlled caching

• Message passing
– Processors have private memories, communicate via messages
– Advantages:

Less hardware, easier to design
Focuses attention on costly non-local operations

• Can support either model on either HW base

CSE 240B Dean Tullsen

Small-Scale Multiprocessors
— Shared Memory

• Caches serve to:
– Reduce latency of access
– Preserve bus/memory

bandwidth
– Valuable for both private

data and shared data
• What about cache

coherence/consistency?

Cache

Processor

Cache

Processor

Cache

Processor

Single bus

Memory I/O

CSE 240B Dean Tullsen

What Does Coherence Mean?
• Informally:

– Any read must return the most recent write
– Too strict and very difficult to implement

• Better:
– A processor sees its own writes to a location in the correct

order.
– Any write must eventually be seen by a read
– All writes are seen in order (“serialization”). Writes to the

same location are seen in the same order by all processors.

• Without these guarantees, synchronization doesn’t
work.

CSE 240B Dean Tullsen

Potential Solutions

• Snooping Solution (Snoopy Bus):
– Send all requests for unknown data to all processors
– Processors snoop to see if they have a copy and respond accordingly
– Requires “broadcast”, since caching information is at processors
– Works well with bus (natural broadcast medium)
– Dominates for small scale machines (most of the market)

• Directory-Based Schemes
– Keep track of what is being shared in one centralized place
– Distributed memory => distributed directory (avoids bottlenecks)
– Send point-to-point requests to processors
– Scales better than Snoop
– Actually existed BEFORE Snoop-based schemes

CSE 240B Dean Tullsen

Basic Snoopy Protocols
• Write Invalidate Protocol:

– Write to shared data: an invalidate is sent to all caches which snoop
and invalidate any copies

– Read Miss:
Write-through: memory is always up-to-date
Write-back: snoop in caches to find most recent copy

• Write Update Protocol:
– Write to shared data: broadcast on bus, processors snoop, and update

copies
– Read miss: memory is always up-to-date

• Write serialization: bus serializes requests
– Bus is single point of arbitration

CSE 240B Dean Tullsen

Basic Snoopy Protocols

• Write Invalidate versus Broadcast:
– Invalidate requires one transaction per write-run
– Invalidate exploits spatial locality: one transaction per block

– Broadcast has lower latency between write and read
– Broadcast: BW (increased) vs. latency (decreased) tradeoff

CSE 240B Dean Tullsen

An Example Snoopy Protocol

• Invalidation protocol, write-back cache
• Each block of memory is in one state:

– Clean in all caches and up-to-date in memory
– Dirty in exactly one cache
– Not in any caches

• Each cache block is in one state:
– (S)hared: block can be read
– (E)xclusive: cache has only copy, its writeable, and dirty
– (I)nvalid: block contains no data

• Read misses: cause all caches to snoop
• Writes to clean line are treated as misses

CSE 240B Dean Tullsen

Snoopy-Cache State Machine

Invalid

Exclusive
(read/write)

Write miss for
this block

Write miss
for this block

CPU write hit
CPU read hit

Cache state transitions based
on requests from the bus

CPU write

Pl
ac

e
w

rit
e

m
is

s o
n

bu
s

CPU re
ad

 m
iss

W
rite

-ba
ck

 bl
oc

k

Plac
e w

rite
 m

iss
 on

 bu
s

CPU w
rite

Place read miss on bus

Place read
miss on bus

W
rit

e-
ba

ck
 b

lo
ck

;
ab

or
t m

em
or

y
ac

ce
ss

W
rite

-ba
ck

 bl
oc

k;
ab

ort

mem
ory

 ac
ces

s

CPU read

Cache state transitions
based on requests from CPU

Shared
(read only)

Exclusive
(read/write)

CPU read hit

CPU write miss

Write-back cache block
Place write miss on bus

CPU
read
miss

Read miss
for this block

Invalid
Shared

(read only)

CSE 240B Dean Tullsen

Example

P1 P2 Bus Memory
step State Addr ValueState Addr ValueActionProc.Addr ValueAddrValu

P1: Write 10 to A1 E A1 10 I WM 1 A1 A1 old
P1: Read A1 E A1 10
P2: Read A1 abort RM

WB 1 A1 10 A1 10
S A1 10 S A1 10 RM 2 A1 10

P2: Write 20 to A1 I E A1 20 WM 2 A1 A1 10
P2: Write 40 to A2 I E A2 40 WB 2 A1 20 A1 20

WM 2 A2 40 A2 old

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

ESI Protocol

CSE 240B Dean Tullsen

Snoopy Cache: State Machine

Extensions:
– Fourth State: Ownership
– Clean exclusive state (no miss for

private data on write)
Illinois Protocol (also MESI)

– Cache-cache transfers

CSE 240B Dean Tullsen

Multiprocessors -- Key Points

• Network vs. Bus
• Message-passing vs. Shared Memory
• Shared Memory is more intuitive, but creates problems for

both the programmer (memory consistency, requiring
synchronization) and the architect (cache coherence).

