* Simultaneous Multithreading
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i Superscalar Execution
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i Superscalar Execution
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* Simultaneous Multithreading * The Potential for SMT
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A Conventional Superscalar Architecture
* Goals
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We had three primary goals for this architecture: . ! | fog's Cache
1. Minimize the architectural impact on conventional
superscalar design.

2. Minimize the performance impact on a single
thread.
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3. Achieve significant throughput gains with many

threads.
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An SMT Architecture
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i Performance of the Naive Design
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Bottlenecks of the Baseline
Architecture

= Instruction queue full conditions (12-21% of
cycles)
= Lack of parallelism in the queue.

= Fetch throughput (4.2 instructions per cycle
when queue not full)

i Improving Fetch Throughput

= The fetch unit in an SMT architecture
has two distinct advantages over a
conventional architecture.
= Can fetch from multiple threads at once.
= Can choose which threads to fetch.




i Improved Fetch Performance

= Fetching from 2 threads/cycle achieved
most of the performance from multiple-
thread fetch.

= Fetching from the thread(s) which have
the fewest unissued instructions in-
flight significantly increases parallelism
and throughput.

i Improved Performance
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i This SMT Architecture, then:

= Borrows heavily from conventional
superscalar design.

= Minimizes the impact on single-thread
performance

= Achieves significant throughput gains
over the superscalar (2.5X, up to 5.4
IPC).

i Multithreading Models

= Coarse-grain — switch contexts (typically
several cycles) on long-latency event.
= MIT Alewife

= Fine-grain — switch contexts every cycle.
= HEP, Tera

= Simultaneous Multithreading
= Compaq 21464, Intel Pentium 4, Power 5

= Pros, cons, issues, ... ?




i A New Multithreading Model

» Balanced Multithreading: Increasing Throughput Via
a Low Cost Multithreading Hierarchy, Eric Tune,
Rakesh Kumar, Dean M. Tullsen, Brad Calder, In
Micro 2004.

= Combines SMT and coarse-grain multithreading.
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i HEP Multithreading
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Tera Multithreading
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i Cool Tera Features

= Full/empty bits on memory

= Randomized memory (why??)
= No bypassing

= Explicit-dependence lookahead
s LIW

= No caches

= High-bandwidth network

= Which of these are related to multithreading?




i Summary

= Why simultaneous multithreading?
= Long-term solution?

= When won't it work?

= What next?




