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Synchronization

• Why Synchronize? Need to know when it is safe for 
different processes to use shared data

• Issues for Syncronization:
– Need an uninterruptable instruction to read and update memory 

(atomic operation);
– User level synchronization operations are then built using this 

primitive;
– For large scale MPs, synchronization can be a bottleneck; techniques 

to reduce contention and latency of synchronization needed
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Uninterruptable Instruction to Fetch and 
Update Memory

• Atomic exchange: interchange a value in a register for a value in 
memory
0 => synchronization variable is free 
1 => synchronization variable is locked and unavailable
– Set register to 1 & swap
– New value in register determines success in getting lock

0 if you succeeded in setting the lock (you were first)
1 if other processor had already claimed access

– Write 0 to release lock
– Key is that exchange operation is indivisible
– Can be used to do more powerful things than implement locks.
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Uninterruptable Instruction to Fetch and 
Update Memory

• Test-and-set: reads a value and sets it atomically
– Special case of atomic exchange
– Most common sync primitive
– 0 means lock free, 1 means locked
– Test-and-set reads the lock variable, and sets it to one.  If the value read 

was 0, you have acquired the lock.  If it was 1, you did not.
– Write 0 to release lock
– Pretty much just used to enable locks.
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Uninterruptable Instruction to Fetch and 
Update Memory

• Fetch-and-increment: it returns the value of a memory location 
and atomically increments it
– 0 => synchronization variable is free, >0 implies locked
– Write 0 to release lock
– Can do more powerful things than implement locks
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Example

lock: lw R1, lockaddress

bnez R1, lock

lw R2, varaddress

addi R2, R2, 1

sw R2, varaddress

add R1, R0, R0

sw R1, lockaddress

addi R1, R0, 1

lock: T&S R1, lockaddress

bnez R1, lock

lw R2, varaddress

addi R2, R2, 1

sw R2, varaddress

add R1, R0, R0

sw R1, lockaddress

• This works because test-and-set is atomic
• Notice this could be done with one instruction if we have 

fetch-and-increment.
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Uninterruptable Instructions to Fetch 
and Update Memory

• Hard to have read & write in 1 instruction: use 2 instead
• Load linked (or load locked) + store conditional

– Load linked returns the initial value
– Store conditional only completes the store if no other store to 

same memory location since preceeding load load linked.  The 
SC returns 1 if it succeeds and 0 otherwise. 
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Uninterruptable Instructions to Fetch 
and Update Memory

• Example doing atomic swap with LL & SC:
try: mov R3,R4 ; mov exchange value

ll R2,0(R1) ; load linked
sc R3,0(R1) ; store
beqz R3,try  ; branch store fails
mov R4,R2  ; put load value in R4

• Example doing fetch & increment with LL & SC:
try: ll R2,0(R1) ; load linked

addi R2,R2,#1 ; increment (OK if reg–reg)
sc R2,0(R1) ; store
beqz R2,try  ; branch store fails

• This is an example of something called non-locking (lock-free) 
synchronization.  Why?  What’s the big advantage?
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User Level Synchronization—Operation 
Using These Primitives

• Spin locks: processor continuously tries to acquire, spinning around a loop trying 
to get the lock

li R2,#1
lockit: exch R2,0(R1) ;atomic exchange

bnez R2,lockit ;already locked?

• What about MP with cache coherency?
– Want to spin on cache copy to avoid full memory latency
– Likely to get cache hits for such variables

• Problem: exchange includes a write, which invalidates all other copies; this 
generates considerable bus traffic
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User Level Synchronization—Operation 
Using These Primitives

• Solution: start by simply repeatedly reading the variable; when it changes, then 
try exchange (“test and test&set”):

try: li R2,#1
lockit: lw R3,0(R1) ;load var

bnez R3,lockit ;not free=>spin
exch R2,0(R1) ;atomic exchange
bnez R2,try ;already locked?
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Steps for Invalidate Protocol

Step P0 $ P1 $ P2 $ Bus/Direct activity
1. Has lock Sh spins Sh spins Sh None
2. Lock<– 0 Ex Inv Inv P0 Invalidates lock
3. Sh miss Sh miss Sh WB P0; P2 gets bus
4. Sh waits Sh lock = 0 Sh P2 cache filled
5. Sh lock=0 Sh exch Sh P2 cache miss(WI)
6. Inv exch Inv r=0;l=1 Ex P2 cache filled; Inv
7. Inv r=1;l=1 Ex locked Inv WB P2; P1 cache
8. Inv spins Ex Inv None
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For Large Scale MPs, Synchronization 
Can Be a Bottleneck

• 20 processors spin on lock held by 1 proc, 50 cycles for bus
– 1525 bus operations, over 30,000 cycles for 20 processors to pass through 

the lock
– Problem is contention for lock and serialization of lock access:

once lock is free, all compete to see who gets it (each causing an invalidate 
storm)

• Alternative:exponential backoff.  Why does this help?
• Another alternative: create a list of waiting processors, go through 

list: called a “queuing lock”
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Barrier Synchronization

• A very common synchronization primitive
• Wait until all threads have reached a point in the program 

before any are allowed to proceed further.

computation;
barrier()
communication;
barrier()
repeat:
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Another MP Issue: Memory 
Consistency Models

• Impossible for both if statements L1 & L2 to be true?
– What if write (or invalidate) is delayed & processor continues?

• Memory consistency models: what are the rules for such cases?
• Sequential consistency: result of any execution is the same as if the accesses of 

each processor were kept in order and the accesses among different processors 
were interleaved.

– SC: delay all memory accesses until all invalidates done
• Coherence guaranteed some ordering of accesses to A, and of accesses to B, 

but provided no guarantees for ordering of A wrt B.

P1:

L1:

A + 0;

...

A = 1;

if (B == 0) ...

P2:

L2:

B = 0;

...

B = 1;

if (A == 0) ..
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Sequential Consistency is a Huge Burden

• A write, including all invalidate messages and 
acknowledgments, must complete before any subsequent 
memory operation (incl. loads) begins.

• Involves more than just accesses to the same location.
• Modern ILP processors violate SC every chance they get!
• Simplifying observation: most well-written parallel 

programs are synchronized if they want to get the correct 
values.  That is, they don’t rely on SC.
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Memory Consistency Model
• A program is synchronized if all access to shared data are ordered by 

synchronization operations
write (x)
...
release (s) {unlock}
...
acquire (s) {lock}
...
read(x)

• Only those programs willing to be nondeterministic are not synchronized
• There exist several Relaxed Models for Memory Consistency since most 

programs are synchronized: characterized by their attitude towards: RAR, 
WAR, RAW, WAW to different addresses
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Relaxed (or weak) Consistency Models

• Differ according to what guarantees they give the 
programmer in regards to memory access ordering.

• Depend on, and must be communicated to, the 
programmer.

• Consistency models that require the programmer to change 
behavior are doomed to failure.
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Consistency Models

Orderings preserved by various consistency models

Model Used In Ordinary
Orderings

Synchronization
Orderings

Sequential
Consistency

Most machines in
an optional mode

R->R, R->W,
W->R, W->W

S->W, S->R, R->S, S-
>S

Total Store
Order
(Processor
Consistency)

IBM S/370, DEC
VAX, SPARC

R->R, R->W,
W->W

S->W, S->R, R->S,
W->S, S->S

Partial Store
Order

SPARC R->R, R->W S->W, S->R, R->S,
W->S, S->S

Weak
Ordering

PowerPC S->W, S->R, R->S,
W->S, S->S

Release
Consistency

Alpha, MIPS Sa->W, Sa->R, R->Sa,
W->Sr, Sa->Sa, Sa-
>Sr, Sr->Sa, Sr->Sr
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Consistency Models

CSE 240B Dean Tullsen

Consistency Models

Performance relative to
sequential consistency

0.0

0.6

0.4

0.2

SSBR SS DS16 DS64

Hardware models Hardware models

LU

1.6

0.8

1.4

1.2 1.1 1.1 1.1 1.1 1.1
1.2 1.2

1.4

1.0

Performance relative to
sequential consistency

0.0

1.5

1.0

0.5

SSBR SS DS16 DS64

Ocean

4.0

2.0

3.5

3.0

1.3

1.9

1.4

2.0

1.4

2.2

1.5

3.8

2.5

Total store order Release consistency



CSE 240B Dean Tullsen

Key Points

• High-performance synchronization should conserve 
memory/interconnect bandwidth

• Sequential consistency is attractive as a programming 
model, but performance is unacceptable.

• Relaxed consistency models allow memory operations to 
proceed out of order, by guaranteeing ordering of memory 
operations with regards to synchronization, but not 
necessarily with each other.


