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Abstract. Reformulating an algorithm to mask communication delays
is crucial in maintaining scalability, but traditional solutions embed the
overlap strategy into the application. We present an alternative approach
based on dataflow, that factors the overlap strategy out of the applica-
tion. Using this approach we are able to reduce communication delays,
meeting and in many cases exceeding performance obtained with tradi-
tional hand coded applications.
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1 Introduction

Spurred on by the multi-core processor, scalable systems have the potential to
enable simulations of remarkable fidelity and complexity, leading to new scientific
discovery. However, improvements in processor performance amplify the cost of
off-chip data motion, and applications must cope by with this trend by tolerating
latency. Implementing and tuning an application to overlap communication with
computation is daunting for the domain scientist, and a challenge even for the
expert programmer. Traditionally, the overlap strategy is embedded into the
application, and relies on split phase coding. Software development is tedious
and prone to error, and the application suffers from non-robust performance.

Overlap strategies expose opportunities to mask communication costs by
relaxing the total ordering imposed by traditional bulk synchronous implemen-
tation, e.g. with MPI [1]. A compiler may be able to determine a suitable partial
ordering in some cases, but often the partial orderings are difficult to analyze,
even by hand.

A natural way to realize partial orderings is by means of a task precedence
graph, or task graph for short. Once the program has been expressed in terms of a
task graph, a scheduler executes the partially ordered tasks according to the flow
of data, e.g. dataflow [2-5], realizing overlap automatically. We have implemented
this approach with a run time library, with run time services to support the data
flow semantics via background threads. These services reorder communication
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and computation tasks dynamically according to the flow of information, auto-
matically choreographing communication to move it out of the critical path of
computation. We have implemented applications using this approach, enabling
us to factor policy and scheduling decisions out of the application code.

This paper makes two contributions. First, we show that a task precedence
graph formulation is able to support latency tolerance, meeting and in many
cases exceeding performance of traditional split phase encodings. Moreover, this
formulation separates implementation policy from correctness. Second, we show
that the approach supports application specific scheduling without affecting cor-
rectness of user code. Our task precedence graph supports performance meta-
data [6] that may be used to improve performance, in particular, to fine tune
the scheduler.

2 Task Precedence Graph Representation

Scientific applications spend most of their time executing loop nests. We may
describe a loop nest using an Iteration Space Graph (ISG), which represents the
underlying dependence structure. Any scheme to parallelize an application must
preserve the dependencies in the constituent ISGs. We may construct a task
precedence graph using this ISG in which each task corresponds to a region
of the iteration space. We call the resultant graph a TaskGraph. In a classic
MPI implementation tasks are usually mapped 1:1 to processors. However, in
order to mask data transfer delays, Little’s law [7] prescribes that we render
many tasks for each processor. As a result, we must solve a scheduling problem.
Herein lies the difficulty: classic overlap strategies rely on split phase algorithms
that embed overlap strategy into the application source code, resulting in high
software development costs, and difficulty in porting code to new hardware.

Alternatively, we may execute the TaskGraph under the dataflow seman-
tics [2-4]. Parallelism arises among independent tasks and interdependent tasks
are enabled according to the flow of data among them. There is no need to embed
scheduling policies into the application since these are handled by background
services.

We have constructed a library, called Thyme, which enables us to implement
applications in this way. Thyme avoids the need to write complicated split phase
algorithms and decouples the overlap strategy from application correctness. Al-
though Thyme’s API may be used to develop applications directly, we envision
that it will ultimately become part of a run time support library for a compiler.
Space limitations prevent us from discussing this API, which, together with a
detailed presentation of the implementation, will be described elsewhere.

Thyme is currently implemented as a C++ class library on top of MPI and
pthreads, and implements two primary datatypes — Task and TaskGraph. A
Thyme program constructs and executes a set of TaskGraphs under the control
of the Run Time Services which process task completions and arrivals, move data
among dependent tasks, and invoke a Scheduler. The services are decentralized,
and run on all processing modules, communicating as necessary to manage Task-
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Graph execution. A TaskGraph is a distributed data structure and it executes
according to the owner computes rule. Each task is assigned an owning process-
ing module, but any processor within the module may execute the task, since
processors share memory within a node.

The Scheduler maintains a priority queue of tasks from the TaskGraph that
are ready but not yet executing. Each task has an associated priority. This infor-
mation exists as performance meta-data [6] decorating the task graph. Meta-data
may be be specified by the programmer in order to improve performance, but
does not affect correctness since task graph execution preserves all dependence
constraints. Thus, the programmer is free to explore application-specific schedul-
ing without reformulating the application. (The Thyme user may substitute their
own scheduler in place of the default in order to further tune application perfor-
mance. )

3 Experiments

We ran on two large-scale systems. DataStar, located at the San Diego Super-
computer Center, is an IBM system running AIX 5.2, with 8-way nodes contain-
ing 1.5 GHz Power4+ processors with 16 Gigabytes of shared memory, connected
by a Federation switch. Thunder, located at Lawrence Livermore National Labo-
ratory, is a Linux cluster running CHAOS version 3.3, with a Quadrics QSNET-
IT interconnect based on Elan4 and Elite4 components. Each ”Madison Tiger4”
node comprises four Itanium2 CPUs running at 1.4 GHz, with 8 Gigabytes of
shared memory. We compiled on DataStar using mpCC_r, which invoked version
8.0 of the x1C_r compiler. IBM’s ESSL version 4.2.0.3 provided the high perfor-
mance matrix multiply routine dgemm() and FFTW 3.0 provided the FFT. We
compiled on Thunder with mpiicpc, which invoked icpc 9.1. Intel’s MKL 8.1.1
provided dgemm and FFT (the latter through the FFTW 3.0 interface).

We tested Thyme’s ability to achieve overlap with three applications com-
ing from Colella’s seven application motifs [8]. Jacobi3D, a 3-D iterative Pois-
son solver (Dirichlet Boundary Conditions); MMULT, Matrix Multiplication,
and the NAS-FT parallel benchmark, ver. 3.0 [9], which is dominated by a 3D
Fast Fourier Transform. For each application we compared the Thyme imple-
mentation against two variants written with MPI. The baseline variant (BASE)
uses blocking communication and does not attempt to overlap communication
with computation. The explicit overlap variant (OLAP) uses asynchronous non-
blocking communication to implement a split-phase algorithm to overlap commu-
nication with computation. The Thyme variant does not make MPIT calls, since
the run time services handle data motion automatically. These services comman-
deer one core per node to carry out their activities. Thus, although Thyme uses
the same number of processors as non-Thyme variants in our experiments, fewer
processors actually perform the computation.

We also report an IDEAL running time, which is the time required to perform
computational work only. We obtained this time by disabling communication in
BASE. Although the computed results are incorrect, the amount of computa-
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tional work performed is not affected. This allows us to indirectly measure the
cost of communication and thus establish an upper bound on the potential for
improving performance by masking data motion costs.

Jacobi3D. Jacobi3D iteratively updates a 3D mesh using a 7-point stencil. We
split the mesh uniformly and employ ghost cells to store border data from (up
to) six neighboring sub-domains. The BASE variant used an 8 x 4 X 8 processor
geometry which is optimal for 256 processors. Ghost cells are exchanged prior to
each iteration using SendRecv. The OLAP variant pre-fetches ghost cells [10]. It
further subdivides each processor’s subdomain into an inner core and an outer
annulus. The annulus is a thin shell, one cell thick, encircling the inner core and
inscribed inside the ghost region. Unlike the outer annulus, the computation on
the inner core does not depend on the ghost cells; it is relaxed simultaneously
with ghost cell exchange. Once all the ghost cells have all arrived, the outer
annulus is then relaxed. The Thyme variant subdivides the mesh into many
more tasks than processors. It uses a hierarchical decomposition to split the
data first over nodes, and then over processors within a node. We used different
node geometries on Thunder’s 4-way nodes than on DataStar’s 8-way nodes:
4 x4 x4 and 4 x 2 x 4, respectively. The processor geometries were the same
on both platforms: 4 x 4 x 4. Each task relaxes one block and depends on up to
seven others from the previous iteration: the block in the current position plus
up to six nearest neighbors. In the BASE and OLAP variants each processor
stores its mesh as one contiguous memory area. The Thyme variant stores its
data as separate contiguous blocks, improving cache locality.

We ran Jacobi3D for 25 iterations on 256 processors using problem sizes
varying from 3203 to 16002, beyond which communication is not a significant
bottleneck. Fig. 1 (top) shows that the THYME variant enjoys a clear per-
formance advantage over BASE, overlapping 43-78% of the communication on
Thunder and 10-80% on DataStar. The OLAP variant not only failed to improve
the running time but actually increased it. As noted by Baden and Shalit, the
thin outer annulus has large strides and this slows down the updates to cells in
the outer annulus considerably [11].

Thyme’s graph-based execution model is well suited to this application.
Rather than using thin annular faces, we break up the mesh into numerous
small cubes, each stored in a contiguous area of memory. Relaxation exhibits
good cache locality over these cubes, avoiding the computation time penalty
imposed by OLAP’s thin outer annulus.

We observed that execution from one iteration was frequently intermingled
with that of the next, such that iteration boundaries no longer serve as pre-
cise synchronization point. We found no discernible pattern in task execution
order from run to run. This implies that flexibility in scheduling may be helping
performance and that an optimal schedule may be difficult to predict.

Matrix Multiplication. MMULT computes the matrix product C' = A x B,
formulating the algorithm as a sequence of blocked outer products and sub-
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Fig. 1. Data-driven execution improves performance by overlapping communication
with computation. Results are shown for Jacobi3D (top), MMULT (middle) running on
DataStar (left) and Thunder (right), and for NAS-FT running on 64 and 128 processors
of Thunder (bottom, left and right, respectively). No OLAP variant was implemented

for FT.
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dividing the matrices over a square 2-d processing geometry. The strategy is
similar to SUMMA [12]. Each submatrix is further subdivided into panels of
width (or height) n,. The algorithm proceeds in N/(ny\/P) steps, where the
processing geometry has P virtual processors. The panels circulate by row (for
A) and by column (for B) and each processor computes a partial matrix product
which is summed into its local portion of C (matrix multiply-add, mpy-add).
Communication involves four nearest neighbors, proceeds in just one direction,
and is periodic. BASE performs each mpy-add before transferring a panel of
A and B; OLAP initiates panel transfer and then performs the mpy-add in
parallel. THYME mirrors the behavior of the OLAP variant; the graph depen-
dencies cause the panels to be passed around their respective rows and columns
in pipelined fashion. Each task performs a mpy-add and depends on the left
neighbor to receive a panel of A and the upper neighbor to receive a panel of B,
passing, after execution, A to the right and B downwards. We used the vendor-
provided dgemm routine to carry out mpy-adds and used two panels (n, = 2) per
block, which was optimal.

We ran MMULT on 256 processors with problem sizes ranging from 4, 0962
to 20,4802, the largest size where communication had a significant affect on
performance. Fig. 1 (middle) shows the result. THYME achieves near-optimal
performance on Thunder, overlapping 61-93% of the communication. The re-
sults are not as clear-cut on DataStar, where the Thyme and baseline variants
realize more or less the same performance. This is true because mpy-adds are
17-39% slower than on DataStar than on Thunder (except for the smallest prob-
lem size, where DataStar’s mpy-adds were faster). Thus, DataStar runs incur a
smaller fraction of communication time, and with less communication, there is
less benefit to hiding it.

Thyme could not improve on the hand-coded OLAP variant. This is true
because the communication pattern is highly constrained to nearest neighbors,
and thus the flexibility of Thyme’s data driven model doesn’t offer an improve-
ment. However, this flexibility doesn’t penalize performance either. Unlike the
hand-coded OLAP variant, the Thyme variant is free from split phase coding
and embedded policy decisions, enhancing performance portability.

We used performance meta-data to guide task scheduling in the THYME
variant of MMULT. The scheduler’s priority queue exhibits LIFO behavior when
the task priorities are equal. Thus, newly-ready tasks get scheduled before older
readied tasks. While generally beneficial for cache locality, this behavior disrupts
the pipeline of block transfers directed by the TaskGraph, tending to serialize
computation. Processors would execute tasks over newly arrived blocks, starv-
ing neighboring processing nodes and causing long wait times. We were able to
improve performance, without having to reformulate the application, by sim-
ply assigning older tasks a higher priority than newly ready ones. This entailed
annotating the graph with appropriate meta-data. The effect is to alter the
scheduler’s behavior toward a FIFO without affecting correctness. This behav-
ior was friendlier to the pipeline structure of the graph and resulted in a 20%
performance improvement.
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NAS-FT. The NAS-FT benchmark includes a costly transpose operation for
setting up the FFT, and thus can benefit greatly from masking communication
delays. The publicly available code [9] serves as the BASE variant. NAS-FT
employs a 1-d virtual processor geometry in the Z dimension such that each
processor receives a slab of the mesh. Each slab is further subdivided into 2D
sheets of size NX x NY x 1, where NX and NY are the leading dimensions. The
algorithm has 3 steps. After performing a 2D FFT on each of the NZ sheets,
BASE invokes a total exchange A11ToAl11l to transpose the data so each processor
has slabs of the complete Z dimension. The processors complete the transform
by computing 1-d FFTs along the Z dimension. The Thyme variant treats each
sheet as a task. Thus, communication is much finer grained than with BASE
and is interleaved with communication. The graph dependencies force the final
1-d FFTs to wait for all the 2D transforms to complete, so there are NX 1D
transform tasks over sheets of size 1 x NY x NZ.

We measured the execution time for three different problem sizes over various
numbers of processors and ran for 20 iterations. The problem sizes were 5123
(NAS-FT Class C), plus two larger sizes to test the effects of increasing the
sheet size (1024 x 1024 x 512) and the number of sheets (10243). Current results
are from Thunder only. We did not attempt to reformulate the 2224 line BASE
variant to overlap communication with computation (OLAP).

Fig. 1 (bottom) shows that Thyme is able to hide communication significantly—
37-65%—depending on the problem size and number of processors. The applica-
tion incurs a 35-43% communication overhead.

There is room for improvement in NAS FT, in particular, to employ a 2-d
"stick” decomposition in lieu of the 1-d decomposition used currently. Thyme
is currently implemented using MPI, however, and the difficulty in realizing
overlap with a stick decomposition under MPI has been documented [13]. We are
investigating an alternative implementation to support sticks and thus improve
scalability.

4 Discussion

Graph-based execution models began appearing in the 1970s with classic
dataflow [2—4]. A large grain variant followed [5]. SMARTS [14] integrated task
and data parallelism and provided an API for coarse-grain macro-dataflow. It
has been demonstrated on shared memory only. OSCAR[15] had similar goals
to SMARTS, but operated on static (compile time) graphs. CILK[16] and Men-
tat[17] treated functional parallelism. SciRun[18] and Ulntah[19] support graph-
ical composition of data flow graphs of components and dynamic load balancing
of task graphs. Tarragon (Cicotti and Baden) [20] supports fine grain communi-
cation and was originally targeted to cell microphysiology. Husbands and Yelick
[21] demonstrated thread scheduling techniques for tolerating latency in dense
LU factorization.

In the context of this prior work (and similar to Tarragon) Thyme’s contri-
bution is a systematic approach to supporting latency tolerance on distributed
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memory via the dataflow model, and the ability to modify scheduling behav-
ior by annotating the graph with meta-data. Compared with traditional split
phased encoding, Thyme provides an abstract description of the underlying vir-
tual process structure that may be manipulated to optimize execution

To understand the role that the graph can play in tolerating latency, con-
sider Charm++ [22] and Adaptive MPI [23]. Charm++ supports overlap via
processor virtualization and asynchronous remote method invocation on shared
C++ objects. AMPI (Adaptive MPI) employs virtualized MPI processes and is
built on top of Charm++. None of these models employ an explicit dataflow
graph to realize overlap. Charm++ employs a more general model than Thyme,
embedding dependence information in the form of remote method invocations
involving global objects. The task structure is implicit, however, and cannot be
manipulated as a free-standing object as with Thyme. The Charm++ develop-
ers allude to difficulties with an implicit call graph, in particular, in coupling
multiple graphs. Charisma [24] was developed to meet this need.

When a Charm-++ method invocation blocks, or an AMPI receive blocks,
the thread yields to another, which may block for the same reason. Indeed, our
efforts to run an MPI variant of Jacobi3D under AMPI on DataStar failed to
improve performance—and actually slowed it down in some cases. Thyme’s meta-
data offer an improvement over virtualization by taking the guesswork out of
scheduling. They inform the scheduler about tasks that have all their input data
ready, avoiding the guesswork of the “block and yield” model. If the number of
cores per processor continues to grow over time, then the significance of informed
scheduling will continue to grow as well.

5 Conclusions and Future Work

We have demonstrated that a data-driven formulation enables an application
to tolerate latency without embedding scheduling and other policy decisions into
the code. The approach provides an opportunity for increased performance be-
cause it allows the user to experiment with alternative implementation policies,
including application-specific task scheduling in MMULT and tuned data decom-
positions in Jacobi3D. Thyme admits the use of newly arrived data to enable
computation, masking the latency of data still in transit.

Our current implementation is restricted to Cartesian geometries, but cov-
ers a range of uniform and irregular problems including: uniform and multi-
level finite-difference methods, such as structured adaptive mesh refinement and
multigrid, and mesh-based particle methods (but not “tree codes” [25]). So called
unstructured finite element methods need a different type of iteration space rep-
resentation, but the general principles apply.

Systems with many core CPUs will benefit from Thyme’s programming
model, in particular, thread-aware schedulers that treat symbiosis and cache
locality. A steady growth in on-chip parallelism will put pressure on communi-
cation subsystems, while at the same time providing an opportunity to optimize
execution by expending inexpensive processing cycles.
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Although the Thyme API is compact—only a couple of thousand lines of
C+-+— programmers can obtain the benefits of the model without having to
learn an entirely new API. We envision that Thyme will become part of a run
time support library for a compiler or application library. To this end, we are
currently investigating source-to-source translation techniques using Quinlan’s
ROSE [26] infrastructure. ROSE enables the user to access and transform the ab-
stract syntax tree (AST); full knowledge of function arguments and dependence
information is available for subsequent analysis and transformation. Translation
support can realize semantic level optimizations on the Thyme library classes
and automatically generate calls to the Thyme API. The application program-
mer can thereby obtain the benefits of Thyme’s graph-driven execution model
while remaining aloof of many of the details.
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