
Simultaneous Multithreading

Motivation

100

90

80

70

60

50

40

30

20

10

0

processor busy
itlb miss
dtlb miss
icache miss
dcache miss
branch mispred.
control hazards
load delays
short int
long int
short fp
long fp
mem conflict

Pe
rc

en
t o

f t
ot

al
 is

su
e

cy
cl

es

Hardware Multithreading

Conventional
Processor

Multithreaded
Processor

PC

regs
PC

regs

PC

regs

PC

regs
PC

regs

CPU CPU

in
st

ru
ct

io
n

st
re

am

in
st

ru
ct

io
n

st
re

am

Superscalar Execution

Issue Slots

Ti
m

e
(p

ro
c

cy
cl

es
)

Superscalar Execution

Issue Slots

Ti
m

e
(p

ro
c

cy
cl

es
)

Horizontal waste

Vertical waste

Superscalar Execution

Issue Slots

Ti
m

e
(p

ro
c

cy
cl

es
)

Superscalar Execution with
Multithreading

Issue Slots

Ti
m

e
(p

ro
c

cy
cl

es
)

Thread 1

Thread 2

Thread 3

Superscalar Execution with
Multithreading

Issue Slots

Ti
m

e
(p

ro
c

cy
cl

es
)

Thread 1

Thread 2

Thread 3

Horizontal waste

Simultaneous Multithreading

Issue Slots

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Ti
m

e
(p

ro
c

cy
cl

es
)

The Potential for SMT

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

Number of Threads

Th
ro

ug
hp

ut
 (I

ns
tru

ct
io

ns
 p

er
 C

yc
le

)

Simultaneous Multithreading

Fine-Grain Multithreading

Conventional Superscalar

Goals

We had three primary goals for this architecture:

1. Minimize the architectural impact on conventional
superscalar design.

2. Minimize the performance impact on a single
thread.

3. Achieve significant throughput gains with many
threads.

A Conventional Superscalar Architecture

Instruction Cache

8

Decode Register
Renaming

floating point
instruction queue

integer
instruction queue

fp
units

int.
units

PC
Fetch
Unit

int/ld-
store
units

Data
Cache

integer
reg’s

fp
reg’s

• Fetch up to 8
instructions per cycle

• Issue 3 floating
point, 6 integer
instructions per cycle

• Out-of-order,
speculative
execution

An SMT Architecture

Instruction Cache

8

Decode Register
Renaming

floating point
instruction queue

integer
instruction queue

fp
units

int.
units

Fetch
Unit

int/ld-
store
units

Data
Cache

integer
reg’s

fp
reg’s

• Fetch up to 8
instructions per cycle

• Issue 3 floating
point, 6 integer
instructions per cycle

• Out-of-order,
speculative
execution

PC

Performance of the Naïve Design

1

2

3

4

5

2 4 6 8
Number of Threads

Unmodified Superscalar

Th
ro

ug
hp

ut
 (I

ns
tru

ct
io

ns
 P

er
 C

yc
le

)

Bottlenecks of the Baseline
Architecture

Instruction queue full conditions (12-21% of
cycles)

Lack of parallelism in the queue.

Fetch throughput (4.2 instructions per cycle
when queue not full)

Improving Fetch Throughput

The fetch unit in an SMT architecture
has two distinct advantages over a
conventional architecture.

Can fetch from multiple threads at once.
Can choose which threads to fetch.

Improved Fetch Performance

Fetching from 2 threads/cycle achieved
most of the performance from multiple-
thread fetch.
Fetching from the thread(s) which have
the fewest unissued instructions in-
flight significantly increases parallelism
and throughput.

Improved Performance

1

2

3

4

5

2 4 6 8
Number of Threads

Improved

Baseline

Unmodified superscalar

In
st

ru
ct

io
ns

 p
er

 c
yc

le

This SMT Architecture, then:

Borrows heavily from conventional
superscalar design.
Minimizes the impact on single-thread
performance
Achieves significant throughput gains
over the superscalar (2.5X, up to 5.4
IPC).

Multithreading Models
Coarse-grain – switch contexts (typically
several cycles) on long-latency event.

MIT Alewife

Fine-grain – switch contexts every cycle.
HEP, Tera

Simultaneous Multithreading
Compaq 21464, Intel Pentium 4, Power 5

Pros, cons, issues, … ?

A New Multithreading Model
Balanced Multithreading: Increasing Throughput Via
a Low Cost Multithreading Hierarchy, Eric Tune,
Rakesh Kumar, Dean M. Tullsen, Brad Calder, In
Micro 2004.
Combines SMT and coarse-grain multithreading.

SMT
SMT CG

MT

HEP Multithreading

PSW PSW PSW PSW

PSW PSW PSW PSW

CPU

Tera Multithreading Cool Tera Features
Full/empty bits on memory
Randomized memory (why??)
No bypassing
Explicit-dependence lookahead
LIW
No caches
High-bandwidth network

Which of these are related to multithreading?

Summary

Why simultaneous multithreading?
Long-term solution?
When won’t it work?
What next?

