
Simultaneous Multithreading
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Superscalar Execution
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Superscalar Execution with 
Multithreading
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The Potential for SMT
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Simultaneous Multithreading

Fine-Grain Multithreading

Conventional Superscalar

Goals

We had three primary goals for this architecture:

1. Minimize the architectural impact on conventional 
superscalar design.

2.  Minimize the performance impact on a single 
thread.

3.  Achieve significant throughput gains with many 
threads.

A Conventional Superscalar Architecture
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An SMT Architecture
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Bottlenecks of the Baseline 
Architecture

Instruction queue full conditions (12-21% of 
cycles)

Lack of parallelism in the queue.

Fetch throughput (4.2 instructions per cycle 
when queue not full)

Improving Fetch Throughput

The fetch unit in an SMT architecture 
has two distinct advantages over a 
conventional architecture.

Can fetch from multiple threads at once.
Can choose which threads to fetch.



Improved Fetch Performance

Fetching from 2 threads/cycle achieved  
most of the performance from multiple-
thread fetch.
Fetching from the thread(s) which have 
the fewest unissued instructions in-
flight significantly increases parallelism 
and throughput.

Improved Performance
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This SMT Architecture, then:

Borrows heavily from conventional 
superscalar design.
Minimizes the impact on single-thread 
performance
Achieves significant throughput gains 
over the superscalar (2.5X, up to 5.4 
IPC).

Multithreading Models
Coarse-grain – switch contexts (typically 
several cycles) on long-latency event.

MIT Alewife

Fine-grain – switch contexts every cycle.
HEP, Tera

Simultaneous Multithreading
Compaq 21464, Intel Pentium 4, Power 5

Pros, cons, issues, … ?



A New Multithreading Model
Balanced Multithreading: Increasing Throughput Via 
a Low Cost Multithreading Hierarchy, Eric Tune, 
Rakesh Kumar, Dean M. Tullsen, Brad Calder, In 
Micro 2004.
Combines SMT and coarse-grain multithreading.

SMT
SMT CG

MT

HEP Multithreading
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PSW PSW PSW PSW

CPU

Tera Multithreading Cool Tera Features
Full/empty bits on memory
Randomized memory (why??)
No bypassing
Explicit-dependence lookahead
LIW
No caches
High-bandwidth network

Which of these are related to multithreading?



Summary

Why simultaneous multithreading?
Long-term solution?
When won’t it work?
What next?


