
CSE 240B Dean Tullsen

Multiprocessor Synchronization and
Consistency

CSE 240B Dean Tullsen

Synchronization

• Why Synchronize? Need to know when it is safe for
different processes to use shared data

• Issues for Syncronization:
– Need an uninterruptable instruction to read and update memory

(atomic operation);
– User level synchronization operations are then built using this

primitive;
– For large scale MPs, synchronization can be a bottleneck; techniques

to reduce contention and latency of synchronization needed

CSE 240B Dean Tullsen

Uninterruptable Instruction to Fetch and
Update Memory

• Atomic exchange: interchange a value in a register for a value in
memory
0 => synchronization variable is free
1 => synchronization variable is locked and unavailable
– Set register to 1 & swap
– New value in register determines success in getting lock

0 if you succeeded in setting the lock (you were first)
1 if other processor had already claimed access

– Write 0 to release lock
– Key is that exchange operation is indivisible
– Can be used to do more powerful things than implement locks.

CSE 240B Dean Tullsen

Uninterruptable Instruction to Fetch and
Update Memory

• Test-and-set: reads a value and sets it atomically
– Special case of atomic exchange
– Most common sync primitive
– 0 means lock free, 1 means locked
– Test-and-set reads the lock variable, and sets it to one. If the value read

was 0, you have acquired the lock. If it was 1, you did not.
– Write 0 to release lock
– Pretty much just used to enable locks.

CSE 240B Dean Tullsen

Uninterruptable Instruction to Fetch and
Update Memory

• Fetch-and-increment: it returns the value of a memory location
and atomically increments it
– 0 => synchronization variable is free, >0 implies locked
– Write 0 to release lock
– Can do more powerful things than implement locks

CSE 240B Dean Tullsen

Example

lock: lw R1, lockaddress

bnez R1, lock

lw R2, varaddress

addi R2, R2, 1

sw R2, varaddress

add R1, R0, R0

sw R1, lockaddress

addi R1, R0, 1

lock: T&S R1, lockaddress

bnez R1, lock

lw R2, varaddress

addi R2, R2, 1

sw R2, varaddress

add R1, R0, R0

sw R1, lockaddress

• This works because test-and-set is atomic
• Notice this could be done with one instruction if we have

fetch-and-increment.

CSE 240B Dean Tullsen

Uninterruptable Instructions to Fetch
and Update Memory

• Hard to have read & write in 1 instruction: use 2 instead
• Load linked (or load locked) + store conditional

– Load linked returns the initial value
– Store conditional only completes the store if no other store to

same memory location since preceeding load load linked. The
SC returns 1 if it succeeds and 0 otherwise.

CSE 240B Dean Tullsen

Uninterruptable Instructions to Fetch
and Update Memory

• Example doing atomic swap with LL & SC:
try: mov R3,R4 ; mov exchange value

ll R2,0(R1) ; load linked
sc R3,0(R1) ; store
beqz R3,try ; branch store fails
mov R4,R2 ; put load value in R4

• Example doing fetch & increment with LL & SC:
try: ll R2,0(R1) ; load linked

addi R2,R2,#1 ; increment (OK if reg–reg)
sc R2,0(R1) ; store
beqz R2,try ; branch store fails

• This is an example of something called non-locking (lock-free)
synchronization. Why? What’s the big advantage?

CSE 240B Dean Tullsen

User Level Synchronization—Operation
Using These Primitives

• Spin locks: processor continuously tries to acquire, spinning around a loop trying
to get the lock

li R2,#1
lockit: exch R2,0(R1) ;atomic exchange

bnez R2,lockit ;already locked?

• What about MP with cache coherency?
– Want to spin on cache copy to avoid full memory latency
– Likely to get cache hits for such variables

• Problem: exchange includes a write, which invalidates all other copies; this
generates considerable bus traffic

CSE 240B Dean Tullsen

User Level Synchronization—Operation
Using These Primitives

• Solution: start by simply repeatedly reading the variable; when it changes, then
try exchange (“test and test&set”):

try: li R2,#1
lockit: lw R3,0(R1) ;load var

bnez R3,lockit ;not free=>spin
exch R2,0(R1) ;atomic exchange
bnez R2,try ;already locked?

CSE 240B Dean Tullsen

Steps for Invalidate Protocol

Step P0 $ P1 $ P2 $ Bus/Direct activity
1. Has lock Sh spins Sh spins Sh None
2. Lock<– 0 Ex Inv Inv P0 Invalidates lock
3. Sh miss Sh miss Sh WB P0; P2 gets bus
4. Sh waits Sh lock = 0 Sh P2 cache filled
5. Sh lock=0 Sh exch Sh P2 cache miss(WI)
6. Inv exch Inv r=0;l=1 Ex P2 cache filled; Inv
7. Inv r=1;l=1 Ex locked Inv WB P2; P1 cache
8. Inv spins Ex Inv None

CSE 240B Dean Tullsen

For Large Scale MPs, Synchronization
Can Be a Bottleneck

• 20 processors spin on lock held by 1 proc, 50 cycles for bus
– 1525 bus operations, over 30,000 cycles for 20 processors to pass through

the lock
– Problem is contention for lock and serialization of lock access:

once lock is free, all compete to see who gets it (each causing an invalidate
storm)

• Alternative:exponential backoff. Why does this help?
• Another alternative: create a list of waiting processors, go through

list: called a “queuing lock”

CSE 240B Dean Tullsen

Barrier Synchronization

• A very common synchronization primitive
• Wait until all threads have reached a point in the program

before any are allowed to proceed further.

computation;
barrier()
communication;
barrier()
repeat:

CSE 240B Dean Tullsen

Another MP Issue: Memory
Consistency Models

• Impossible for both if statements L1 & L2 to be true?
– What if write (or invalidate) is delayed & processor continues?

• Memory consistency models: what are the rules for such cases?
• Sequential consistency: result of any execution is the same as if the accesses of

each processor were kept in order and the accesses among different processors
were interleaved.

– SC: delay all memory accesses until all invalidates done
• Coherence guaranteed some ordering of accesses to A, and of accesses to B,

but provided no guarantees for ordering of A wrt B.

P1:

L1:

A + 0;

...

A = 1;

if (B == 0) ...

P2:

L2:

B = 0;

...

B = 1;

if (A == 0) ..

CSE 240B Dean Tullsen

Sequential Consistency is a Huge Burden

• A write, including all invalidate messages and
acknowledgments, must complete before any subsequent
memory operation (incl. loads) begins.

• Involves more than just accesses to the same location.
• Modern ILP processors violate SC every chance they get!
• Simplifying observation: most well-written parallel

programs are synchronized if they want to get the correct
values. That is, they don’t rely on SC.

CSE 240B Dean Tullsen

Memory Consistency Model
• A program is synchronized if all access to shared data are ordered by

synchronization operations
write (x)
...
release (s) {unlock}
...
acquire (s) {lock}
...
read(x)

• Only those programs willing to be nondeterministic are not synchronized
• There exist several Relaxed Models for Memory Consistency since most

programs are synchronized: characterized by their attitude towards: RAR,
WAR, RAW, WAW to different addresses

CSE 240B Dean Tullsen

Relaxed (or weak) Consistency Models

• Differ according to what guarantees they give the
programmer in regards to memory access ordering.

• Depend on, and must be communicated to, the
programmer.

• Consistency models that require the programmer to change
behavior are doomed to failure.

CSE 240B Dean Tullsen

Consistency Models

Orderings preserved by various consistency models

Model Used In Ordinary
Orderings

Synchronization
Orderings

Sequential
Consistency

Most machines in
an optional mode

R->R, R->W,
W->R, W->W

S->W, S->R, R->S, S-
>S

Total Store
Order
(Processor
Consistency)

IBM S/370, DEC
VAX, SPARC

R->R, R->W,
W->W

S->W, S->R, R->S,
W->S, S->S

Partial Store
Order

SPARC R->R, R->W S->W, S->R, R->S,
W->S, S->S

Weak
Ordering

PowerPC S->W, S->R, R->S,
W->S, S->S

Release
Consistency

Alpha, MIPS Sa->W, Sa->R, R->Sa,
W->Sr, Sa->Sa, Sa-
>Sr, Sr->Sa, Sr->Sr

CSE 240B Dean Tullsen

Consistency Models

CSE 240B Dean Tullsen

Consistency Models

Performance relative to
sequential consistency

0.0

0.6

0.4

0.2

SSBR SS DS16 DS64

Hardware models Hardware models

LU

1.6

0.8

1.4

1.2 1.1 1.1 1.1 1.1 1.1
1.2 1.2

1.4

1.0

Performance relative to
sequential consistency

0.0

1.5

1.0

0.5

SSBR SS DS16 DS64

Ocean

4.0

2.0

3.5

3.0

1.3

1.9

1.4

2.0

1.4

2.2

1.5

3.8

2.5

Total store order Release consistency

CSE 240B Dean Tullsen

Key Points

• High-performance synchronization should conserve
memory/interconnect bandwidth

• Sequential consistency is attractive as a programming
model, but performance is unacceptable.

• Relaxed consistency models allow memory operations to
proceed out of order, by guaranteeing ordering of memory
operations with regards to synchronization, but not
necessarily with each other.

