* Simultaneous Multithreading

i Motivation

90 [

Percent of total issue cycles

80 1]

707 [

60 [ [

507 [

H
e
g
g
2

B mem conflict
O long fp

O short fp

B |ong int

B short int

B |oad delays

O control hazard
B branch mispredl.
B dcache miss

@ icache miss

O dtlb miss

B jtlb miss

B processor busy|

i Hardware Multithreading

Conventional
Processor

CPU

<«——— instruction stream

Hin] jmimim] Im) el |

Multithreaded
Processor

regy regq

—
0 @D |

cPUu e

EEE D EEEEEEEN

<+——— jnstruction stream

i Superscalar Execution

Issue Slots

Time (proc cycles)
[ |
[ |
(]
(]




i Superscalar Execution

Issue Slots

Time (proc cycles)

Horizontal waste

Vertical waste

i Superscalar Execution

Issue Slots

Time (proc cycles)
[ |
[ |
(]
(]

Superscalar Execution with

i Multithreading

Issue Slots

Thread 1
Thread 2
Thread 3

Time (proc cycles)
[ |
[ |
(]
(]

Superscalar Execution with

i Multithreading

Issue Slots

S mm00
> WL
Thread 1 g
Thread 2 %
E
Thread 3 =

]
)|

Horizontal waste




* Simultaneous Multithreading * The Potential for SMT

\
J

~
J

Simultaneous Multithreading

___ Issue Slots ? 6
S HER § 5
> MEBL  Thead1 S
s HEEDC 547
S EHEDOO Thread 2 §3_
E EEEC = Fine-Grain Multithreading
F aEEE Thread 3 522_

EEEO Thread 4 31- Conventional Superscalar

EROC £

- - - I:l Thl’ead 5 O T T T T T T 1

1 2 3 4 5 6 7 8
Number of Threads
A Conventional Superscalar Architecture
* Goals

Fetch —l
. [ i . Unit floating point f fp Data
We had three primary goals for this architecture: . ! | fog's Cache
1. Minimize the architectural impact on conventional
superscalar design.

2. Minimize the performance impact on a single
thread.

Register
i i ifi i i
3. Achieve significant throughput gains with many

threads.

integer int intege |
instruction queug units| reg’s




An SMT Architecture

floating point fp I Data
instruction queue & units | Cache

Instruction Cache

integer int integer |
instruction queug units| reg’s

i Performance of the Naive Design

N
|

w
I

N
|

Unmodified Superscalar

Throughput (Instructions Per Cycle)

Ay

T T T
2 4 6 8

Number of Threads

Bottlenecks of the Baseline
Architecture

= Instruction queue full conditions (12-21% of
cycles)
= Lack of parallelism in the queue.

= Fetch throughput (4.2 instructions per cycle
when queue not full)

i Improving Fetch Throughput

= The fetch unit in an SMT architecture
has two distinct advantages over a
conventional architecture.
= Can fetch from multiple threads at once.
= Can choose which threads to fetch.




i Improved Fetch Performance

= Fetching from 2 threads/cycle achieved
most of the performance from multiple-
thread fetch.

= Fetching from the thread(s) which have
the fewest unissued instructions in-
flight significantly increases parallelism
and throughput.

i Improved Performance

Improved

Baseline

Instructions per cycle

21 ¢ 4

Unmodified superscalar

> 4 6 8
Number of Threads

i This SMT Architecture, then:

= Borrows heavily from conventional
superscalar design.

= Minimizes the impact on single-thread
performance

= Achieves significant throughput gains
over the superscalar (2.5X, up to 5.4
IPC).

i Multithreading Models

= Coarse-grain — switch contexts (typically
several cycles) on long-latency event.
= MIT Alewife

= Fine-grain — switch contexts every cycle.
= HEP, Tera

= Simultaneous Multithreading
= Compaq 21464, Intel Pentium 4, Power 5

= Pros, cons, issues, ... ?




i A New Multithreading Model

» Balanced Multithreading: Increasing Throughput Via
a Low Cost Multithreading Hierarchy, Eric Tune,
Rakesh Kumar, Dean M. Tullsen, Brad Calder, In
Micro 2004.

= Combines SMT and coarse-grain multithreading.

7o ]

i HEP Multithreading

=

Tera Multithreading

4B IR

| o R

mE M A C

NI T [

— — —~ [

@ = [ —

£ L.
<Ll

L IC

=R

ed
write
registel

o

T I T
memory internal pipeline
1 1 | 1

.

-

i Cool Tera Features

= Full/empty bits on memory

= Randomized memory (why??)
= No bypassing

= Explicit-dependence lookahead
s LIW

= No caches

= High-bandwidth network

= Which of these are related to multithreading?




i Summary

= Why simultaneous multithreading?
= Long-term solution?

= When won't it work?

= What next?




