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Abstract

Real world images of objects belonging to a particular
class typically show large variability in shape, appearance,
scale, degree of occlusion, etc. Thus, a major challenge for
generic object recognition is to develop object models that
are flexible enough to accommodate these large intra-class
variabilities. Such powerful models, in turn, require large
amounts of training data to be effective and it becomes im-
perative to reduce the degree of human supervision required
to a minimum. In this project, parameterized probabilis-
tic models were used to explicitly model different object at-
tributes and these parameters were estimated by maximiz-
ing the likelihood of training data. The training data used
was mostly from the Caltech dataset with labels for cate-
gories. This project is inspired by the work of Fergus et al.
(2003).

1. Introduction

Generic object recognition deals with recognizing the
category of a given object as opposed to recognizing spe-
cific, individual objects. The approach used here was to use
generative models to represent object categories. This is
different from discriminative approaches to object catego-
rization such as SVMs.

This project was concerned with recognizing classes of
objects based on weakly supervised learning. Training data
was used to build representative models for the classes
which could be used in conjunction with a Bayesian ap-
proach for categorizing a new, previously unseen image into
one of the learned classes. The class representations, model
learning and recognition methods were selected in a manner
similar to the work of Fergus et al. [3].

The classes are represented with a “constellation of
parts” model that relied upon an entropy-based feature de-
tector [0] to detect regions of interest within an image.
These regions of interest were used to represent the images

both during learning and recognition.

One serious drawback of the method seems to be that
it entails fairly high computational complexity and does not
scale very well with the number of parts detected. The prob-
lem is that the set of hypotheses (for the valid assignment of
detected features to the “parts” in the object model) is very
large and this entire hypothesis space must be explored in
order to compute the likelihood function during both learn-
ing and recognition. The problem of slow recognition is
more serious than that of learning (since learning typically
happens off-line). The root of this problem is actually the
presence of occlusion and clutter in real-world images. In
trying to deal with background clutter, an exhaustive search
over an exponentially large hypothesis space is forced dur-
ing both learning and recognition. In this project, it was
decided to ignore the problem of background clutter and as-
sume that all the features arise from the object and not from
background. This allowed a significant speedup and made
the algorithm much more tractable. However, this means
that the images would need to be segmented into foreground
and background as a pre-processing step, which is not at all
a trivial task. If automatic segmentation is not reliable, then
the level of manual supervision here is much higher than in
Fergus’ [3] approach. Thus, the trade-off is between com-
putational tractability and manual supervision and here the
choice is made in favour of tractability.

Some of the applications of such a system could au-
tomated image database annotation and retrieval, video
surveillance, driver assistance, autonomous robots and cog-
nitive support for the visually impaired.

2. Datasets

The training and testing was primarily done on
the Caltech Cars (Rear), Caltech Motorbikes and Cal-
tech faces datasets. These can be obtained from
http://www.robots.ox.ac.uk/~vgg/data. The Caltech motor-
bikes dataset had about 800 motorbikes but only images
without background clutter were selected for training and



testing. The images were used after grayscaling so colour
information in the images was discarded in this approach.

3. Outline of the method

Assuming that the images are free of clutter and occlu-
sion, the basic steps for the training phase are:

1. Detect salient regions in all training images using the
Kadir-Brady feature detector.

2. Extract the X and Y coordinates, scale and square
intensity patches around detected features (of a size
equal to the scale of the feature).

3. Rescale the appearance patches to 11 x 11 and reduce
the dimensionality of the patch from 121 to 16 using
PCA.

4. Estimate model parameters. The basic model is essen-
tially a single full Gaussian for the X and Y coordi-
nates of feature locations, and one diagonal Gaussian
per object part.

The steps for the testing phase are:

1. Extract features of test images in the same manner as
in the training phase.

2. Use the learnt model to estimate the probability of de-
tection of each test image.

3. Classify the test images using Bayes’ Decision Rule.

The next few sections explain these steps in detail and
show results.

4. Detecting Salient Regions

The feature detector used for detecting locations and
scale of salient image features was the one by Kadir and
Brady [6, 5]. The motivation for using this particular detec-
tor is that it is supposed to be stable across different scales
and the number of features detected is easily controllable.
A sample run of the feature detector is shown in Figure 1
with the detected salient regions marked by circles in the
picture. The first image in Figure 1 probably has too many
features detected. The desired number of features should be
around 30. However, the number of features detected can
be controlled by tweaking the parameters of the feature de-
tector appropriately. With a different setting for the starting
scale, stopping scale, threshold on saliency, etc. we can get
a reduction in the number of detected features. The new
detections are shown in the second image.

Figure 1. Output of the Kadir-Brady feature detector with different
parameter settings. The circles represent the locations and scales
of salient regions.

4.1. Characterizing Appearance

The Kadir and Brady feature detector picks out a bunch
of salient features from the image and gives their locations
and scale as shown in Figure 1. For notational convenience,
the locations and scales for all these features are aggregated
into the vectors X and S. The third key source of informa-
tion is appearance and we need to compute the vector A for
a given image, which will contain the appearances of all the
features.

For computing appearance of a single feature, it is
cropped out of the image using a square mask and then
scaled down to an 11 x 11 patch. This patch can be thought
of as a single point in a 121-dimensional appearance space.
However, 121 dimensions is inconvenient because it will in-
crease the complexity of the model that will be learnt in the
learning phase. Thus, the dimensionality of the appearance
space needs to be reduced. This is done using PCA [8] and
selecting the top 16 components.

During the learning phase, a fixed PCA basis of 16 di-
mensions is computed. This fixed basis is computed by us-
ing patches around all detected regions across all training
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Figure 2. Appearance patches extracted from the 20 most salient
features from 10 motorbike images (Caltech dataset). Each row

shows the patches extracted from a single training image.

images. The basis is computed per category. An alternate
approach is to compute a single basis for all categories by
using patches from training images of all classes.

Figure 2 shows the appearance patches extracted from
motorbike images in the Caltech dataset. However, the
features in Figure 2, are not very encouraging as it is
quite difficult even for a human to look at those appear-
ance patches and identify them as belonging to motorbikes.
These patches were extracted after a feature detection phase
that was similar to the detections in Figure 1 (second im-
age). For comparison, the results of feature detection from
Fergus’ work [4] are shown in Figure 3. From this, it can be
seen that the problem seems to be the scale of the features
detected with small, local features firing more strongly than
more important larger features.

To get around this problem, I gradually increased the
smallest scale admissible for detected features and finally
settled on a starting scale of 23 (earlier it was 3). Using this
value for starting scale and choosing the top 20 saliency val-
ues, the feature detector outputs on various bike images are
shown in Figure 4. This looked a lot better and closer to
the output of Fergus et. al. (Figure 3). Appearance patches
around these new features are extracted, resized and tiled
and shown in Figure 5. These appearance patches of the
parts seem to provide more information about the image’s
category as the tyres of the motorbikes can be clearly seen
in almost all the input images.

4.2. Extracting appearance features from faces and
cars

While the appearance extraction process works well for
motorbikes with a starting scale of 23, it wasn’t clear if a
single scale would work be appropriate for all categories.
The detected features for faces with the same starting scale
are shown in Figure 6. The corresponding tiled appearance
patches are shown in Figure 7. The patches extracted do
seem to capture face parts although not in all cases. A
smaller starting scale might work better to allow the detec-

Figure 3. Feature detection results on motorbike images in the
work of Fergus et al. [4]

Figure 4. Feature detector outputs on motorbike images using a
starting scale of 23.

Figure 5. Appearance patches extracted with a starting scale of
23. The 9 rows show the rescaled features (into an 11 x 11 patch)
extracted from the 9 motorbikes shown in Figure 4.

tion of small but important parts such as the eyes, nose, etc.
However, it defeats the whole purpose of the experiment if
one must tweak the starting scale for each different type of
category because there must be minimal human supervision
during both training and testing. This serves to somewhat il-
lustrate the heavy dependence on the feature detector. Sim-
ilar results for cars are shown in Figures 8 and 9. Car parts
don’t seem to be characterized well enough at this scale.



Figure 8. Feature detection for car images with a starting scale of
23.

5. Model learning sans clutter and occlusion

The main complications in this method arise from try-
ing to deal with occlusion and clutter. That’s what forces
an exhaustive search over an exponentially large hypothesis
space during both learning and recognition. To avoid get-
ting into exponential search, it was decided to work with
clean data and assume all the features arise from the object

Figure 9. Appearance patches extracted for car images with a start-
ing scale of 23.

and not from background. This is the case with a lot of the
images in the Caltech motorbike dataset.

Based on this idea, an experiment was run with 20 train-
ing images and using the top 10 salient features for learn-
ing. Since the data is clean, all features arise from the object
and the number of parts is equal to the number of features
used. In this formulation, there is no hidden variable and
the parameters for the appearance of each part can be di-
rectly estimated using Maximum Likelihood (ML) estima-
tion. In addition to appearance, the ML parameters for the
joint density of the locations of all the parts are also com-
puted. Then, using these parameters, the recognition proce-
dure was run on the images shown in Figure 10. The first
three images were selected from within the training set of
20 images. Thus, the probability of recognition is expected
to be high for these. The last image is selected from outside
the training set and is deliberately chosen to be quite dissim-
ilar from the training images. While running the code for
recognition, there were numerical issues due to the location
parameters being ill-conditioned. The covariance matrix of
the joint Gaussian density for the locations of the parts was
nearly singular. This was probably due to the fact 20 train-
ing images is not really enough data. Also, there was no
ordering constraint on the X coordinates of the features de-
tected. From this rudimentary test, the log probabilities for
recognition from just the appearance models were -50.9192,
-54.2892, -57.3182 and -792.5911 for the 4 images respec-
tively. The fourth image would be expected to have a lower
matching probability as it is quite different in appearance
from the other motorbike images in the training data.

As 20 training images seemed too few, the experiment
was re-run with 47 clean training images of motorbikes.
This prevented the problems of numerical ill-conditioning
thereby allowing the use of the location model as well as
appearance. The recognition procedure was run on 9 dif-
ferent test images consisting of motorbikes, cars and faces
(Figure 11). The resulting log-probabilities are shown in
Figure 12. The X-axis in the log-probability graphs repre-
sents the image index as defined in Figure 11. Therefore,
images 1-4 were positive test images, images 5-7 were neg-



Figure 10. Examples of clean motorbike test images used for
model learning and recognition

Figure 11. The 9 test images used. The images are indexed in row
major order with the images 1-4 as positive motorbike test images
and images 5-9 as negative cars and faces test images. These are
the image indexes used along the X-axis in all the log-probability
graphs that show the test results.

Log-probabilties of locations of test images Log-probabilties of appearances of testimages

Total log-probabiliies of test images

Figure 12. Log probabilities for the 9 test images in Figure 11,
with features sorted by saliency, from (a) the location model, (b)
the appearance model and (c) sum of the appearance and location
models.

ative test images of cars and images 8-9 were negative test
images of faces.
From Figure 12 (a), we see that there is a separation

between the first 4 motorbike images and the next 5 im-
ages. However, the appearance model does not seem to give
such a clean separation (Figure 12 (b)). The combined log-
probabilities (Figure 12) (c) show a high recognition prob-
ability for the first 3 motorbikes although the fourth motor-
bike has an undesirably low recognition probability.

In all these experiments, the detected features were
sorted by saliency. The problem with this is that it isn’t clear
if there exists any correspondence between detected fea-
tures based on saliency. As an illustration, Figure 5 shows
that the first column (the most salient feature) is consistently
the right wheel. However, there is no such regularity with
the rest of the columns.

As suggested in Fergus et al. [4], an ordering con-
straint was imposed by sorting the selected features by X-
coordinate rather than saliency. Figure 13 shows the patches
extracted from the 47 training images when sorted in this
way. The correspondences within columns seems better
than in Figure 5. After imposing this ordering constraint,
the resulting log-probabilities for the 9 test images in Fig-
ure 11 are shown in Figure 14.

From Figure 14 (a), we see a larger separation between
location probabilities of motorbikes and negative test im-
ages than in Figure 12 (a), except for the fifth image (a car
image). This is easily explained by looking at the features
detected for that image, shown in Figure 15. The spatial
locations of the features are almost exactly the same as for
most motorbike images, so a high location probability for
this image is not surprising. Also, the ninth image (a face)
has the lowest location probability which is similarly ex-
plained by Figure 16. The locations of the detected features
are quite different from what we would expect for motor-
bikes.

The appearance probabilities in Figure 14 (b) are also
much better separated than in Figure 12 (b), except that
the fourth image (a motorbike) is showing an undesirable
dip. This is also causing a drop in its total log-probability
(Figure 14 (c)). The appearance patches extracted from the
test images are shown in Figure 17. The corresponding re-
constructed patches in the image domain from the truncated
PCA representations of the original patches are shown in
Figure 18.

5.1. Throwing in more Gaussians

The variability in the appearance of a single part across
different training images in Figure 13 suggests that a single
Guassian may not be sufficient in capturing the underlying
data. To account for the multi-modality of the appearances
of the parts, a mixture of Gaussians was used to model each
part with each mixture component assumed to have diago-
nal covariance matrices (using full covariance matrices was
causing numerical problems with 47 training images). The
Netlab software [7] turned out to be very useful as it has



Figure 13. Appearance patches extracted from 47 motorbike train-
ing images. Each row represents patches cropped out around the
10 most salient regions in a single training image, sorted by X-
coordinate.

in-built routines for learning Gaussian mixture models us-
ing the Expectation-Maximization (EM) algorithm. Specif-
ically, the scripts gmm, gmminit, gmmem and gmmprob
were a big help.
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Figure 14. Log probabilities for the 9 test images in Figure 11, with
features sorted by X-coordinate, from (a) the location model, (b)
the appearance model and (c) sum of the appearance and location
models.

Figure 15. Features detected for the 5th test image. The spatial
locations of detected features are similar to motorbike features.

= 4 i

Figure 16. Features detected for the 9th test image. The spatial
locations of detected features are quite different from motorbike
features.

First, the default EM initialization was used (uniform
priors, random means and identity covariances). The result-
ing log-probabilities, when using 2 mixture components for
each part’s appearance, are shown in Figure 19. Comparing
these appearance probabilities with those in Figure 14, from
using a single Gaussian, there is actually a slight degrada-
tion in the results and the separation between positive and
negative test images is not as clean. This degradation is
possibly due to the fact that there isn’t enough data.

The gmminit scriptinitializes the centers and priors us-
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Figure 17. Patches extracted from the 9 test images in Figure 11.
Each row shows patches from a single test image. The first four

rows are from motorbike test images (positive test cases) while the
remaining are from negative test cases (cars and faces).
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Figure 18. Reconstructed appearance patches in the image domain
obtained from truncated PCA representations of the patches shown
in Figure 17. These patches have been scaled to use the full col-
ormap for display purposes.

ing k-means on the data. The covariance matrices are cal-
culated as the sample covariances of the points closest to
the corresponding centers. When EM was initialized in this
way, the resulting log-probabilities obtained are shown in
Figure 20. There isn’t too much difference from the earlier
run with default EM initialization.

Figure 21 shows the results from a run where three com-
ponents were used instead of two. The results are slightly
better with the probabilities of the positive test images hav-
ing been pushed up a bit relative to the negative test images.

5.2. Reducing dimensionality with random projec-
tions instead of PCA

Instead of reducing the dimensionality of the appearance
patches using PCA, a random projection matrix [ 1] was also
tried for comparison’s sake. The matrix was generated as
G € RY*4 with entries G;; ~ N(0,1/d’). Here the pro-
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Figure 19. Log probabilities for the 9 test images in Figure 11, with
features sorted by X-coordinate, from (a) the appearance model
with two Gaussians per part and (b) sum of the appearance and
location models (The location probabilities are unaffected by the
change in the appearance model and so are the same as in Figure
14).
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Figure 20. Log probabilities for the 9 test images in Figure 11,
with features sorted by X-coordinate, from (a) the appearance
model with two Gaussians per part and (b) sum of the appearance
and location models. Here the EM algorithm was initialized with
k-means and sample covariances (The location probabilities are,
again, the same as in Figure 14).

jected appearance vectors had dimension d’ = 16, reduced
from the full dimensionality (d = 121). The matrix was
generated once during training and the same one was used
again during testing.

The log-probabilities resulting from this approach are
shown in Figure 22. Image 1 has taken an undesirable dip
and image 4 hasn’t been pulled up enough from the other
negative test images. This approach does not seem to work
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Figure 21. Log probabilities for the 9 test images in Figure 11,
with features sorted by X-coordinate, from (a) the appearance
model with three Gaussians per part and (b) sum of the appear-
ance and location models. Here the EM algorithm was initialized
with k-means and sample covariances (The location probabilities
are, again, the same as in Figure 14).

significantly better than the previous PCA approach. Be-
sides, it was found that there was some variability in the re-
sults across different runs when using random projections.
PCA, on the other hand, has the added advantage of ensur-
ing repeatability. Thus, it was decided to stick with PCA as
the preferred method of dimensionality reduction.

Figure 23 shows the reconstructed patches obtained by
projecting the reduced 16-dimensional vectors back to 121
dimensions. This was done by multiplying the reduced di-
mensionality patches by the pseudo-inverse of the random
projection matrix GG. There doesn’t seem to be any clear sta-
tistical regularity for the first four rows compared to the last
five rows. By comparison, Figure 18 illustrates that PCA
gives a much clearer reconstruction.

6. Nearest-Neighbour Experiments

In an attempt to get more information out of the ap-
pearance patches extracted from the images, a nearest-
neighbour (NN) experiment was run. The method used
to compute distances between the appearances of images
is analogous to the computation of Levenshtein (edit) dis-
tances [2] between strings. The set of appearance patches
extracted by the feature detector from a single image (and
ordered by X-coordinate) can be thought of as a string,
with each appearance patch acting as a character in the
string. Therefore, a single image gives rise to a single
string of appearance patches. Appearance patches extracted
from training images were stored in their rescaled (but non-
dimension-reduced) 11 x 11 form. Dynamic programming
is then used to compute the Levenshtein distance between
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Figure 22. Log probabilities for the 9 test images in Figure 11
from (a) the appearance model with dimensionality reduced by
random projections instead of PCA, and (b) sum of the appearance
and location models. (The location probabilities are, of course,
unchanged from Figure 14).

Figure 23. Reduced appearance patches from the test images in
Figure 11 projected back to the full 121 dimensions and shown
as 11 x 11 image patches. Again, the first four rows are from
motorbike test images (positive test cases) while the remaining are
from negative test cases.

two such strings extracted from a training and a test image.
This distance is used for NN-computations of test images.
For computing the Levenshtein distance between two
strings, there is a cost associated with matching characters
across strings and also a cost for inserting “gaps” in place
of characters in either string. Taking the analogy further, in
our case, the cost of matching one appearance patch (char-
acter) with another was computed using a straightforward
SSD between their intensities. The cost of inserting a “gap”
was dynamically computed as the matching cost (SSD) of
the patch being matched to a gap and a canonical 11 x 11
patch having uniform intensity of 0.5 (which can be thought
of as a non-informative, “gap”- equivalent for an appear-
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Figure 24. 1-nearest-neighbour distances from the 9 test images in
Figure 11 to 47 clean motorbike training images.

ance patch).

Figure 24 shows the resulting 1-nearest-neighbour (1-
NN) distances from the 9 test images in Figure 11 to the
same 47 motorbike images that were used for training the
generative model. A clear separation between the 1-NN dis-
tances of the positive and negative test cases can be seen,
with the first four motorbike test images showing much
lower distances (as expected) than the car and face images.

7. Conclusions and Future Work

The method used here was found to be quite fast for
both learning and recognition. This was mainly because the
problems of exponential search were avoided by assuming
that the training and test data were without background clut-
ter and occlusion. There was a heavy reliance on the perfor-
mance of the feature detector and its parameters had to be
tweaked carefully in order to ensure that meaningful fea-
tures were obtained. In particular, the starting and stopping
scale for the detector had to be set carefully for motorbike
images and this setting may not be best suited for every ob-
ject category. Changing the scale of the images was found
to throw off the feature detector and thus, the images were
assumed to be approximately scale-normalized. Perhaps a
different, multi-scale feature detector might address this is-
sue better.

The appearance model was a bit inconsistent in separat-
ing positive and negative test images, at least for the amount
of training data used. In terms of future work, experiments
with more clean training and test data and with data from
multiple object categories might be informative. Also, ex-
ponential search could be tried in the manner of [4] in order
to deal with clutter and occlusion. However, this would in-

crease the running time dramatically for both learning and
recognition. As for the location model, a Gaussian mixture
model for the locations of the parts might be useful assum-
ing that enough data is available. In addition, incorporat-
ing translation invariance by centering the coordinates, and
some kind of scale normalization might be beneficial. It was
also seen that sorting the features by X-coordinate rather
than saliency helped in better separating the categories. A
robust assignment of detected features to model parts may
help further. Figure 18 suggests that the appearance model
might be improved by using some kind of brightness nor-
malization and using intensity gradients rather than the raw
intensity values.

The use of Levenshtein distances in a “bag-of-features”
with nearest-neighbour framework was found to be quite
promising. This could be an interesting avenue to explore
especially with multiple object categories. Again, sensitiv-
ity of the Kadir-Brady detector to scale changes might be
an issue and various feature detectors may be tried. The use
of a multi-scale detector along with jitter distances to com-
pute matching costs between vectorized appearance patches
might be beneficial.
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