
UNIVERSITY OF CALIFORNIA, SAN DIEGO

GPU Accelerated Cardiac Electrophysiology

A thesis submitted in partial satisfaction of the

requirements for the degree

Master of Science

in

Computer Science

by

Fred Lionetti

Committee in charge:

Professor Scott Baden, Chair
Professor Andrew McCulloch
Professor Dean Tullsen

2010

Copyright

Fred Lionetti, 2010

All rights reserved.

The thesis of Fred Lionetti is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically:

Chair

University of California, San Diego

2010

iii

DEDICATION

To Christina, whose love and support made this possible.

iv

EPIGRAPH

In a few minutes a computer can make a mistake so great that it would have

taken many men many months to equal it. –Anonymous

With the GPU, this may be possible in just a few seconds. –Fred

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . viii

List of Tables . ix

Acknowledgements . xi

Abstract of the Thesis . xii

Chapter 1 Introduction . 1
1.1 Overview . 1
1.2 Contribution . 3
1.3 GPU Computing . 4

1.3.1 GPU Processing Resources 5
1.3.2 GPU Memory Hierarchy 5
1.3.3 CUDA . 8
1.3.4 CUDA Programming Model 9
1.3.5 Device Occupancy 11
1.3.6 Strengths of GPU Platforms 12
1.3.7 Weaknesses of GPU Platforms 13
1.3.8 Accelerator Alternatives 14

Chapter 2 Cardiac Modeling . 16
2.1 The Finite Element Method 17
2.2 Heart Models . 18
2.3 Cell Models . 20
2.4 ODE Solver . 22

2.4.1 Overview . 22
2.4.2 Forward Euler Method (FE) 25
2.4.3 Explicit Runge-Kutta Methods (ERK) 26
2.4.4 Backwards (Implicit) Methods 26
2.4.5 Backwards Euler Method with Newton Update . . 26
2.4.6 Simplified Backwards Euler Method 27
2.4.7 Radau5 . 28
2.4.8 Rush Larsen Methods 28

vi

Chapter 3 Translation . 29
3.1 Code Generation Overview 29
3.2 Heaviside Functions . 31

3.2.1 Singularity removal 33
3.3 Translator Tools . 36
3.4 Translator Details . 37
3.5 Automatic Optimizations 42

Chapter 4 Results . 47
4.1 Simulation Description 47
4.2 Hardware Testbed . 48
4.3 ODE . 49

4.3.1 CPU Performance and Optimizations 49
4.3.2 GPU Performance and Optimizations 50
4.3.3 Accuracy . 61

4.4 Implications for Fermi 62
4.5 Complete Electrophsyiology Simulation 66

Chapter 5 Contribution and Related work 68

Chapter 6 Discussion and Conclusion . 71
6.1 Applicability to other domains 71
6.2 Suggestions for GPU hardware developers 72

6.2.1 Increase transparency 72
6.2.2 Automatic Performance Tuning 72
6.2.3 Spill to shared memory 73
6.2.4 Exploit Belady’s algorithm 74
6.2.5 Improve Multi-GPU support 74
6.2.6 Split large kernels 74

6.3 Conclusion . 75

Appendix A MFHN Example . 77

Bibliography . 85

vii

LIST OF FIGURES

Figure 1.1: Diagram of 30 multiprocessors present in nVidia’s 200 series
GPU. Adapted from diagram on page 8 of [38] 6

Figure 1.2: GPU Architecture. This diagram is file 3 of the supplementary
data of [31]. 8

Figure 1.3: (test) Kernel execution. This diagram is file 2 of of the supple-
mentary data of [31]. 10

Figure 2.1: Resulting strains from a bi-ventricular canine biomechanics sim-
ulation rendered in Continuity 6. 18

Figure 2.2: Voltage propagation in a bi-ventricular rabbit electrophysiology
simulation rendered in Continuity 6. 19

Figure 3.1: Pipeline of translator. The output of the final stage is CUDA
compliant code and will be compiled by the CUDA C Compiler
(nvcc). 38

Figure 3.2: Simple AST for the expression v = a∗b/(c+d). A data structure
with this information can be used to identify that v depends on
a, b, c, and d. 40

Figure 4.1: Single ventricle electrophysiology simulation rendered in Conti-
nuity 6 using the Flaim canine cellular model. 48

Figure 4.2: OpenMP (on a workstation) vs MPI (on a cluster) 50
Figure 4.3: Summary of performance showing the impact of optimizations . 58
Figure 4.4: Profile of the time spent on the GPU with the Flaim model.

advance be is the time spent calculating the next time step of the
cell model using the backwards Euler method. compute derivs
simply computes the derivatives for each state variable prior
to calculating the next PDE time step. The memcpy functions
transfer data between the CPU and GPU and occur infrequently
relative to the time spent with other computations. 58

viii

LIST OF TABLES

Table 2.1: Cell Model Summary . 22
Table 2.2: A comparison of step sizes which achieved an RRMS error of less

than 1.5% when compared to the radau solver. Runtime is for a
300ms simulation of a single cell. 24

Table 4.1: The speedup achieved by adding additional OpenMP threads.
Times measure the running time to simulate 20ms of a heart
beat for a mesh with 42,240 collocation points. 49

Table 4.2: The impact of optimizations on the running time of the ODE
solver for the Flaim model. Times measure the running time to
simulate 20ms of a heart beat for a mesh with 42,240 colloca-
tion points. The first two entries in the table were run on the
CPU and the remaining entries on the GPU. Optimizations were
applied cumulatively, in the order listed in curly braces. CPUx
and GPUx are the speedups achieved over the reference imple-
mentation. Ops are the number of ptx assembly operations for
the kernel as revealed by decuda. The Gbl column contains the
number of times global memory is referenced in the ptx assembly
and the Loc column contains the number of times local memory
was referenced. The Tot column contains the sum both global
and local memory references. 51

Table 4.3: Cache hit rates for Flaim model for different size shared memory
caches using optimizations 1,2c. and 1,2c,3 54

Table 4.4: The number of DIFFERENT global and local variable names
that were referenced after each optimization. When optimiza-
tions include kernel splitting (i.e. Optimization 3) the maximum
number of variables referenced in any of the kernels is used. . . . 55

Table 4.5: For optimization 2a, the number of references of the form “y global
[var * num gauss pts + idx]” and “y reg[var]”. 56

Table 4.6: The impact of optimizations on the running time of the ODE
solver for the modified FitzHugh-Nagumo, Beeler-Reuter, and
Puglisi model. Times measure the running time to simulate 20ms
of a heart beat for a mesh with 42,240 collocation points. Opti-
mizations were applied cumulatively, in the order listed in curly
braces. CPUx and GPUx are the speedups achieved over the
reference implementation. Ops are the number of ptx assem-
bly operations for the kernel as revealed by decuda. Gbl are the
number of times global memory is referenced in the ptx assembly. 60

ix

Table 4.7: Cache simulator results. Cache replacement policy found in the
replacement column, Cache Associativity (e.g. fully associative
or directly mapped) found in the Assoc. column, and estimated
runtime found in the ETA column. These results are for a single
kernel (Optimization 3 has not been applied). 64

Table 4.8: Cache simulator results. Cache replacement policy found in the
replacement column, Cache Associativity (e.g. fully associative
or directly mapped) found in the Assoc. column, and estimated
runtime found in the ETA column. These results are for a par-
titioned kernel (Optimization 3 has been applied). 64

Table 4.9: A summary of the time spent computing ODEs for 300ms for
a mesh with 42,240 collocation points. Because MFHN, BR,
and Puglisi are relatively small and do not spill registers to lo-
cal memory, our most aggressive optimizations (shared memory
cache and kernel splitting) were unnecessary. 67

x

ACKNOWLEDGEMENTS

We would like to thank Stuart Campbell (UCSD Bioengineering), Dr. Chris

Anderson (UCLA Mathematics Dept), and Dr. Xing Cai (Simula Research Labo-

ratory) for the discussions on ODE Solvers and Dr. Jazmin Aguado-Sierra (UCSD

Bioengineering) for supplying the sample electrophysiology model. We also would

like acknowledge the National Biomedical Computational Resource (NIH grant

P41RR08605).

xi

ABSTRACT OF THE THESIS

GPU Accelerated Cardiac Electrophysiology

by

Fred Lionetti

Master of Science in Computer Science

University of California, San Diego, 2010

Professor Scott Baden, Chair

Numerical simulations of cellular membranes are useful for both basic sci-

ence and increasingly for clinical diagnostic and therapeutic applications. A com-

mon bottleneck in such simulations arises from solving large highly complex stiff

systems of ordinary differential equations (ODEs) thousands of times for numerous

collocation points (representing cells) throughout a three-dimensional volume. For

some electrophysiology simulations, over 98% of the time is spent solving these

systems of ODEs when run in serial on a single core.

We have reduced the time to simulate a single heartbeat from 4.5 hours

on a 48 core Opteron cluster (MPI implementation) to 12.7 minutes on a Desktop

workstation equipped with a $500 GPU accelerator that also economizes power

consumption. This improvement over cluster performance transforms the simula-

tion workflow, and at this level of performance we can realize larger scale simu-

lations, previously only feasible on a cluster, that are needed in a clinical setting.

To achieve this same performance on our Opteron cluster would theoretically re-

quire at least a 1020 core system. Thus, the GPU has effectively miniaturized the

hardware requirement to perform the simulation.

xii

We also demonstrate 23x to 280x speedups across a wide spectrum of cardiac

cell models running on the nVidia GTX-295 GPU compared with a multithread

implementation on a 4-core Intel i7 processor. Our simulator employs a source-to-

source translator that converts a higher level python description of a cell model

into highly tuned and optimized CUDA source code, which is then compiled with

the CUDA C compiler for execution. Our optimizations include automatic kernel

partitioning and a software managed-memory cache. Our translator also removes

numerical singularities introduced by using single precision arithmetic.

xiii

Chapter 1

Introduction

1.1 Overview

Mathematical models describing cellular membranes form the basis of whole

tissue models to describe the electrical activity of entire organs, such as the heart.

Researchers use these models to create numerical simulations for basic science and

increasingly for clinical diagnostic and therapeutic applications. A common bottle-

neck arises when solving large highly complex stiff systems of ordinary differential

equations (ODEs) thousands of times for numerous collocation points (represent-

ing cells) throughout a three-dimensional tissue volume. This bottleneck can easily

account for 98% of the total running of the simulation when performed as a serial,

single core execution.

One measure of performance in cardiac modeling is the amount of time

needed to simulate a single heartbeat. We demonstrate an implementation of our

ODE solver on an nVidia GTX-295 Graphic Processing Unit (GPU) that signifi-

cantly reduces the computational bottleneck and reduced the time to simulate a

single heartbeat from 4.5 hours on a 48 core Opteron cluster (MPI implementation)

to 12.7 minutes on a Desktop workstation equipped with a $500 GPU accelerator

that also economizes power consumption. This improvement over cluster perfor-

mance transforms the simulation workflow, making such simulation feasible in a

clinical setting. To achieve this same performance on our Opteron cluster would

theoretically require at least a 1020 core system. Thus, the GPU has effectively

1

2

miniaturized the hardware requirement to perform the simulation.

When compared with a single CPU, our GPU implementation delivers a

23x-280x speedup over an OpenMP implementation on a quad-core i7 processor.

In addition to demonstrating the efficient use of GPU hardware we also show

how to achieve high performance even when faced with highly complex numerical

kernels which are characteristic of our problem domain. We leverage our experience

to provide insights into performance optimization.

nVidia, one of the principal GPU developers, releases a complete software

toolkit for developing GPU accelerated programs called CUDA, an acronym for

Compute Unified Device Architecture. Our simulator employs a source-to-source

translator that converts a higher level python description of a cell model into highly

tuned and optimized CUDA source, which is then compiled with the CUDA C

compiler for execution. We will discuss the translator and the optimizations it

implements. All optimizations are controlled at a high level, and the user need

not modify the emitted CUDA source code. Our front-end (e.g. cell model parser)

could be used to target other platforms, such as ATI, OpenCL, etc. though of

course, the back-end optimizations are platform dependent. The domain scientist

remains unaware of the details.

A model we have used is highly complex, and contains 87 ODEs referenced

within 1800 lines of CUDA source code. The CUDA compiler is challenged to

manage register usage. Our optimizer splits a model into separate CUDA kernels

to reduce register demand, which the CUDA compiler can then handle on its own.

A weakness of the current nVidia architecture (the GTX 200 series) is the

lack of a global memory cache, which could mitigate the high latency penalty of

global memory, which is two orders of magnitude higher than that of the shared

memory or registers. While global device memory can be copied to registers,

sufficiently complex kernels will cause the compiler to spill data back to device

memory.

The nVidia GPU also has a small shared memory which is nearly as fast

as the registers. However, it is a scarce resource to be divided between all threads

running on the GPU. For sufficiently complex kernels, such as the Flaim model with

3

87 scalar state variables, it is infeasible to manage shared memory by hand. We

have implemented a software managed global memory cache for complex kernels

that avoids the need to manually manage cached scalars. Our algorithm is based on

Belady’s classic optimum MIN algorithm for page replacement and runs off line at

translation time; there are virtually no branches in our code, which is characteristic

of cellular models.

Another constraint of the GTX 200 series architecture is that the double

precision arithmetic rate is significantly lower than that of the single precision,

thus providing an incentive to use single precision. However, if unchecked, sin-

gle precision can introduce unacceptable round-off errors resulting in numerical

singularities. In order to tolerate the errors committed in single precision, we im-

plemented an automatic transformation that traverses the cell model and employs

a root finder to eliminate division by zero. This strategy avoids the most criti-

cal round-off errors introduced by single precision and enables us to benefit from

the higher single precision computational rate of the nVidia GPU. To facilitate

this transformation, as well as our optimization strategies, we built a code genera-

tor. This code generator performs automatic symbolic optimization starting with

Python code and generates CUDA compliant code.

1.2 Contribution

We have developed a system by which high level cellular models can be au-

thored by a domain scientist and automatically translated into an optimized GPU

kernel which incorporates expert GPU knowledge. In doing so, we have suggested

a scheme for solving stiff systems of ordinary differential equations which yields

excellent performance and reasonable accuracy on the GPU. We have also demon-

strated a technique to remove numerical singularities common to cellular models

which allows us to use single precision arithmetic for improved performance. We

have also contributed a variety of techniques for optimizing large, highly complex

CUDA kernels. These include an offline automatic caching scheme based on Be-

lady’s MIN page swapping algorithm and automatic kernel partitioning scheme to

4

reduce register pressure. Finally, our system is able to perform electrophysiology

simulations much faster than traditional cluster implementations and is indeed

fast enough that it would be feasible to use in clinical setting for patient specific

modeling.

1.3 GPU Computing

Graphical Processing Units or GPUs are specialized processors designed

to reduce the workload on the Central Processing Units (CPU) when computing

graphic or video intensive tasks. Over the last two decades, GPUs have become

an integral part of a computing platforms for video games, interactive simulations,

and high-end 3D rendering.

GPUs can be thought of as co-processors or accelerators. They are not

designed to replace or obviate the need for a CPU. In particular, CPUs are designed

to run serial applications as quickly as possible. Although in recent years CPUs

have become “multicore” and are able to achieve some degree of multithreaded

parallelism, they are generally optimized for running serial code, the common case.

GPUs, however, are designed for massively threaded parallelism rather than for

serial computation which can be run on the CPU. Thus, an application developer

can employ a heterogeneous execution model to implement massively parallel parts

of an application on the GPU and the serial parts on the CPU.

Over the last few years, a tremendous interest has developed in using these

accelerators for more general purpose computing rather than just video and graphic

acceleration [40]. This trend began with shader languages but has recently evolved

into a complete set of development tools released by the major GPU chipset de-

velopers to facilitate this type of general purpose GPU computing.

The three major vendors of GPUs are nVidia, AMD (formerly ATI) and

Intel. While Intel produces low-end graphics processors integrated into various

mother board chipsets, AMD and nVidia compete for the high-end GPU market1.

1Intel has also announced that they will launch a high-end graphics processor separate from its
integrated chipsets in the future, although its first attempt, codenamed Larrabee, was cancelled
in December of 2009.

5

nVidia and AMD have alternative proprietary GPU platforms each of which is

compatible only with their own hardware. Specifically, nVidia’s distributes the

CUDA Toolkit while AMD distributes the ATI Stream SDK. A vendor independent

standard, OpenCL[10], is also being developed to allow HPC applications to be

developed independent of hardware. We focus our GPU computing efforts on

nVidia GPUs running CUDA, although our approach could be ported to the AMD’s

FireStream by generating code for the Brook+ language rather than CUDA and

by modifying our specific optimizations to match AMD hardware.

1.3.1 GPU Processing Resources

The nVidia GTX 200 series GPUs consist of several Streaming Processing

Clusters (SPC). Each SPC contains 3 streaming multiprocessors (SM) each of

which has 8 streaming processors (also referred to as cores by nVidia) which share

access to local memory. Each core contains a fused multiply-adder capable of single

precision arithmetic. A core is capable of completing 3 floating point operations

per cycle - a fused MADD and a MUL (see Figure 1.1).

For our work, we use the nVidia GTX 295 card. This card contains two

GPUs, each with 10 clusters and thus has a peak performance of 720 floating point

operations per cycle per GPU (3 flops per core per cycle × 8 cores per SM × 3 SM

per cluster × 10 clusters). With a clock speed of 1.242 GHz, the GPU has a peak

GFLOP rate of 894.24 per GPU. And with two GPUs, the GTX 295 can achieve

a 1788.48 GFLOPs for the entire card.

In addition to single precision operations, each SM contains one 64-bit fused

multiple adder for double precision operations. Thus, a SM contains 8 single

precision streaming processors for every double precision unit. SMs also contain

16KB of shared memory and 16KB of registers.

1.3.2 GPU Memory Hierarchy

nVidia GPUs have several memory spaces available each with its own ben-

efits and limitations (see Figure 1.2). Effectively understanding and appropriate

6

Figure 1.1: Diagram of 30 multiprocessors present in nVidia’s 200 series GPU.
Adapted from diagram on page 8 of [38]

.

7

use of these memory spaces is essential for achieving acceptable performance on

the GPU.

The fastest available memory for GPU computation is device registers. Each

streaming multiprocessor contains 16KB of registers. These registers are divided

among all threads which reside simultaneously on the GPU. Thus, if CUDA kernels

uses a high number of registers, the device will be unable to execute as many

threads concurrently.

Each multiprocessor also has a 16KB region of shared memory space, which

performs almost as fast as registers. Shared memory is primarily intended as a

means to provide fast communication between threads, although, due to its speed,

it can also be used as a programmer controlled memory cache [50].

Next GPUs have DRAM (Dynamic Random Access Memory), or device

memory, which is available at approximately a 150x latency when compared to

registers or shared memory. This device memory is logically partitioned into four

regions: global memory, local memory, texture memory, and constant memory.

Global memory is available to all threads and is persistent between GPU calls.

Local memory is available only to individual threads and is used as a backup when

the compiler is unable to fit requested data into the device’s registers, in which

case registers are said to spill to local memory. Texture memory is read-only with

a small cache optimized for manipulation of textures. Constant memory, as the

name implies, is also a read-only region which also has a small cache.

Finally, host memory (the system’s main memory) is available indirectly

and relatively slowly to the GPU. This memory space is only available to the GPU

when copied over the PCI-Express bus to the GPU’s device memory.

Although the nVidia’s 200 series is capable of both single and double pre-

cision arithmetic, there are eight single precision arithmetic execution units for

each double precision unit. Thus, a computational bound algorithm would be

expected to execute at 1/8th the speed when using double precision. Some al-

gorithms, though, are memory bound, and because they spend most of the time

requesting memory rather than performing computations, might run at only a

2x penalty when double precision is required as accessing twice the memory (for

8

double precision data) takes twice as long.

Figure 1.2: GPU Architecture. This diagram is file 3 of the supplementary data
of [31].

1.3.3 CUDA

nVidia releases a complete software development toolkit for developing soft-

ware for their GPUs. This tookit is freely available2 and includes a GPU compiler

(nvcc) as well as examples, and a kernel profiler. nVidia refers to this software

development suite as CUDA, an acronym for Compute Unified Device Architec-

ture. CUDA is only compatible with nVidia devices, although it is supported by

all GPUs nVidia has sold for the last several years, starting with the 8000 series

introduced in November of 2006.
2http://www.nvidia.com/object/cuda get.html

9

The CUDA platform supports an extension to the C programming language

with only a few additions and limitations, thus many experienced software devel-

opers are likely to be comfortable with the syntax. In order to control hardware

specific to the GPU, some additional language constructs are added. For exam-

ple, the shared keywords designates memory declarations to be in the GPU’s

shared memory. Some limitations exist, though, such as a lack of function pointers

and lack of recursion, since all functions are inlined by the compiler automatically.

1.3.4 CUDA Programming Model

CUDA uses a Single Instruction Multiple Thread (SIMT) programming

model, very similar to the Single Instruction Multiple Data (SIMD) model com-

mon in vector processors. Each thread running on the GPU executes the same

instruction at the same time, but while operating on different data. However,

unlike traditional SIMD architectures, CUDA will allow threads to diverge at a

performance cost. When branches occur in the code (e.g. due to if statements)

the divergent threads will become inactive until the conforming threads complete

their separate execution. When execution merges, the threads can continue to

operate in parallel. In order to take full advantage of the GPU hardware, the

programmer must therefore write code in a way that minimizes thread divergence.

Thus, at the center of CUDA’s programming model is the idea that there

is an abundance of data which must be operated on in a uniform way by some in-

structions. The model requires a host (or CPU) and one or more devices (GPUs)

each of which has a plethora of arithmetic execution units to perform many cal-

culations in parallel - up to 240 units in the GTX 200 series. This model lends

itself well to many applications such as image processing, physics simulations, etc.

which are characterized by very large regular arrays of data which require regular

processing. Each element of data can be operated on by its own very lightweight

GPU thread of which thousands can execute on the device at a time.

In order to hide the latency of communicating with device memory, many

threads are multiplexed over each core. When one thread requests device memory,

another thread is made active until the memory request completes. From the

10

programmer’s perspective this is hidden by virtualization - the programmer need

not be concerned with which threads are running on which GPU cores. This idea

of latency hiding is formalized by Little’s law [30]. As applied to the context of

latency hiding, Little’s Law indicates that the time to hide is equal to the number

of threads times the latency. In other words, as additional threads are added and

multiplexed over the same hardware resources, greater latency can be hidden.

Both the GPU and CPU code exist in a single source in which GPU func-

tions (called kernels) are identified with the global keyword. The CPU ex-

ecutes host code until a GPU kernel is called (see Figure 1.3). At this point,

the GPU launches many - potentially thousands - of parallel threads and returns

control asynchronously to the CPU. If another GPU call is made which executes

another kernel or if a GPU memory transfer is initiated, the GPU will wait until

the first call completes. Current GPUs, therefore, cannot execute more than one

kernel at a time.

Figure 1.3: (test) Kernel execution. This diagram is file 2 of of the supplementary
data of [31].

Each kernel is launched with a collection of threads, referred to as a grid.

Grids can be indexed in 1 or 2 dimensions which can be convenient for processing

a 2D image. Grids are further subdivided into blocks of threads, which can be

11

which can be indexed in 1, 2, or 3 dimensions. A block can have a maximum of

512 threads, although the programmer can decide, at run time, the exact layout

of the grid and blocks to facilitate appropriate memory access. Each thread has

its own threadID so that each thread can operate on its own data and to control

its own logical program flow. CUDA provides mechanisms for the host to copy

data from the CPUs DRAM to the devices DRAM, through cudaMemCpy(). The

host can also allocate and free GPU memory with cudaMalloc() and cudaFree()

function calls as well as manage CUDA streams which allow memory transfers and

kernel execution to overlap.

CUDA also has a notion of thread warps which are collections of 32 threads

which all attempt to execute the same instruction. It is at the warp level that

global memory access and program flow must be carefully considered for maximum

performance.

1.3.5 Device Occupancy

We define device occupancy as the maximum number of thread blocks that

can multiplexed to run concurrently on a multiprocessor. This is influenced by

the number of threads per block and the resources (registers and shared memory)

required by each thread. It is desirably to have a large number of thread blocks to

improve latency hiding by allowing the GPU to schedule other thread blocks while

waiting for memory to become available.

nVidia GPUs are a parallel computing architecture and achieve peak perfor-

mance when making the most use of available computational resources. Blocks of

device threads are automatically scheduled by the GPU, which will simultaneously

run as many blocks as the available hardware resources will allow. There is typi-

cally a trade off between device occupancy and device resources. For example, the

more shared memory that a kernel requires, the fewer the threads that will be able

to execute on a device. However, if a kernel relies excessively on global memory

instead of shared memory and device registers it will likely be “memory bound”

and spend time waiting for the availability of data rather than actually performing

computations. This trade-off can be explored with the CUDA occupancy calcula-

12

tor3 although it is often necessary to experiment with different configurations to

find the optimal settings.

1.3.6 Strengths of GPU Platforms

Performance. Perhaps the most obvious benefit of GPU computing is the

performance available at low cost. While the top of the line Intel CPUs come

equipped with 4 cores, nVidia’s GTX 200 series chipset can have up to 240 cores.

nVidia’s state of the art desktop card, the GTX 295, includes two GTX 200 GPUs

on a single card, and thus provides 480 CUDA cores and can achieve a peak GFLOP

rate of 1788.48 for single precision. The fastest desktop CPUs have a theoretical

peak rate of around 70 GFLOPs. Many real world applications have seen one or

two orders of magnitude speedup over optimized CPU implementations[9].

Inexpensive and Convenient. When compared to conventional supercom-

puting platforms, such as clusters, GPU computing has several significant advan-

tages. Our complete desktop system with a GTX 295 was purchased for just

under $2,500.00 - the GPU alone cost $500. We estimate that it would cost at

least $100,000 ($1500 per 2-CPU node × 67 nodes) to build a cluster of with i7

CPU nodes to perform calculations at the same rate, very conservatively assuming

that most communication costs could be hidden. Further, a GPU desktop does not

require a specialized server room with additional energy and maintenance costs.

Simulations must be highly efficient in clinical applications because of the time

constraints involved in diagnosis and treatment, and because the simulations typ-

ically must be run many times in parameter sweeps to be useful. There is also a

greater case for dedicated desktop computing in the clinical setting for reliability

and privacy and security versus cluster computing on a shared resource outside of

the clinic. Thus, in terms of cost, space, and convenience, GPU computing would

provide many advantages over the cluster as an alternative platform for a clinical

setting.

Ubiquitous. Finally, CUDA compatible hardware is already available and

deployed on millions of machines, including all Apple laptops sold for the last few

3http://developer.download.nvidia.com/compute/cuda/CUDA Occupancy calculator.xls

13

years. Although the GPUs present in laptops and older desktops cannot deliver

competitive performance with the more powerful 200 series, the ubiquity of com-

patible hardware does provide an opportunity by which almost anyone can learn

about and experiment with the technology. In this sense, CUDA is the first readily

available ubiquitous HPC platform.

1.3.7 Weaknesses of GPU Platforms

The memory bottleneck. Two memory bottlenecks are present with the

CUDA platform. The first is the bottleneck of communicating between the host

CPU and the device GPU. If data are needed to be frequently shuttled to and

from the GPU this can be problematic. This transfer rate is limited to the peak

bandwidth of the PCI-Express bus - 8 GB/s per direction for a 2.0 16x card. Thus,

in the time it would take to transfer 4.4 GB to the GPU DRAM, about 1 trillion

floating point operations could have been performed by the GPU or about 40

billion operations on the CPU, assuming the CPU has a peak rate of 70 GFLOPS.

Similarly, the GPU behaves best when operating on fast device registers,

as opposed to device memory. The GPU operates at peak speed when it performs

many operations for each memory access to hide this latency. Applications which

must randomly access very large sets of data are often memory bound and will not

achieve near the peak capabilities of a GPU. Of course, such applications often run

slowly on CPUs, especially if the data accessed cannot fit into the CPU’s caches.

Precision. The current generations of GPUs are primarily used with single

precision. Although the current GPU generation supports double precision, there

is a considerable performance penalty4.

Programming Difficulty. Although GPU programming has progressed con-

siderably over the last few years and GPU chipset developers have made significant

progress in making tools for creating GPU accelerated software readily available,

GPU programming is still not an easy task that is necessarily suitable for a novice

programmer such as a domain scientist. As previously discussed, efficient GPU

programming requires deep understanding of a new memory hierarchy and pro-

4also true of next generation Fermi chip

14

gramming model with new terminology and concepts, etc., and these make the

learning curve for GPU programming rather steep. Competing standards, such

as nVidia’s CUDA, AMD’s Stream, and Khronos Group’s OpenCL, also increase

the risk of learning a new standard as it is still not clear if a single standard will

ultimately replace the others, effectively rendering the time that one has invested

in any particular technology inconsequential. Rather than being locked into a sin-

gle vendor, or even a single processor type, OpenCL strives to be a computing

API compatible with a wide range of parallel computing devices. With OpenCL a

developer can target both AMD and nVidia GPUs as well as Intel CPUs and other

types of hardware. Of course in order to achieve the full potential of any specific

device, OpenCL code would need to be tailored to that device’s capabilities.

1.3.8 Accelerator Alternatives

AMD FireStream5. AMD has a competing platform for GPU development

for its ATI Firestream GPUs, including a full software development kit, called

the Stream Computing SDK6. Like CUDA, this platform is intended to allow de-

velopers to quickly create GPU accelerated applications. Rather than the C-like

language used by CUDA, AMD’s SDK makes use of ATI Brook+ as an alterna-

tive C-like language. Both SDKs, though, have the same goal: to hide low-level

hardware details to ease software development. Both platforms also include other

tools and libraries to facilitate software development.

With AMD hardware7, each stream processor has an array of SIMD En-

gines. Each engine has an array of thread processors, each of which has an array of

stream cores. In nVidia parlance, an SIMD Engine can be thought of as a streaming

processing cluster, a thread processor as a streaming multiprocessor and a stream

core as a streaming processor.

Each thread processor contains 5 stream cores, one of which is capable of

handling special operations (such as sine, cosine, etc.). Double precision operations

can be performed by the remaining four stream cores working together. Although

5Formerly ATI FireStream
6http://ati.amd.com/technology/streamcomputing/sdkdwnld.html
7http://developer.amd.com/gpu assets/Stream Computing Overview.pdf

15

all threads within a thread engine execute the same instruction for each cycle,

different thread engines can perform different operations simultaneously. Unlike

nVidia GPUs, AMD GPUs support an asynchronous direct memory access (DMA)

data transfer in which stream processors can exchange data with a special section

of CPU RAM without CPU intervention. However, AMD GPUs do not have a

shared memory for fast communication between threads.

CELL Broadband Engine. Positioned somewhere between conventional CPUs

and GPUs, the CELL Broadband Engine is developed by jointly by Sony, Toshiba,

and IBM for wide range of applications from video games to HDTVs. The CELL

architecture includes a Power Processing Element (PPE) similar to a traditional

single core CPU, and eight Synergistic Processing Elements (SPE), connected over

an Element Interconnect Bus (EIB). While CELL’s PPE can run a traditional

operating system, its SPEs are specialized for SIMD and parallel use. CELL is

available both as as the main system processor (such as with the Playstation 3)

and as PCI-Express co-processor.

Like nVidia GPUs, CELL is optimized for single precision arithmetic, al-

though double precision calculations are possible. CELL BE is also notoriously

difficult to write software for and can require carefully tuned programs for maxi-

mum performance. This challenge has inspired researchers to explore sophisticated

compilers and automatic code generation techniques that we will discuss in Chap-

ter 5.

Chapter 2

Cardiac Modeling

Cardiac modeling, like heart research in general, is critical when we consider

that heart failure is still the leading cause of death worldwide[39]. In part, this is

because there is still quite a bit about the heart that we simply do not understand.

Heart modeling research is also leading to clinical and therapeutic applications

such as targeting ablation therapy for atrial arrhythmias, defibrillator design, and

cardiac resynchronization therapy (see [35] for details and other examples). Re-

searchers build heart models to understand some aspect of the heart’s behavior

which can be described by a mathematical model. This mathematical description

is used to develop a simulator, based on numerical interpretations of the model.

In order to be used in a clinical setting, models would need to be able to

run relatively quickly - a patient may not be able to wait several days or weeks

to perform a simulation, especially if the condition is life threatening. Also, these

simulations must typically be run many times in parameter sweeps in order to

be useful. For example, selecting an optimum location for a pace maker lead, a

surgeon might want to model several potential sites before actually implanting the

device. In contrast to models used in research, clinical heart models are likely to be

larger (because the human heart is larger than the mouse or rabbit or even dog),

but not necessarily more complex (because we have less detailed information on

human heart cells). Arguably the standards of accuracy are therefore somewhat

lower too, because we can’t make measurements in a patient as accurately as we

can in animals. Finally, in a clinical setting a dedicated desktop workstation is

16

17

likely to have several advantages over a computing cluster. Obviously, clusters are

more expensive to build and maintain, but also may raise concerns about privacy

and security. Such a shared resource might not be able to provide the same level

of privacy and security that a dedicated workstation likely could, especially at a

comparable cost.

2.1 The Finite Element Method

While a variety of numerical methods are used for modeling cardiac be-

havior, the more advanced simulations tend to use the finite element method

(FEM)[44],[23]. The finite element method is a numerical technique used fre-

quently for approximating a system of partial differential equations (PDEs).

Essentially, the finite element method involves discretizing a continuous

domain into a set of discrete sub-domains. The accuracy and compute time are

often related by the degree of mesh finitization - the more pieces that are used to

approximate the continuous domain the more accurate the solution will be, but at

the expense of an increased compute time.

Finite element analysis has origins in the work done in the 1940s on struc-

tural analysis for civil and aeronautical engineering, although the method evolved

during the 1950s and 60s to be much closer to what we use today [23]. More re-

cently the approach has been applied to problems in bioengineering [44]. Although

many software packages exist to perform general finite element analyses, our simu-

lations are performed by Continuity 6 [28], a problem-solving environment which

uses the finite element method for heart modeling. Continuity is distributed free

for research by NBCR, an NIH funded resource, which enables biomedical research

by developing computational technologies. Continuity has been downloaded thou-

sands of times and has over 700 registered users worldwide.

In our case we are using finite elements to simulate a time and space de-

pendent phenomena. We split the solution into two parts: the PDEs which solve

the spatially dependent part and the ODEs which solve the time dependent part.

18

2.2 Heart Models

Frequently, researchers are interested in using heart models to perform

biomechanical and electrophysiology simulations. Biomechanics is analogous to

strain and stress analysis done on buildings, bridges, and airplanes by structural

engineers (see Figure 2.1). Electrophysiology involves the simulation of electrical

events at the cellular level that give rise to cardiac action potentials (see Figure

2.2). When the two techniques are combined, fully coupled electromechanics sim-

ulations can be performed. Although biomechanics simulations are also useful and

could benefit from the optimization techniques we present, we will focus our at-

tention on the acceleration of electrophysiology simulations which is typically the

bottleneck in heart modeling [52].

Figure 2.1: Resulting strains from a bi-ventricular canine biomechanics simulation
rendered in Continuity 6.

With electrophysiology simulations, the generic mathematical model is a

19

Figure 2.2: Voltage propagation in a bi-ventricular rabbit electrophysiology simu-
lation rendered in Continuity 6.

reaction-diffusion system. A system of ODEs describes the kinetics of chemical

reactions, and PDEs describe the spatial diffusion of the reactants. In our models,

the reactions are the cellular exchanges of various ions across cell membranes during

the cellular electrical impulse. The diffusion process is the flow of current through

the tissue, which allows the electrical impulses to propagate. There is just one PDE

of the form dVm

dt
= ∇ ∗D∇Vm − Iion

Cm
in which Iion is the sum of the ionic currents

which are given by the ordinary differential equations, Vm is the voltage, and Cm is

the capacitance. The chosen ODE solver advances the solution to the ODEs over

time. This approach is germane to other domains besides cellular modeling, e.g.

circuit simulations.

Often a population of connected cells is modeled using a monodomain

scheme, which represents tissue as a single compartment, or a bidomain scheme

which views tissue as two coupled, continuous domains: one for the intracellular

space and another for interstitial space [21]. With either scheme, potentials and

currents are defined at every point in space which yields governing equations for

electric fields which can be described by a system of partial differential equations.

20

For our simulations, we use an operator splitting fully implicit collocation

finite element method in which, alternately at each half PDE time step, we solve

ODEs then PDEs. The ODEs are typically integrated with a 5 point backwards

Euler adaptive time step method, although we shall shortly discuss other possibil-

ities. The PDEs, though, result in a large sparse linear system, of static structure,

which is solved at each time step.

For sufficiently complex cell models, such as the Flaim model we use here

(see below), over 98% of the computational time of an electrophysiology model

may be spent solving the ODE systems when executed on a single core and 80%

of the time on 48 cores of an Opteron cluster. The ODEs are completely data

parallel and can be efficiently solved on a parallel computer, such as a cluster,

with little communication overhead. These ODEs, therefore, are the target of our

GPU optimizations. A general trend in cellular modeling is that over the last

few decades the models have increased in complexity. Future models have been

suggested [7] that solve much larger systems of ODEs and therefore our ability to

handle such systems efficiently is likely to become increasingly important.

2.3 Cell Models

Most cardiac cell models are used to solve the voltage equation which as-

sumes the membrane acts as a capacitor allowing a charge imbalance between intra

and extra cellular space [22]. Because resistance is low within the cell, the mem-

brane integrates the flow of current leading to a single voltage difference between

inside and outside of a cell. This voltage is related to the sum of ion channel cur-

rents. The ion channels in turn are described by Hodgkin-Huxley equations[22],

Markov state equations[34], and Buffering and Ionic Concentration equations[24].

There exist dozens and perhaps hundreds of cell models describing electrical

events [13]. Entire databases are being built to manage and curate such models [2].

Although a complete summary of the characteristics and properties of cardiac cell

models is beyond the scope of this work, we briefly describe a few cell models which

represent a broad spectrum in terms of complexity (see Table 2.3 for a summary).

21

We refer the reader to [13] for a more detailed review of the subject.

FitzHugh-Nagumo. Among the simplest and earliest of cardiac cell models,

the FitzHugh-Nagumo model [14] was published in 1961 and has just two state

variables. The model was derived as a simplification of the Hodgkin-Huxley equa-

tions and due to its simplicity and generality the model has been used widely. Sim-

ilarly, it has been modified for specific applications, including a modified FitzHugh-

Nagumo formulation (MFHN) [45] which we will use. Because the original FitzHugh

Nagumo model lacks certain characteristics of cardiac cells to make it very real-

istic (such as separate time scales for depolarization and repolarization), it is not

frequently used in modern cardiac modeling[13]. Although the modified FizHugh-

Nagumo formulation is more realistic looking for cardiac cells, it is of roughly the

same computational complexity as the unmodified version [45].

Panfilov. Another variation of the FitzHugh-Nagumo model, the Panfilov

model [1] also uses 2 ODEs, but has more realistic looking action potentials. Al-

though we will not explore the Panfilov model in further detail, we note that

this model has very similar computational requirements to the modified FitzHugh-

Nagumo model.

Beeler-Reuter. A generic ventricular model, the Beeler-Reuter model [3],

published in 1977, represented a significant advancement from earlier cardiac mod-

els with its use of eight state variables, which include four ionic currents.

Puglisi-Bers. More recently, the Puglisi-Bers model [43] was suggested in

2001 to model the rabbit ventricular myocyte. This model employs 18 ODEs

including 11 gating variables.

Flaim. The most recent and complex cell model we will optimize is the

Flaim model [15], published in 2006. The Flaim model contains 87 variables used

to model canine ventricular cells. This model is based on the Greenstein model [17],

but incorporates variations to represent epicardial, endocardial, and midmyocardial

cells.

Grandi-Bers. Future work will involve applying our GPU acceleration tech-

niques to the Grandi-Bers model [16] of the human ventricle, published in 2009.

Because less data is generally available for human hearts than animal hearts, the

22

Grandi-Bers model is somewhat less complex than recent animal models (such as

Flaim) and uses only 42 ODEs. Thus, we anticipate it will be less computationally

expensive than the Flaim model, but more expensive than the other models we

have discussed.

Table 2.1: Cell Model Summary

Cell Model Year ODEs Species
FitzHugh-Nagumo 1961 2 generic
MFHN 1994 2 generic
Panfilov 1996 2 canine
Beeler-Reuter 1977 8 canine
Puglisi-Bers 2001 18 rabbit
Flaim 2006 87 canine
Grandi-Bers 2009 42 human

2.4 ODE Solver

2.4.1 Overview

Some systems of ordinary differential equations have a characteristic com-

monly referred to as “stiffness”. A system is said to be stiff if the step size we

take is dictated by stability constraints more than accuracy. In other words, if we

take a step size that is too large, a stiff system becomes unstable and will not yield

a useful result. Complex cell models tend to be very stiff, typically because they

attempt to capture events which occur on different time scales.

Stiffness can cause some solvers to suffer stability problems, including the

popular 4th order explicit Runge-Kutta scheme. Much research has been done

to improve the efficiency of ODE solvers by adopting more exotic schemes to re-

duce the computation time without sacrificing too much accuracy, especially when

confronted with very stiff ODE systems. Rush Larsen [46] schemes and even 2nd

order Rush Larsen variations [33, 25] have been suggested and employed to improve

performance. For a review of several methods, see [51].

23

Frequently these schemes must balance the accuracy and stability of the

solution with performance. For example, taking smaller step sizes in most schemes

increases the accuracy of the solution at the cost of performance. In order to

quantify this tradeoff, researchers typically compute a relative root means square

error (RRMS) by comparing a method under consideration to some trusted gold

standard reference solution. The RRMS is calculated as follows:

RRMS =

√√√√√√√√
N∑

i=1
(Vi − V ref

i)2

N∑
i=1

(V ref
i)2

(2.1)

Vi is the voltage at time step i, and V ref
i is the voltage for the reference

computation at the same time step i. We use radau5 [18], a 5th order Runge-Kutta

backwards Euler (implicit) method with adaptive step sizes, as our reference gold

standard implementation. Radau5 has been used for all ODE solving by Continuity

6 for several years and has demonstrated sufficient reliability even when working

with very stiff ODE systems.

To integrate the ODEs in time, we used a simple single iteration backwards

Euler scheme. With the Flaim model, we take a step size of .0016 which yield

performance close to radau5. Using this small step size, our single iteration scheme

produces an RRMS error of 1.48% for a 300ms simulation, a small enough error

for our application. Acceptable step sizes and the resultant errors vary among the

cell models. See Table 2.2 for the step sizes and resulting errors for the cellular

models explored in this thesis.

We have employed the single iteration backwards Euler for several reasons.

First, it is quite straightforward to implement on both the CPU and the GPU.

Unlike Rush Larsen methods, it does not require separating nonlinear and quasi-

linear equations which would add to the complexity of the implementation. Unlike

forward Euler methods, it is unconditionally stable and will produce a valid (al-

though potentially inaccurate) solution regardless of the stiffness of a particular

cell model. Finally, unlike radau5, our scheme has a fixed step size, and thus we

24

Table 2.2: A comparison of step sizes which achieved an RRMS error of less than
1.5% when compared to the radau solver. Runtime is for a 300ms simulation of a
single cell.

Cell Model Step Size Runtime (s) RRMS Error
MFHN 0.001 1.29 0.91%
BR 0.00054 2.35 1.14%
Puglisi 0.0008 3.12 0.82%
Flaim 0.0016 5.19 1.48%

avoid the problem of divergent threads.

While this backwards Euler method is not the only possible method we

could have used, it yields small enough errors as to be sufficiently accurate for our

application, and was amenable to our automatic code generation scheme which

made a GPU implementation straightforward.

The runtime of our backwards Euler implementation was dependent upon

the step size which also impacts the error. We modified the step size until it

yielded an acceptable RRMS error (less than 1.48%) when compared to radau5.

At this error, our backwards Euler implementation required approximately the

same runtime as radau5. Although radau5 can take larger and therefore fewer

time steps, it has to do much, much more work at each time step.

Although we have not implemented radau5 on the GPU, our experience

suggests that it would make a poor GPU solver anyway. In addition to adding con-

siderable complexity (at least another 1000 lines of code) and requiring additional

state space for the Jacobian and intermediate state vectors, radau5 ’s adaptive step

sizes are not well suited for the SIMT architecture of the GPU. For example, at

any given moment during the simulation, different collocation points might require

a different number of time steps to achieve sufficient accuracy. This would lead to

tremendous thread divergence and would thus likely cripple performane.

We also implemented several other single precision solvers including a sec-

ond order Rush-Larsen scheme, several forward Euler variations, and backwards

Euler with adaptive time steps. We implemented the Forward Euler methods for

both the CPU and in CUDA for the GPU. What we found was that none of the

other solvers improved accuracy and they also did not improve performance over

25

our backwards Euler scheme with the Flaim model. The other solvers also all

required much more state space which would lead to more register pressure, more

global memory references, etc., which might also lead to performance degradation

in CUDA.

It may also be that the other solvers work better in double precision and that

a single iteration backwards Euler method is very well suited for single precision

- an topic suitable for exploration in future work. Thus, we do not claim to have

the best possible method for solving systems of ODEs on the GPU, but rather a

method that delivers excellent performance and accuracy when compared against

radau5, a solver that has been in use for solving these types of systems for many

years. Further, we demonstrate our method is successful even when confronted

with an extremely complex and stiff cell model.

Next we briefly review various numerical methods for solving ODE systems

to motivate the formulation of our simplified method. As we discuss these methods,

we will use the following symbols. yn is the vector of state variables at time step n.

yn+1 is therefore the vector of state variables at the next time step. h is the step

size which is typically fixed but can be variable if using an adaptive time stepping

scheme. y′n is the vector of the derivatives of the state variables which is computed

by the user defined function f(yn), which we also refer to as the “cell model.”

2.4.2 Forward Euler Method (FE)

Perhaps the simplest numerical method used to calculate the next time step

in a ODE system is Euler’s Method:

yn+1 = yn + hy′n (2.2)

The main benefits of this scheme are its simplicity both in terms of imple-

mentation and comprehension. With this simplicity, though, comes both inaccu-

racy and instability making this method unsuitable for most applications.

26

2.4.3 Explicit Runge-Kutta Methods (ERK)

Closely related to the simple Forward Euler method, is the family of Runge-

Kutta methods. Forward Euler, in fact, can be though of as a first order Runge-

Kutta method. Perhaps the most popular method in this family is the 4th order

explicit Runge Kutta method:

yn+1 = yn +
1

6
h(k1 + 2k2 + 2k3 + k4) (2.3)

tn+1 = tn + h

k1 = f(tn, yn)

k2 = f(tn +
1

2
h, yn +

1

2
hk1)

k3 = f(tn +
1

2
h, yn +

1

2
hk2)

k4 = f(tn + h, yn + hk3)

Although h is typically a constant step size,variable h has also been used.

2.4.4 Backwards (Implicit) Methods

In contrast to explicit forward Euler methods, there are also implicit or

backwards Euler methods. The simplest of such formulations is:

yn+1 = yn + hy′n+1 (2.4)

Like their forward counterparts, a variety of backwards Euler methods vari-

ations have been suggested.

2.4.5 Backwards Euler Method with Newton Update

As mentioned previously (see Equation 2.4), the backwards Euler Method

is:

yn+1 = yn + hy′n+1

27

Because yn+1 is found on both sides of the equation, we can use the Newton-

Raphson method to approximate a solution. Given a guess x0, a better approxi-

mation x1 is defined as follows:

x1 = x0 −
F (x0)

F ′(x0)
(2.5)

Let yn+1 be defined as x0 and ŷn+1, the better approximation, as x1. Using

the Backwards Euler equation and assuming y′n+1 = f(yn+1), we define F (yn+1) as

follows:

F (yn+1) = yn+1 − yn − hf(yn+1) (2.6)

dF
dyn+1

or F ′ is therefore:

F ′(yn+1) = 1− hf ′(yn+1) (2.7)

Given our initial yn+1, we can approximate a more accurate solution ŷn+1

as follows. We use F and F ′ with the Newton-Rhapson equations, yielding:

ŷn+1 = yn+1 −
F (yn+1)

F ′(yn+1)

ŷn+1 = yn+1 −
yn+1 − yn − hf(yn+1)

1− hf ′(yn+1)
(2.8)

We can continue this process iteratively until some stopping condition (e.g. error

estimation or number of iterations) is met.

2.4.6 Simplified Backwards Euler Method

If we do just a single iteration of Newton’s Method and let our initial yn+1

guess be equal to yn, the equations simplify as follows:

yn+1 = yn +
hf(yn)

1− hf ′(yn)
(2.9)

And if we take a small enough time step h, this scheme may achieve sufficient

accuracy. Indeed we will use this scheme in our automatic code generator for both

the GPU and the CPU. We judge accuracy by comparing the RRMS error of the

voltages against that of radau5 (see Section 2.4.7 for a description of radau5 and

Table 2.2 for step sizes and errors for a variety of cell models.)

28

2.4.7 Radau5

The radau5 solver implements a 5th order adaptive implicit Runge Kutta

with full jacobian method [19]. We use this implementation as a “gold standard”

by which to judge the accuracy of other methods.

The numerical method used by radau5 is considerably more complex than

the other methods we discuss due to its adaptivity and calculation of a full Jaco-

bian. The method is implemented as 850 lines of Fortran for its core functionality,

plus an additional 650 lines to solve a linear system and calculate error estimations.

The calculation of the right-hand side is most analogous with the other methods

we discuss and involves computation of 3 derivatives of this form:

c1 =
4−
√

6

10

c2 =
4 +
√

6

10
k2 = f(tn + c1× h, yn + z1)

k3 = f(tn + c2× h, yn + z2)

k4 = f(tn + h, yn + z3)

The values of z1, z2, and z3 change dynamically as the solver runs based

on the adaptively changing step sizes.

2.4.8 Rush Larsen Methods

These methods typically solve “quasi-linear” equations analytically and

other equations using forward Euler or something fancier. The original formu-

lation was suggested by Rush and Larsen [47] in 1978 and achieved only first order

accuracy. More recently, second order accurate methods have been suggested by

[33, 25]. Although these methods may achieve significant performance gains with

very little loss in accuracy, they can be difficult to setup for very large ODE sys-

tems which is perhaps why they are not used as frequently as simpler, less efficient

formulations.

Chapter 3

Translation

Building a highly tuned CUDA application can be a challenge, even for the

expert programmer. In order that our simulator be usable by a domain scientist,

it must deliver acceptable performance without requiring that the model developer

have expert GPU programming knowledge and skills. Therefore, we have built a

translator that accepts a higher level cell model description, automatically gener-

ates highly tuned CUDA kernels, and invokes a framework to integrate the kernels

into a runnable simulator. This approach enables the model developer to focus on

cell modeling without worrying about complicated implementation details, and en-

ables the experts to provide optimizations that are customized to the hardware at a

time when hardware platforms are undergoing continual change. We next describe

how the translator generates code and how it deals with singularities introduced

by using single precision instead of double precision arithmetic.

We also note that our approach to generating optimized source code from a

high level cell model description is amenable to other platforms. For example, we

can also generate OpenMP CPU code from the same high level cell model which

we use for performance comparisons.

3.1 Code Generation Overview

We use sympy [8], a Python library for symbolic mathematics, to handle

code generation and perform automatic symbolic optimizations (see Section 3.3

29

30

for additional details about the sympy library). Using our software environment,

the model author specifies a list of state variables, parameters, and the equations

which comprise the cell model (see Listing 3.1 for an example of the equations

specified by a domain scientist to create a modified FitzHugh Nagumo model).

This is specified in a high level python format which uses the sympy library. Our

translator then compiles this model into C code using sympy. Next, we generate

the appropriate function signatures, variable declarations, etc. to legitimize the

C. We then use pycparser to build an abstract syntax tree (AST) corresponding

to the C code [6]. We traverse the code’s AST in order to construct a list of

dependencies for each state variable. Using the dependence information and the

C expressions, we generate a CUDA kernel that fuses the code for the cell model

and the single iteration backwards Euler ODE solver. For the Flaim model, our

translator generates a CUDA kernel 4917 lines long. The translator next performs

various CUDA optimizations specific to the intricacies of nVidia hardware. Once

the optimized kernels have been generated the translator calls nvcc to produce an

executable, which is invoked indirectly via python. In the future our code generator

will allow equations to be specified in an xml style format for compatibility with

other cell model databases, such as cellml [9].

31

1 s t i m s t a r t , st im dur , stim mag = params

2 ug , vg = s t a t e v a r s

3 vmax = 1 .0

4 v r e s t = 0 .0

5 cm = 1.0

6 a = 0.130

7 b = 0.0130

8 c1 = 0.260

9 c2 = 0.10

10 d = 1 .0

11 st im end = s t i m s t a r t + st im dur#! end time o f s t imu lu s

12 heavi = Heav i s ide (t−s t i m s t a r t) ∗ Heav i s ide (stim end−t)

13 i s t i m = stim mag∗heavi

14 ug norm = (ug−v r e s t) /(vmax−v r e s t)

15 dug dt = (ug norm ∗ (ug norm − a) ∗ (1 . 0 − ug norm) ∗ c1 − c2 ∗ vg

∗ ug norm) ∗ (vmax − v r e s t) + i s t i m ∗ (1 . 0 / cm)

16 dvg dt = b∗ug norm − b∗d∗vg

Listing 3.1: High level python description of model which makes use of the sympy
library. By allowing the user to create the model as a high level description it
relieves him of the burden of dealing with low level GPU implementation details

Before diving into the details of our translator, we describe a few pre-

requisites including Heaviside functions, ODE Solvers, and numerical singularity

removal, all of which our translator leverages for code generation.

3.2 Heaviside Functions

Conditionals in the form of if statements commonly arise in cell models.

However, the use of if statements presents us with two difficulties. The first, is

that because we rely on sympy to symbolically evaluate the cell model’s equations

and generate C code, we are unable to propagate conditionals into the generated

code - if the user were to add if statements into the code they would be evaluated

by sympy at compile time rather than at runtime when needed. A second difficulty

is that the nVidia GPU penalizes if statements which result in thread divergence.

32

The Heaviside step function addresses both challenges - thread divergence

and the limitations of code generation with sympy, without sacrificing our ability

to represent a model which varies spatially and temporally. Heaviside functions

work as follows: if Heaviside() is passed a value greater than zero it returns 1.0.

If it is passed a value less than zero, it returns 0.0. And if it is passed a value of

exactly zero, then it returns 0.5. For example, one implementation of a Heaviside

function is:

Algorithm 1 Heaviside(myvar):

if myvar > 0 then

return 1.0

else if myvar < 0 then

return 0.0

else

return 0.5

end if

With an alternative Heaviside implementation, we can make use of predi-

cation and thus avoid conditionals1:

Algorithm 2 HeavisidePredication(myvar):

return sign(myvar)*0.5

Thus, by providing a Heaviside() function we can obviate the need for if

statements common in cell models. For example:

if time > 5 then

stimulus = 10.0

else

stimulus = 0.0

end if

Could be rearranged with a Heaviside function like this:

1Although CUDA does not support a sign() function, this behavior can be achieved with
signbit()

33

stimulus = Heaviside(time-5.0)*10.0 + (1-Heaviside(time-5.0)*0.0)

or simply:

stimulus = Heaviside(time-5.0)*10.0

Although arguably conditionals may be more natural for a domain scien-

tiest, our experience indicates that it is not difficult to convert cell models with

conditions to use Heaviside functions instead. Also Heaviside functions have useful

mathematical properties2 that may make them attractive such as a well defined

derivative3.

3.2.1 Singularity removal

With the current generation of nVidia GPUs, the double precision arith-

metic rate is significantly lower than that of the single precision4. If unchecked,

roundoff errors in single precision can introduce unacceptable errors into the sim-

ulation.

For example, in the Flaim model5, certain expressions arise that lead to

singularities at magic voltages; when we use double precision arithmetic, voltages

never quite reach these magic numbers, and are far enough away that the equa-

tions are benign in practice. At first glance, some of these problematic equations

appear to be in the form a = b
ev−1

and since limv→0
1

ev−1
=∞, letting v be zero ap-

pears to be illegal, even though a zero voltage is perfectly legal in these biological

systems. Upon closer inspection, though, we found that the equations with these

singularities are actually of the form a = bv
ecv−1

, in which case the limit does not go

to infinity, but rather some constant based on b and c.

In order to tolerate the roundoff errors committed in single precision, a

variety of possibilities are available. First, the presence of these singularities may

suggest that the cell model author might want to reformulate his equations manu-

ally so that these singularities do not occur. Using an asymptotic expansion may

2http://mathworld.wolfram.com/HeavisideStepFunction.html
3Bracewell, R. “Heaviside’s Unit Step Function, H(x).” The Fourier Transform and Its Ap-

plications, 3rd ed. New York: McGraw-Hill, pp. 61-65, 2000
4Older GPUs (before the 200 series) do not support double precision arithmetic.
5We also found that the Puglisi model [43] suffered the same difficulty.

34

be useful in this reformulation and is likely the preferable solution to this problem.

Our tool would facilitate this process by identifying the equations with singularities

near certain values.

Alternatively, we implemented an automatic transformation that traverses

the equations and employs a root finder to eliminate division by zero. This strategy

avoids the most critical round-off errors introduced by single precision and enables

us to benefit from the higher single precision computational rate. Since we already

have the AST, we can search for problematic denominators. Specifically, we employ

sympy ’s solve() method (a root finder) to identify which input values would lead

to divide by zero errors. Once these illegal values are identified we add a very

small offset to problematic values as they appear in arithmetic expressions. For

example, the following lines would prevent the round-off problem that occurs near

voltages of zero:

35

1 i f (abs (vo l t age) < 1e−4)

2 vo l tage + s i gn (vo l tage) ∗ 1e−3;

While this strategy introduces a small error, we found the overall effect on

the simulation to be negligible. Although the conditional can cause threads to

diverge, they do so only momentarily and are quickly resynchronized (see Section

5.1.1.2 of [36]). We do caution, though, that we selected 1e − 4 carefully. If

this value were too small we would occasionally miss voltages close enough to the

singularity to cause problems. If the value were too large it could cause the voltage

to get “stuck” at zero when the voltage is changing very slowly.

Yet another approach would be to calculate the limit as voltage approaches

the singularity, and replace the equation with the limit. In this case, we use sympy ’s

limit() to automatically calculate an alternative. We can then use a formulation

like this:

1 i f (abs (vo l t age) < 1e−4)

2 a = precomputed l imit ;

3 else

4 a = f (v) ;

There are a few challenges, though, that make this approach difficult to use

in practice. Some of the equations are too complex for sympy ’s limit() function to

be able to handle. Also, singularities quickly propagate into other equations and

it is easy to create the situation where we need to check every equation against a

set of magic values which would lead to a significant performance penalty

Since our first automatic solution (adding a small offset) approximates the

limit anyway, and the error introduced is quite small, it may be sufficient to use

in practice.

This approach is applicable to any equation in which a numerical singularity

arises due to imprecision around a certain value which can be replaced by its limit

around that value. Although we aren’t aware of other domains with equations of

this exact form, the equations are derived from physical phenomena which give

rise to ODEs and thus are likely to occur elsewhere.

36

3.3 Translator Tools

In order to facilitate the code generation process, we employed several pre-

built libraries and tools which we now discuss in detail.

Python6. Python is a general purpose programming language useful over a

broad spectrum of application domains from server side web programming to heart

modeling. Python is often referred to as a scripting language as it is interpreted

and very high level. Python is extremely dynamic and has gained a great deal

of support in the high performance computing community over the last few years

due to its flexility and ease of use. There are a number of scientific and numerical

libraries available for python such as SciPy and numpy which also make it attrac-

tive for domain scientists. We used python version 2.5.4 for all the results given,

although when we tested with python 2.6.2. it yielded no significant difference.

Because it is a dynamic interpreted language, python executes rather slowly

when compared to a compiled language. However, there are straightforward tools

to extend python with compiled C, C++, and Fortran codes so that performance

bottlenecks can be reduced when necessary while still managing the overall logic

of an application from a very high level scripting language.

Python is also popular to use for metaprogramming or writing programs to

write other programs and various libraries exist to facilitate this process. We used

two such tools which we will discuss next.

Pycparser7. pycparser is a python library for parsing C source code. Specif-

ically, the library can take C source code and build an AST representation as a

python data structure which is a convenient structure for code analysis and ma-

nipulation. We used version 1.04 of pycparser.

Sympy8. sympy is also a python library, but useful for symbolic manipula-

tion of expressions and variables. It also has simple faculties for code generation

and manipulation. The domain scientist can create their cell model equations in

a sympy compatible format which our translator converts to other representations

6http://python.org
7http://code.google.com/p/pycparser/
8http://code.google.com/p/sympy/

37

and ultimately to CUDA source code. We used version 0.6.4 of sympy.

CUDA Toolkit9. The CUDA toolkit is a collection of tools (most notably the

nvcc compiler) for generating nVidia GPU compatible binaries from CUDA source

code. We used release 2.3, V0.2.1221 of the CUDA Toolkit, and used the flags

maxrregcount=64 and ptxas-options=-v -use fast math with nvcc. nVidia also

releases a separate package which it terms the CUDA SDK (software development

kit) which contains example CUDA source code rather than development tools.

GCC. For compiling our C codes, we used the GNU Compiler Collection

(gcc), version 4.3.3. with -fopenmp and -fPIC flags.

Decuda10. Finally, we make use of decuda, which can take a binary pro-

duced by nVidia’s nvcc compiler and generate a ptx assembly file. Because certain

stages of the nVidia compilation process are proprietary, disassembling the code

is the only way to determine what is actually being executed on the GPU. We

used version 0.4.1 of decuda. The authors of decuda built the tool was built by

“differential analysis on the cubin files by produced by ptxas and extensive exper-

imentation” rather than by reverse engineering of the nVidia tools. decuda is not

associated with nVidia and might contain errors.

3.4 Translator Details

We now provide the details of the internals of our translator implementation

(see Figure 3.1 for a pipeline). As evident from Listing 3.1, the user first speci-

fies the parameters and state variables used by their model. Our translator takes

this information to build the appropriate C variable declarations. Each parameter

requires a variable declaration and each state variable requires two variable decla-

rations - one for the state variable’s current value and one for the state variable’s

derivative, which is the output of the cell model. For example, if the user specifies

the state variable v we create the variables v and dv dt.

Next the model author specifies a series of equations which define his cell

model. The cell model equations define the derivative of each state variable. In

9http://www.nvidia.com/object/cuda get.html
10http://wiki.github.com/laanwj/decuda

38

User Authored Cell Model

Singularity

Checker

C Expression

Generator

C Source File

Dependency

Checker

Unoptimized CUDA source

(with ODE Solver)

CUDA Optimizer

Optimized CUDA Source File

CUDA C

Compiler

Figure 3.1: Pipeline of translator. The output of the final stage is CUDA compliant
code and will be compiled by the CUDA C Compiler (nvcc).

39

other words, the input to a cell model is the current vector of state variables, and

the output is the derivative for each variable. This is the standard formulation by

which cell models (or other systems of ODEs) are defined.

In addition to the equations defining the derivative of each state variable,

the cell model author may also specify constants or temporary variables which are

used by subsequent equations.

Next, our translator takes the user specified list of equations and constants

and traverses them, generating C code as it goes. If an equation can by symbolically

evaluated as a constant, we do not declare a corresponding C variable, but instead

simply substitute the variable for its evaluated constant whenever it is used. sympy

is able to handle this substitution automatically. Otherwise, if the equation cannot

be evaluated as a constant, we declare a C variable for the LHS of the equation,

and use sympy ’s printing.ccode() function to generate a C expression from the

sympy equation. For example, the sympy equation v**2 becomes pow(v,2) in C.

As we traverse equations, we use sympy ’s solve() function on each denom-

inator to detect divide by zero singularities. These are reported to the user, who

can then choose to optionally apply our singularity removal technique by applying

a small offset. The user might choose to ignore certain singularities, such as with

a voltage of -420, as the user may know that in his model the voltage may only

ever be between -90 and +20.

Once we have generated the C code, we then use pycparser [6] to parse our

C code to generate information that is useful for subsequent steps in the code

generation process. Specifically, we create a python data structure with an AST

representation of the C code. We can then traverse this tree to acquire whatever

information we need about the C code without having to write our own C parser.

We need this AST to build a dependency graph for each variable in our

cell model. For example, if an assignment is v = a * b / (c + d), we are able to

recognize that v depends on a, b, c, and d. See Figure 3.2 for an example AST of

this expression. We then work our way backwards to identify which a, b, c, and d

are associated with this assignment; there could be multiple assignments for each

variable and we must find the relevant assignment. We can make this selection

40

confidently as our cell models do not allow branching due to if statements. As

mentioned previously the cell model author can use Heaviside() functions if he

must assign a variable based on some runtime criteria, such as setting a stimulus

at a particular location in the model at a particular time.

=

v /

*

a b

+

c d

Figure 3.2: Simple AST for the expression v = a∗ b/(c+d). A data structure with
this information can be used to identify that v depends on a, b, c, and d.

After creating a mapping of each assignment and all dependencies for each

assignment, we are able to generate the time stepping code for each equation in

our cell model. We do this by looping over each state variable and printing its

dependencies in the order in which they are required.

While we do this, we also build in the single iteration backwards Euler

integration scheme in order to calculate a subsequent time step. As discussed in

section 2.4.6, the backwards Euler formulation we use involves the equation:

yn+1 = yn +
hf(yn)

1− hf ′(yn)

Thus, in order to compute yn+1 we need yn (the current value of y), h (the

step size), and f(yn) (the derivative of yn) and f ′(yn) (the derivative of f()). We

can estimate f ′(yn) with a finite difference calculation. For example, suppose that

the cell model author specifies f = exp(param1) + y/2 and x = exp(param1).

Then we would generate the following expression:

41

1 y += de l t a ;

2 x = exp (param1)

3 f d e l t a = x + y /2 ;

4 y −= d e l t a ;

5

6 x = exp (param1)

7 f = x + y /2 ;

8 f d e r i v = (f d e l t a − f) / d e l t a ;

9 y new = y + (h∗ f) /(1−h∗ f d e r i v) ;

Listing 3.2: Backwards Euler implementation.

Thus, when we calculate f ′ using finite differences, some small delta (such

as 1e − 4) is added to y to compute f delta and then removed before computing

f . In other words, by dividing the difference between f delta and f by delta we

approximate f ′. Also we note that this involves repeating the calculations for each

state variable twice as our ODE scheme requires a small perturbation (e.g. a finite

difference) in order to calculate the next time step. This may introduce redundant

calculations (in this case x=exp(param1) was unnecessarily computed twice), but

we can automatically remove any unnecessary redundancies as we discuss in Section

3.5.

After generating the source code which combines the ODE solver with the

cell model, we add the appropriate CUDA specific requirements to legitimize the

code. For example, a CUDA kernel must begin with the global keyword so that

it can be distinguished from other CPU functions intermingled in the file. We also

add the appropriate function header, declarations, etc., that are required.

Finally, we perform another pass over the source code to apply additional

optimizations. For example, one potential optimization is to replace global mem-

ory references with shared memory. To perform this operation, we search for vari-

ables of the form y global[varNum*num gauss pts + idx] and replace them with

y smVarNum[threadIdx.x], where varNum a state variable number. Other global

memory optimizations are applied in a similar manner, and the various possibilities

are detailed in the following section.

42

3.5 Automatic Optimizations

Our code generator applies various optimizations during its different phases

of operation. It applies these optimizations cumulatively. For our simpler cell

models (i.e. MFHN, BR, and Puglisi), Optimization 1 and 2a, detailed below, are

sufficient to lead to the maximum performance benefits we were able to obtain.

For these less sophisticated cell models, we simply eliminate redundant calculations

(see Opt1 below), and copy state variables from global memory to register memory.

Because these models do not have excessive state space requirements (2, 8, and 18

state variables) we are able to store all the state space in registers and still have

enough registers left over to work with such that we do not spill to the much slower

global memory.

With the Flaim model, however, the situation is more interesting. With 87

state variables, plus more complex equations, the compiler is unable to manage

the data without spilling to local memory. Thus, when confronted with an overly

complex kernel requiring too much state space, we explore a variety of optimiza-

tions to improve performance. As we detail these optimizations below, we will

therefore do so in the context of the Flaim model. A summary of the effect of the

optimizations we applied to various cell models can be found in Tables 4.2 and 4.6.

We begin with a “näıve” implementation, which is the result of compos-

ing our cell model with the backwards Euler method for numerical integration.

Composing the two modules introduces redundant calculations. For example, let’s

suppose that the user provided the following sympy code:

1 param1 , param2 , param3 = params

2 a , b = s t a t e v a r s

3 x = exp (param1) /exp (param2) ∗ pow(param3 , param2)

4 da dt = a∗x∗2
5 db dt = b∗x∗3

Listing 3.3: Sample cell model input

After identifying state variable dependencies, and combining with the equa-

tions for a single iteration backwards Euler integration method, the following code

43

is generated:

1 // da d t

2 y g l o b a l [0∗ num gauss pts + idx] += d e l t a ;

3 x = (pow(r p a r g l o b a l [2∗ num gauss pts + idx] , r p a r g l o b a l [1∗
num gauss pts + idx]) ∗ exp ((r p a r g l o b a l [0∗ num gauss pts + idx]

− r p a r g l o b a l [1∗ num gauss pts + idx]))) ;

4 da dt = a ∗(2 ∗ x) ;

5 y g l o b a l [0∗ num gauss pts + idx] −= d e l t a ;

6 a j = da dt ;

7

8 da dt = a ∗(2 ∗ x) ;

9 b i be = (a j − da dt) / d e l t a ;

10 y g loba l new [0∗ num gauss pts + idx] = y g l o b a l [0∗ num gauss pts +

idx] − (−da dt ∗dt) /(1−dt∗ b i be) ;

11

12 // db d t

13 y g l o b a l [1∗ num gauss pts + idx] += d e l t a ;

14 x = (pow(r p a r g l o b a l [2∗ num gauss pts + idx] , r p a r g l o b a l [1∗
num gauss pts + idx]) ∗ exp ((r p a r g l o b a l [0∗ num gauss pts + idx]

− r p a r g l o b a l [1∗ num gauss pts + idx]))) ;

15 db dt = b∗(3 ∗ x) ;

16 y g l o b a l [1∗ num gauss pts + idx] −= d e l t a ;

17 a j = db dt ;

18

19 db dt = b∗(3 ∗ x) ;

20 b i be = (a j − db dt) / d e l t a ;

21 y g loba l new [1∗ num gauss pts + idx] = y g l o b a l [1∗ num gauss pts +

idx] − (−db dt∗dt) /(1−dt∗ b i be) ;

Listing 3.4: Sample cell model output with redundant calculation of temporary
variable x

When our code generator built a list of dependencies for da dt and db dt,

it found that x was required for both state variables. Näıvely, our code generator

duplicates the calculation for x, which in this case is quite expensive! However, be-

cause both x computations are the same and since param1, param2, and param3

(the variables on which the calculation of x depends) do not change between cal-

44

culations, we can safely eliminate the second assignment of x. This leads us to our

first optimization.

Optimization 1 automatically removes redundant calculations by searching

and modifying the AST. The decuda disassembly tool [53] establishes that, prior

to this optimization, the generated Flaim model kernel comprises 19,747 assembly

operations. The optimization reduces the number of assembly operations by a

factor of 3, to 6,685. We use this variant as the baseline for performance. We note

that this choice could be considered overly restrictive, since we don’t how success-

ful a programmer would be in recognizing opportunities for removing redundant

computations. An assignment statement is redundant only if none of the variables

on the RHS have changed since the last assignment, and this would be difficult to

verify in 6,685 lines of entangled assignment statements.

The next optimizations (2a-2c) are mutually exclusive. Optimization 2a

copies global variables into local variables. We observed that with simpler cell

models having fewer variables, the compiler can allocate the global variables to

fast registers. With larger models, though, the compiler warns us that it is spilling

variables to local memory which, physically located in device memory, still suffers

the same 150x latency penalty as global memory. However, our tests indicate that

the CUDA compiler spills variables very effectively and even when confronted with

many more state variables, the local memory usage did not increase dramatically

(see Table 4.2). We also suspect that because local variables are simpler to reference

(e.g. they do not require a thread index) register pressure may have decreased,

which may have allowed more local variables without much more local memory

spillage.

Optimization 2b: (MFR) As an alternative to optimization 2a, each thread,

at run time, copies its most frequently accessed global variables into shared mem-

ory. Because our kernels required more than 40 registers, our device occupancy

was already limited to 5 thread blocks of 64 threads. Thus, we had storage for

11 variables in each thread without further reducing our occupancy. This strategy

uses an offline algorithm - there are virtually no branches in our code, a charac-

teristic of cellular models. In general an offline caching algorithm is not feasible

45

because at compile time it is impossible to determine which branches will be taken

and thus which data are needed in the cache. However, in code without branches

cache placement can be determined at compile time, thus obviating the need for a

runtime caching mechanism.

Optimization 2c: (MIN) Instead of statically allocating the most frequent

accessed globals to shared memory, we use a dynamic cache replacement strategy,

based on Belady’s MIN page swapping algorithm [4]. When the shared memory

cache is full, we evict the variable whose next reference is the furthest in the future,

because all other cached variables will be needed sooner. Like optimization 2b, this

strategy is done off-line and we had sufficient storage for 11 variables at a time.

With an 11 variable shared memory cache, we are able to achieve a hit rate of

88%; not far from the rate that would be achieved by an infinite sized cache, since

the first global reference for each variable is always a miss. See Appendix A for an

example of the application of Optimization 2c applied to the FitzHugh-Nagumo

cell model.

Optimization 3 : Kernel partitioning. This optimization is combined with

one of 2a, 2b, or 2c. Our model is highly complex, and contains 87 state vari-

ables referenced within 1800 lines of CUDA code. The CUDA compiler, nvcc is

challenged to manage register allocation. If we attempt to compile our single mono-

lithic kernel, numerous variables will be spilled from the fast registers to the slow

local memory. Our optimizer splits a model’s code into separate CUDA kernels to

reduce register demand, which the CUDA compiler can then manage on its own.

The best kernel size appears to be right after the kernel has just begun to spill to

local memory. This optimization corresponds to loop fission, a strategy used in

vectorizing compilers dating back two decades [27].

We partition kernels at the boundary between state variables updates, cor-

responding to the ODEs specified in the higher level user input. Each kernel saves

the new value for each state variable that it is responsible for computing into global

memory. We determine the dependencies for each state variable from the AST, so

we can treat each state variable as its own independent unit and not worry about

saving any intermediate calculations between kernel calls. Saving these variables

46

would require writing them to global memory, since global memory is the only

writable memory space persistent after a kernel’s execution. See the appendix for

an example of how MFHN might be partitioned into two pieces with this technique.

Optimization 4 : Dual GPUs. With this optimization we make use of both

GPUs present in the GTX 295 video card. CUDA requires that each GPU be

managed by a separate CPU host thread. We used the pthreads library to create

a separate CPU thread to manage and control the second GPU.

Chapter 4

Results

4.1 Simulation Description

To benchmark the bottlenecks of an electrophysiology system, we use Con-

tinuity 6 to model a left ventricular electrophysiology simulation using a variety of

representative cell models and a total of ∼44,000 degrees of freedom for the trans-

membrane potential (see Figure 4.1 for a Continuity 6 rendering of the model).

This model involves 5280 finite elements and therefore 42,240 collocation points,

since each element has 8 collocation points. These collocation points exist at the

level of parallelism we wish to exploit: at each ODE time step, each point must

solve its own independent ODE system.

In addition to the ODEs, we also must solve a system of PDEs much less

frequently. Solving the PDEs requires solving a linear system of equations in which

the LHS matrix is very sparse. We use a direct solver, SuperLU [11], which also

executes on the CPU, but can take advantage of many cores to achieve superior

performance.

For the performance results we present in Figure 4.3, we only consider the

speedup achieved with the ODEs and discuss PDE acceleration in Section 4.5.

47

48

Figure 4.1: Single ventricle electrophysiology simulation rendered in Continuity 6
using the Flaim canine cellular model.

4.2 Hardware Testbed

MPI cluster. Assembled in 2007, the cluster consists of 68 Dell PowerEdge

SC6590/SC1435 enterprise servers equipped with the AMD Opteron 2216 dual core

processors, running at 2.4 GHz clock, 1MB Cache and 1 GHz HyperTransport.

Each server has 4 cores, 4 GB of RAM. The entire cluster has a theoretical peak

performance of 1.3 TFLOP And runs 64 bit Rocks 4.2.1 (CentOS). A 10 Gbps

(4X) InfiniBand network is managed by a Cisco SFS 7009 server switch, with 1.92

Tbps full bisectional bandwidth1. We used gcc version 3.4.6, with -fPIC, -O2 and

-finline-functions flags when compiling C codes.

Desktop. The desktop comprises both a multicore processor and a GPU.

The multicore processor is a dual socket Intel Quad Core i7 CPU 940 (2.93GHz),

with 12GB RAM. The GPU is an nVidia GTX 295, a single card with two GPUs.

Each GPU has 240 single precision units running at 1242 MHz with a theoretical

peak performance of 894 GFLOPS. Our device is 1.3 capable.

1Wilfred Li, NBCR, Private Communication, 2007

49

4.3 ODE

4.3.1 CPU Performance and Optimizations

Before employing a GPU implementation of our ODE solver, we review

more traditional high performance computing platforms: multithreaded CPU and

multi-CPU cluster. The results are summarized in Figure 4.2. Put simply, both

OpenMP CPU implementation and MPI Cluster implementations result in dra-

matic speedups over single thread implementations, although the cluster suffers

from diminishing returns as we use additional CPUs (as the communications costs

between CPUs start to dominate the computations). It is also worth noting that

a quad-core i7 processor achieved speedups beyond 4 OpenMP threads, likely due

to the effects of hyperthreading. See Table 4.1.

We also explored the potential of using SSE instructions to vectorize instruc-

tions to improve performance by using gcc’s auto-vectorization (-ftree-vectorize

-msse2). While a small amount of automatic vectorization was possible by the

compiler, it was largely unable to vectorize the cell models for several reasons.

First, the mere complexity of our code made auto-vectorization of large loops diffi-

cult. We employ strided memory references which also proved challenging. Finally,

our loops possess rare but essential conditional statements which also create un-

certainties from the compiler’s perspective which cause autovectorization to fail.

While these conditional statements cause momentary thread divergence on the

CUDA platform, the thread divergence is only temporary (see Section 3.2.1 for

additional details).

Table 4.1: The speedup achieved by adding additional OpenMP threads. Times
measure the running time to simulate 20ms of a heart beat for a mesh with 42,240
collocation points.

Procs Time (s) Speedup
1 6.7553 1.0
2 3.4061 2.0
4 1.7099 3.9
8 1.0658 6.3

50

Figure 4.2: OpenMP (on a workstation) vs MPI (on a cluster)

4.3.2 GPU Performance and Optimizations

In Table 4.2 we see the effects of applying various optimizations to the

Flaim model. To understand these optimizations and their effects we must be

careful to distinguish between local memory and local variables. Local memory

exists in the GPU’s DRAM and, like global memory, suffers approximately a 150x

latency penalty over register or shared memory access. Local variables are simply

variables which are local to a CUDA C function. The compiler will attempt to

place local variables into the fast registers whenever possible, although overuse of

local variables will cause the compiler to spill to the slower local memory.

We were able to ascertain the number of references to local and global

memory and the number of operations based on the output of the decuda, a third

party tool to disassemble the binary produced by nVidia’s nvcc compiler. This

provides a static analysis and does not account for runtime behavior such as loops

or conditionals. Optimization 2a (copying global data to local variables) adds a

loop which the compiler does not unroll with the Flaim model. Manual inspection

51

Table 4.2: The impact of optimizations on the running time of the ODE solver for
the Flaim model. Times measure the running time to simulate 20ms of a heart
beat for a mesh with 42,240 collocation points. The first two entries in the table
were run on the CPU and the remaining entries on the GPU. Optimizations were
applied cumulatively, in the order listed in curly braces. CPUx and GPUx are
the speedups achieved over the reference implementation. Ops are the number of
ptx assembly operations for the kernel as revealed by decuda. The Gbl column
contains the number of times global memory is referenced in the ptx assembly and
the Loc column contains the number of times local memory was referenced. The
Tot column contains the sum both global and local memory references.

Method Time(s) CPUx GPUx Ops Gbl Loc Tot
CPU:serial 6754.06
CPU:OpenMP 1068.82 1.0
Näıve GPU 52.69 20.28 19747 1415 68 1483
Opt{1} 31.46 33.97 1.0 6685 1009 214 1223
Opt{1,2a} 16.44 65.03 1.91 5317 178 304 700
Opt{1,2a,3} 41.47 25.77 0.76 7557 614 743 1357
Opt{1,2a,4} 8.12 131.58 3.87 5317 178 304 700
Opt{1,2b} 25.86 41.34 1.22 6493 820 179 999
Opt{1,2c} 18.27 58.49 1.72 6039 278 264 542
Opt{1,3} 26.11 40.94 1.21 8205 1058 0 1058
Opt{1,2c,3} 13.81 77.38 2.28 7557 331 0 331
Opt{1,2c,3,4} 7.94 134.65 3.96 7557 331 0 331

52

of the generated assembly indicates that to account for this loop we needed to add

86 global memory references, 86 local references and 602 (86 × 7) operations to

the static count of the ptx assembly generated by decuda, which we have included

in Table 4.2.

The running time of the näıve GPU implementation was 52.69 seconds to

simulate 20.0 milliseconds of a heartbeat. By applying various optimizations, we

were able to improve performance by a factor of 6.6, or 134.6 times faster than

the OpenMP implementation running on a quad core i7 processor and 850.5 times

faster than a single core. We ran with 64 threads per block and were able to

maintain a device occupancy of 5 concurrent thread blocks.

When comparing the speedups of the various GPU optimizations, we do

not include the redundancy expression removal (Optimization 1). As mentioned

previously, the näıvely generated code is bulky, and it isn’t known to what extent

the programmer could remove redundant expressions by hand. Thus, when we

use Optimization 1 as our base GPU implementation, our GPU speedup was 3.9

rather than 6.6.

decuda reveals that Optimization 1 reduces the number of assembly in-

structions by a factor of 3.0 and global and local memory references decreased by

a factor of 1.2. The actual running time drops by a factor of 1.7 indicating that,

while the running time is influenced by the number of instructions, the global and

local memory references have a larger impact in the performance - we will quantify

this relationship in greater detail shortly. As a result of this improvement we al-

ways applied Optimization 1 regardless of what other optimizations were applied

subsequently.

The three caching optimizations 2a, 2b, and 2c resulted in improvements

of 1.91x, 1.22x, and 1.72x respectively. Prior to Optimization 3, Optimization

2a (copying global variables into local automatic storage) was the most effective.

Although the ptx assembly generated by decuda reveals that this data is simply

copied into local memory from global memory, the compiler is able to effectively

place the local data into registers when they are accessed frequently. Further,

we found that number of instructions referencing the global memory dropped from

53

1009 to 396 references while the local memory references increased only from 214 to

304. These results indicate that the compiler can do a very good job of managing

registers and local memory when it is forced to spill. Because the compiler is

capable of handling registers and local memory so effectively, we suspect that if it

could also spill to shared memory (as we have done manually with code generation),

it would generate even more efficient code.

Inspection of the ptx assembly revealed that Optimization 2a also results

in a decrease in total operations performed. Although the exact behavior of the

compiler is proprietary, we speculate that this is because data in global variables

is more difficult to reference than data in registers. For example,“y global[12 *

num gauss pts + idx]” becomes simply “y reg[12]”. This adds additional instruc-

tions for each global memory reference. We also suspect that the compiler has

additional optimization opportunities when dealing with local variables as opposed

to global data. For example, more aggressive common-subexpression elimination

(CSE), etc., might be possible on local data and the compiler knows it is safe to

assume that local data stored in a register hasn’t changed from one instruction to

another and thus does not need to be refetched from global memory each time it

is used.

Unlike 2a, Optimizations 2b and 2c provide a cache for global memory,

using statically determined replacement (at translation time) without adding any

conditionals to the generated code. The cache lives in the multiprocessor’s shared

memory. Because we do not need to use shared memory for interthread communi-

cation, and since shared memory is available almost as fast as registers, it is ideally

suited for use as a global memory cache. However, these caching strategies incur a

penalty over Optimization 2a. For example, decuda tells us that Optimization 2c

results in approximately 13.5% more instructions executed with Optimization 2a.

Because Optimization 2b merely caches the most frequently used global

variables in shared data, the technique, while beneficial, is not very effective with

large kernels with many global memory references. Optimization 2c, using Be-

lady’s MIN page replacement policy, always outperformed this simpler caching

mechanism.

54

We also see that 2c references more global variables than 2a, by a factor of

1.5, due to the finite size of the cache (11 words). Indeed 2c’s 278 global variables

references can be accounted for as follows. In our C code there are 187 cache misses

for loading global data, 87 references for storing global data, 5 variable “parame-

ters” which are stored in global memory and not cached, and 1 additional global

store for handling the numerical singularity (see Section 3.2.1). This results in 280

variables total, so 2 references were apparently eliminated by the compiler. The-

oretically, a large shared memory cache would yield better performance indicated

by the results in Table 4.3. Although we could not test these various cache sizes

due to the limits of shared memory size in hardware, we can simulate the potential

hit rates which would be obtained by other cache sizes. By the time a cache size

of 64 words is used, the maximum hit rate is obtained. We selected a cache size of

11 words, because it is the largest size we could use and fit 5 thread blocks of 64

threads at a time and leave some space for passing parameters which also relies on

shared memory (16 KB / (4 bytes × 5 blocks × 64 threads)). Indeed we observed

that increasing the cache size beyond 11 resulted in a performance penalty.

Table 4.3: Cache hit rates for Flaim model for different size shared memory caches
using optimizations 1,2c. and 1,2c,3

Cache Size Hit Rate (1,2c) Hit Rate (1,2c,3)
1 47.76% 46.70%
2 61.59% 60.09%
4 73.21% 71.51%
8 84.57% 82.30%
9 85.70% 83.38%
10 86.71% 84.20%
11 87.51% 84.84%
12 88.18% 85.34%
16 89.91% 86.04%
24 92.05% 86.23%
32 93.45% 86.23%
64 94.19% 86.23%
100 94.19% 86.23%

The best running time resulted from combining Optimizations 1, 2c and 3

(kernel partitioning). Optimization 3 is much more effective when combined with

55

2c: performance nearly doubles. Without 2c (the shared memory cache), Opti-

mization 3 impairs performance by a factor of 1.9. Although the optimization ef-

fectively eliminates all local memory references, it introduces additional references

to global storage. This is a surface to volume effect; splitting kernels corresponds

to partitioning the underlying dependence graph into subgraphs. Since kernels run

to completion, they must communicate via global memory or redundantly recal-

culate intermediate variables common to multiple kernels. Caching reduces the

impact and nearly doubled performance.

To better understand why kernel partitioning is effective when combined

with a shared memory cache, it is important to consider the effect of these op-

timizations on register pressure. As indicated in Table 4.4, after applying kernel

splitting, the largest kernel referenced 67 different global variables and 128 different

local variables as compared to 175 global variables and 267 local variables without

the partitioning. With less than half the variables to manage, register pressure is

less sever allowing the compiler to store local variables in registers without spilling

them to local memory.

Table 4.4: The number of DIFFERENT global and local variable names that were
referenced after each optimization. When optimizations include kernel splitting
(i.e. Optimization 3) the maximum number of variables referenced in any of the
kernels is used.

opt globals locals
1,2a 175 354
1,2c 175 267
1,3 67 128
1,2c,3 67 128

In Table 4.5 we see that Optimization 2a the CUDA code referenced global

variables 175 times, yet referenced its 354 local variables 1585 times. Although the

compiler clearly manages these 1585 references effectively by using registers when

possible, it is unable to eliminate 304 local memory references due to the register

pressure demand. By eliminating local memory spilling with kernel partitioning,

the only remaining access to the GPU’s DRAM are global memory references -

exactly what our caching scheme can significantly reduce.

56

Table 4.5: For optimization 2a, the number of references of the form “y global [var
* num gauss pts + idx]” and “y reg[var]”.

y global y reg
175 1585

These results indicate that at least three factors were making large contri-

butions to our observed runtime: the number of operations, the number of global

references, and the number of local references. A simple equation might be:

t ≈ operations× top + globals× tgbl + locals× tloc (4.1)

Where t is the observed runtime, operations is the number of operations,

globals is the number of global variables, locals is the number of local variables, top

is the time per operation, tgbl is the time per global reference, and tloc is the time per

local reference. A least squares fit of our results obtained from the optimization

sets {1}, {1,2a}, {1,2b}, {1,2c}, and {1,2c,3} indicated that tgbl ≈ 0.026, tloc ≈
0.0186, top ≈ 0.001. Thus, global and local memory access required approximately

20x more time than other operations - consistent with the latency results Volkov

and Demmel describe in [54]. Volkov and Demmel also describe an 3-7 µs overhead

for launching kernels. Although for Optimization 3 this might account for up to

.35s of the runtime (20.0s
0.0016s

× 6 kernels × 7 µs), it does not significantly alter

our analysis. Also, since local memory references always coalesce (see the CUDA

Guide 2.1 section 5.1.2.2 [36]) and local and global memory required roughly the

same time, our efforts to align global memory references to coalesce appears to

have been successful. The application of the fitted values for tloc, tgbl, top to our

remaining optimization sets yielded predicted runtimes within a few precent of the

actual runtime.

We also attempted to apply Optimization 3 (function partitioning) to our

CPU implementation. We found that this led to a performance degradation. We

suspect that there are several factors that may have contributed to the perfor-

mance penalty. First, because this optimization creates additional functions, it

adds overhead associated with each additional function call. Also, when we break

up a function into smaller pieces the compiler is likely less capable of performing

57

certain optimizations (such common subexpression elimination, etc.) across func-

tion calls which may add additional inefficiencies. Our main motivation in splitting

functions was to relieve the compiler of the register pressure - it’s not clear that

the CPU has the same restrictions. When the CPU, for example, is forced to spill

to its DRAM, it still has L1 and L2 caches to fall back on. These caches are not

available on the GPU. In other words, while the GPU pays a 150x latency penalty

for running of of registers, the CPUs penalty is far less. Finally, the size of our

partitioned kernels were carefully tuned for the GPU. We partitioned a kernel just

before it grew too complex for the compiler to manage and started spilling to local

memory. There is no reason to assume that this same kernel size would be opti-

mum for our CPU, so a sweep of different function sizes for the CPU might lead

to some improvement. This optimization remains as future work.

As a final optimization, we use both GPUs present in our GTX 295 (Opt4).

As mentioned previously, the two GPUs must be managed by separate CPU

threads, even though both GPUs are on the same graphics card. Working to-

gether, the GPUs are able to achieve an additional 1.7x speedup over our fastest

implementation, consistent with 67% speedup Volkov and Demmel achieved with

2 GPUs in [54]. Figure 4.3 summarizes the impact of the various optimizations on

the observed runtime.

In order to better understand how the GPU was spending its time, we

employed the CUDA profiler (see Figure 4.4). This helps demonstrate why the

GPU has been so successful at reducing the ODE runtime - very little time is

spent shuttling data back and forth between the CPU and the GPU. Instead the

vast majority of time is spent exactly where we want it: in the GPU compute

kernels. We were able to achieve this efficiency by reducing the amount of data

updated at each PDE time step. Of the 87 state variables updated at each time

step, only one variable (the voltage) must be sent from the host to device at each

time step while only an updated voltage and its derivative must be returned to the

host. Thus, only two words of data for each collocation point are returned from

the device to the host.

In Table 4.6 we see the results for the remaining cell models. For these

58

Figure 4.3: Summary of performance showing the impact of optimizations

Figure 4.4: Profile of the time spent on the GPU with the Flaim model. advance be
is the time spent calculating the next time step of the cell model using the back-
wards Euler method. compute derivs simply computes the derivatives for each
state variable prior to calculating the next PDE time step. The memcpy functions
transfer data between the CPU and GPU and occur infrequently relative to the
time spent with other computations.

59

models, the situation is a bit different than the more complex Flaim model -

we were able to fit all the state variables and intermediate local variables into

registers without spilling to local memory. Thus, the need for kernel partitioning

(Optimization 3) was obviated by the reduction in register pressure demand.

For MFHN and Beeler-Reuter, our 11 variables shared memory cache was

more than enough space to hold all the state variables without any replacement.

Optimization 2c was therefore able to perform almost as well as Optimization

2a which relies on only registers to cache the global data. That the register file

achieves better performance than shared memory does not come as a surprise and

is consistent with Volkov and Demmels findings [54]. With Puglisi, although all 18

state variables could not fit in our 11 variable shared memory cache, performance

was only 12% slower than copying to registers.

In each of these cases, caching to shared memory or registers was better

than directly referencing global memory, although simply copying to registers (2a)

was the most effective approach.

However, as previously mentioned, recent trends in cell model formulation

suggest that even more state variables are likely to be needed, requiring more

creative optimizations, such as those we have suggested with the Flaim model, for

best performance.

Finally, combining 2a with 4 (dual GPUs) added a 40-80% improvement

consistent with the speedup observed with the Flaim model.

It could be argued that our assessment of performance only demonstrates

improvements against our own code base. However, the original code, part of

Continuity 6, is a publicly available resource, with years of experience by hundreds

of users and continual enhancement by dedicated programmer support. We have

been using automated translation to generate single core python+Fortran code for

years. Although hand coded simulators may be faster than automatically generated

ones, we feel that the required effort is unjustified. Our Flaim model starts with

525 lines of high level equations, and results in 2500 lines of CUDA C. Coding this

by hand would be impractical for the domain scientist, and there are several other

cell models of interest by our diverse user community. The dramatic speedups we

60

Table 4.6: The impact of optimizations on the running time of the ODE solver
for the modified FitzHugh-Nagumo, Beeler-Reuter, and Puglisi model. Times
measure the running time to simulate 20ms of a heart beat for a mesh with 42,240
collocation points. Optimizations were applied cumulatively, in the order listed
in curly braces. CPUx and GPUx are the speedups achieved over the reference
implementation. Ops are the number of ptx assembly operations for the kernel as
revealed by decuda. Gbl are the number of times global memory is referenced in
the ptx assembly.

Method Time(s) CPUx GPUx Ops Gbl
MFHN

CPU:serial 37.79
CPU:serial:SSE 37.67
CPU:OpenMP:SSE 7.34 1.0
GPU:Näıve 0.96 7.68 116 19
GPU:Opt{1} 0.81 9.05 1.0 87 14
GPU:Opt{1,2a} 0.56 13.15 1.45 79 8
GPU:Opt{1,2a,4} 0.4 18.57 2.05 79 8
GPU:Opt{1,2b} 0.81 9.09 1.0 87 14
GPU:Opt{1,2c} 0.57 12.83 1.42 86 8

Beeler-Reuter
CPU:serial 2326.73
CPU:serial:SSE 2280.06
CPU:OpenMP:SSE 419.29 1.0
GPU:Näıve 5.22 80.26 780 71
GPU:Opt{1} 4.28 97.94 1.0 627 55
GPU:Opt{1,2a} 2.5 167.72 1.71 455 20
GPU:Opt{1,2a,4} 1.5 278.78 2.85 455 20
GPU:Opt{1,2b} 2.97 141.08 1.44 543 32
GPU:Opt{1,2c} 2.77 151.64 1.55 488 20

Puglisi
CPU:serial 3386.05
CPU:serial:SSE 3381.87
CPU:OpenMP:SSE 622.4 1.0
GPU:Näıve 19.21 32.4 4422 267
GPU:Opt{1} 8.6 72.4 1.0 1628 129
GPU:Opt{1,2a} 5.98 104.03 1.44 1471 49
GPU:Opt{1,2a,4} 3.31 188.15 2.6 1471 49
GPU:Opt{1,2b} 7.67 81.17 1.12 1663 93
GPU:Opt{1,2c} 6.69 93.08 1.29 1617 53

61

report have transformed the way we engage in scientific discovery with Continuity,

and will soon be put into practice. A constant factor in performance increase (if

there was one lurking) would not significantly impact the discovery process, though

of course we are always looking to improve performance.

We also originally attempted to use a gigaflop rate to assess performance,

however, as revealed by decuda, our application makes significant use of the special

function unit (pow(), exp(), etc.), so a gigaflop rate is not meaningful.

4.3.3 Accuracy

As discussed previously in Section 1.3.2, there is a significant performance

penalty for using double precision arithmetic[5]. This gives us an incentive to use

single precision. It is important to clarify what this means in terms of accuracy

for cellular modeling.

We use RRMS error, a standard measure used in the literature when dis-

cussing solvers. We computed solutions over a 250ms simulation, roughly the

duration of an action potential in the Flaim model. For the Flaim model, the

difference between double precision (DP) and single precision (SP) on the CPU

was quite small, about 0.85%. The error between SP on the GPU and SP on CPU

was even smaller: only 0.0018%.

A greater error was introduced by our solver selection. There was a 1.55%

error when comparing DP radau5 with DP backwards Euler (both on CPU). How-

ever, to see if our errors were accumulating, we compared our SP backwards Euler

GPU solver against the DP radau5 CPU solver and found that our RRMS error

was less than 1.48%.

Of course, the more serious divide by zero errors caused by round-off errors

in single precision were eliminated by our precision checker (see section 4.2).

We deem this error acceptable in light of the fact that much larger un-

certainties are involved in measuring the empirical parameters used in the cell

models. Since these parameter errors aren’t large enough to be distinguished by

experimentation (see [15]), the ones we observe certainly are not. Thus, our ex-

perience indicates that single precision arithmetic was sufficiently accurate for our

62

needs, although, this result is heavily application dependent2.

4.4 Implications for Fermi

nVidia’s next generation GPU architecture, Fermi, includes several inno-

vations that will impact performance [37, 41]. These innovations include: main

memory caches, a new instruction set, faster DRAM and more cores per Streaming

Multiprocessor (SM). Although Fermi is not available at the time of writing, we

are able to make some performance projections based what is known about the

processor publicly.

We are interested in the impact of the new on-chip memory architecture.

Traditionally, GPUs have avoided using space for caching global memory with

the hope that the latency will be partially hidden through thread concurrency.

However, in practice, even with many threads, there is still a need to reduce the

latency penalty. Our experience has indicated that reducing traffic to the device’s

DRAM is critical to achieving high performance, which we addressed with the

careful use of shared memory as a global memory cache. Indeed, Fermi’s caches

confirm the need to reduce the penalty to reference global memory.

Fermi has 16 streaming multiprocessors (SM), each with 32 cores that share

128KB of registers and a 64KB on-chip memory. All SMs share a 768 KB L2 cache.

The on-chip memory is software configurable-it can be split into 48 KB cache and

a 16 KB shared memory space, or the other way around. Thus, the amount of

shared memory per core is the same as in the 200 series, but the number of registers

per core has been cut in half. Presumably the L2 serves as a victim cache for L1

since it is the same size. With the GTX 200 series, each streaming multiprocessor

(SM) has 8 cores, 16 KB of shared memory, and 64KB of registers.

As mentioned previously, after Opt1 has been applied, each CUDA ker-

nel reads 88 different globals (it also writes 87, but there is no advantage to

caching them). On the GTX-295, with 64 thread blocks and 4 active thread

blocks, Opt{1+3+2c} enables the processor to store most of the required state

2Xing Cai, Simula Laboratory, Private Communication, 2009.

63

(90112 bytes/SM) on-chip (80KB). To maintain the same level of occupancy on

Fermi, we require 16 active thread blocks for a total of 352KB. However, the loss

of half the registers will lead to a dramatic increase in the number of slow device

memory accesses. We have only 192KB of fast on-chip memory and are 50% short.

By comparison, we were only 10% short on the GTX-295. (L2 is shared by all

SMs, and cannot help us out of this dilemma.) This is where optimizations 2a,3,

and perhaps 2c come in, as they are designed to help us utilize the registers and

the remaining shared memory. Otherwise, we are actually short by 304KB.

Additionally, we simulated what kind of hit rate would be obtained with

least recently used (LRU), first in first out (FIFO), and random cache replacement

policies and both direct mapped and fully associative caches when compared to

running on the GTX-295 with the same occupancy3 in which each thread would

have about room for about 8 cached values - 25% less space per thread than was

possible with our shared memory cache in the 200 series GPU. We assume the

cache size to be a single word - also unknown at the time of writing. In Table 4.7

we explore the impact these various cache policies might have on performance.

For our first set of simulations, we used Opt{1} as a starting point: 6685

operations, 214 local memory operations, and a single (i.e. non-partitioned) kernel.

We applied our fitted weights 4.1for operations, global references (cache misses),

and local references to obtain the estimated runtime which we report. We observed

that a fully associative cache with a LRU replacement policy would yield the lowest

miss rate on our data, and thus achieve the highest performance, although directly

mapped cache and FIFO replacement policy trailed by less than 5%. We observed

that a RANDOM replacement policy (not likely to be used by Fermi anyway)

yielded the worst results.

Compared to the 33.46s we measured with Opt{1}, these projections indi-

cate that the Fermi cache has the potential to reduce runtime to 18.6s, roughly a

1.8x speedup. It also has the potential to be competitive with our offline cache,

such as Opt{1,2c} which required 18.27s. The simulated cache is competitive

3For a more direct comparison with the GTX 200 series, we assumed that the registers available
per thread were the same in our cache simulations, although Fermi will actually include half the
registers.

64

due to the overhead introduced by maintaining our own caching. Local memory

references increased from 214 to 264 with a shared memory cache as discussed pre-

viously and displayed in Table 4.2. We suspect that this local memory overhead

is unnecessary, as it should be no more difficult to reference shared memory than

global memory. And perhaps with better compiler support this overhead might be

eliminated completely.

Table 4.7: Cache simulator results. Cache replacement policy found in the re-
placement column, Cache Associativity (e.g. fully associative or directly mapped)
found in the Assoc. column, and estimated runtime found in the ETA column.
These results are for a single kernel (Optimization 3 has not been applied).

Policy Assoc. Hits Misses Miss Rate ETA (s)
LRU FULL 864 307 26.22% 18.65
FIFO FULL 829 342 29.21% 19.56
RANDOM FULL 765 406 34.67% 21.22
LRU DIRECT 831 340 29.04% 19.51

Alternatively, register pressure can be reduced and local memory spilling

can be eliminated by kernel partitioning, as previously discussed. Applying our

cache simulator to a kernel split into several pieces, such as with Opt{1,3}, the

estimated runtime was reduced to 17.44s (see Table 4.8 for various cache configu-

rations). Thus, we anticipate our shared memory cache, which required 13.81s, to

be at least 20% faster than Fermi’s cache. In our simulation, we assumed the L1

cache to be maintained across kernel calls, which may not be the case.

Table 4.8: Cache simulator results. Cache replacement policy found in the re-
placement column, Cache Associativity (e.g. fully associative or directly mapped)
found in the Assoc. column, and estimated runtime found in the ETA column.
These results are for a partitioned kernel (Optimization 3 has been applied).

Policy Assoc. Hits Misses Miss Rate ETA (s)
LRU FULL 894 355 28.42% 17.44
FIFO FULL 856 393 31.47% 18.42
RANDOM FULL 772 477 38.19% 20.61
LRU DIRECT 854 395 31.63% 18.48

Alternatively, the 48 KB could be allocated for shared memory instead of

as an L1 cache. In this case, the shared memory available has increased by a

65

factor of 3 while the processor resources have increased by a factor of 4, effectively

decreasing the shared memory available per thread by 25%. Each thread will

therefore only be able to cache 8 or 9 single precision floating point values if the

same device occupancy is to be maintained.

Decreasing the shared memory cache size to 8 single precision floats from

11 will increase the global variable references from 278 to 322 and increase local

memory references from 264 to 290 and operations from 6039 to 6081 for Opt{1,2c}.
Based on our fitted weights, this might increase the run time from 18.3s to 19.6s or

about an 8% penalty. Observed performance with our GTX 200 series card while

using 25% less shared memory was 19.9s - about a 9% penalty.

Our conclusion is that the partitioned cache will provide no advantage com-

pared with our far less costly approach based on source-to-source translation. Al-

though Fermi’s cache may be easier for some programmers to work with, we suspect

that it may actually yield a performance penalty over simply using all the space

for a programmer (or compiler) controlled shared memory cache. Further, we sus-

pect that there is a missed opportunity to take advantage of offline clairvoyant

algorithms, such as our use of Belady’s MIN.

Because CUDA uses a SIMT programming model, performance conscious

software developers are already accustomed to writing code which minimizes or

eliminates branching. And such codes are ideally suited for offline analysis and

programmer controlled caches which do not need to troubled by unpredictable

runtime behavior. Even if a programmer controlled cache performed roughly the

same as a hardware cache, the software solution is simpler because it can be tuned

to the application, as we have done. Other applications may benefit from the

technique, which don’t do much branching (after all that’s the expected case).

Further, nVidia’s scheme is not very flexible and extremely coarse grained.

The advantage of our approach is its flexibility. We create exactly as much cache

as there is space for, no more and no less, and therefore have greater control over

the distribution of shared and cached state. Perhaps Fermi’s cache will help speed

these up. it is straight forward to cache global memory accesses (reads) using static

analysis memories aren’t likely to be as useful as they have been with traditional

66

CPUs.

4.5 Complete Electrophsyiology Simulation

After optimizing the ODEs with CUDA, the time spent calculating the

PDEs become more significant. The PDE calculation involves solving a sparse

system of linear equations. Such systems can either be solved directly or iteratively.

We used SuperLU[11], which employs a direct method.

With a direct method, there are two phases: factorization and series of back

substitutions which are performed at each PDE time step. With electrophysiology

simulations, the factorization must be performed only once while back substitutions

occur at each PDE time step. However, we give special attention to the time

spent factorizing because, although our electrophysiology simulations require only

a single factorization, it can be a very computational intensive operation.

In our initial simulations, we employed the serial implementation of Su-

perLU which required 59.95s for factorization and 1590.78s all 3000 back-subsititions

(e.g. 300ms at 0.1ms time steps). We found that both factorization and back

substitution phases benefited from the use of distributed SuperLU[29] (a parallel

implementation) by a factor of 3.45x and 2.52x respectively reducing computation

time to 17.38s and 632.63s on a quad-core i7 processor or 650.0s total. When we

compare this the 119.3s spent solving the Flaim model on the GPU, we see that

the PDEs are still the bottleneck.

We now summarize the speedups obtained for the entire electrophysiology

simulation for various cell models. In our original serial CPU implementation

with the Flaim cell model, the 300ms simulation required 103,530.7s total - almost

29 hours; with 101,889s (98.4%) spent solving ODEs and 1,641.7s (1.6%) solving

PDEs. By optimizing the ODE solve with OpenMP we were able to reduce the

ODE time to 16,015.8s. Our best dual GPU implementation reduced the time spent

solving ODEs to 119.29s. And by solving the PDEs with distributed SuperLU the

PDE time is reduced to 650.0s or 84.5% of the 759.3s total. In other words, the

entire Electrophysiology simulation was sped up by 136.3x from the original serial

67

implementation or 21.2x over our best multicore CPU implementation.

Future work will involve optimizing PDEs on the GPU as well. Because

solving sparse linear systems is such a common problem applicable to many do-

mains, several projects are already underway to explore this possibility, including

a solver being developed by nVidia4. A sparse matrix multiplication routine on

CUDA achieved an average of 10.85x speedup over a CPU implementation [5]. If

this same speedup could be achieved for the factorization and solve, we speculate

that the PDEs could be solved in 65s, reducing the total run time to 184s and

once again making the ODE solve the computational bottleneck and responsible

for about 65% of the running time.

For the remaining cell models, the PDE times remain unchanged; only the

ODEs time vary. See Table 4.9 for a summary of the best ODE times.

Table 4.9: A summary of the time spent computing ODEs for 300ms for a mesh
with 42,240 collocation points. Because MFHN, BR, and Puglisi are relatively
small and do not spill registers to local memory, our most aggressive optimizations
(shared memory cache and kernel splitting) were unnecessary.

Model Method Time (s) Ops % of Sim
MFHN GPU:Opt{1,2a,4} 5.91 79 .9%
BR GPU:Opt{1,2a,4} 22.64 455 3.3%
Puglisi GPU:Opt{1,2a,4} 49.87 1471 7.1%
Flaim GPU:Opt{1,2c,3,4} 119.29 7557 15.5%

4Nathan Bell, nVidia, Private Communication, 2009.

Chapter 5

Contribution and Related work

Electrophysiology modeling differs from other time dependent problems

(such as the classic N-body problem) in that the cost of solving the Partial Dif-

ferential Equation (PDE) is relatively inexpensive compared with that of solving

the resultant systems of Ordinary Differential Equations (ODEs). Recently, the

GPU has been employed in electrophysiology modeling [48] with 8 state variables,

a simple model by modern standards. The forward Euler integration method was

used to solve the ODEs, which is sufficient for non-stiff ODE systems. However,

forward Euler is not appropriate for the current generation of cell models with

very stiff ODEs. Lastly, there is no discussion about the impact of single preci-

sion on accuracy. In our case, accuracy is a significant concern, especially when

considering numerical singularities present in our complex cell models.

Constructing a well tuned application in CUDA can be a challenge, owing

complex behavior of interactions among a set of optimizations, and the uncertainty

in modeling performance of the hardware and the nvcc compiler. Domain scientists

prefer to remain aloof of the process. Liu et al. [32] implemented a source-to-source

translator to automatically optimize a kernel against program inputs, and they use

statistical learning techniques to search the optimization space obtained by running

the application repeatedly for different inputs and optimization parameters. They

also demonstrate that for different inputs different optimizations yield the best

results, which we observed from experimenting with the Flaim, Beeler-Reuter,

and other cell models. Our optimization search space was generally small enough

68

69

as to remain tractable, but clearly an automatic approach might facilitate the

identification of the most beneficial optimizations.

Silberstein et al. [50] demonstrate a user-managed cache which, like our

cache, resides in shared memory. For their application, caching to shared memory

was more dramatic - up to a factor of 20 - which likely indicates that their kernels

were far more memory bound than any which we encountered in our domain.

Also, the cache replacement policy described by Silberstein et al. is implemented in

software and thus cannot make use of Belady’s MIN algorithm which generates the

optimum replacement policy offline. They also do not explore the possibility simply

copying global data to local registers which may have yielded similar performance

improvements.

The CELL Broadband Engine (CELL) [26] includes a Power Processing

Element (PPE) similar to a traditional single core CPU, and eight Synergistic pro-

cessing elements (SPE). Cell’s 8 SPE are designed to enable mulithreaded program-

ming, but with far fewer-coarser grained threads than those available on an nVidia

GPU. The SPEs are also designed for single instruction multiple data (SIMD) use,

analogous to the single instruction multiple thread (SIMT) programming model

of the GPU. Cell uses Direct Memory Access (DMA) transfers to 256KB local

memory on the SPEs. Although each thread has access to a 256KB local store

whereas dozens of CUDA threads share just 16KB, this 256KB resource is still

a limited resource which must be managed careful to achieve high performance.

In [12] Eichenberger et al. discuss techniques to provide source-to-source transla-

tion to optimize scientific codes on the CELL through function partitioning, code

generation, etc. This work involves abstracting the hardware specific details from

the user to enhance programability without sacrificing all the hardware specific

benefits available to a more sophisticated CELL programmer. For example, their

compiler uses automatic code partitioning in order to fit code and data into the

SPE that might not otherwise be possible. We also use partitioning to improve the

use of very limited resources (registers), although we do so by breaking up very

large functions into smaller pieces and use global memory to retain information

between kernel calls. In other words, granularity is the key difference between

70

our partitioner and IBMs. Another comparison can be made with the use of a

compiler controlled software cache which identifies data references not optimized

using DMA transfers and caches them with a 4 way associative cache. We are also

interested in caching data, although in our case it is from the global device memory

which is available at a much slower rate than shared memory and registers.

An alternative approach to optimizing cell models is to simplify the model

itself. This idea is explored in [20] which uses a 2 ODE system rather than a

more detailed ionic model characteristic of recent developments in the field. Our

experience with FitzHugh-Nagumo indicates that even simpler cell models are also

amenable to GPU acceleration for additional speedups, although the speedups

achieved may not be as significant as those we observed for the more complex cell

models (see Table 4.6).

We have developed a system by which high level cellular models can be

authored by a domain scientist and automatically translated into an optimized

GPU kernel which incorporates expert GPU knowledge. In doing so, we have

suggested a simple scheme for solving stiff systems of ordinary differential equa-

tions which yields excellent performance and reasonable accuracy on the GPU.

We have also demonstrated a technique to remove numerical singularities common

to cellular models which allows us to use single precision arithmetic for improved

performance. We have also contributed a variety of techniques for optimizing very

large, highly complex CUDA kernels. Our offline automatic caching scheme based

on Belady’s MIN page swapping algorithm yielded a 1.7x speedup over referencing

global memory. We also developed an automatic kernel partitioning scheme to re-

duce register pressure and eliminate spilling to local memory yielding an additional

1.3x speedup. And by making use of a multi-gpu implementation we achieved an

additional 1.7x speedup.

In summary, we have sped up the ODE solve by 4x over our base GPU

implementation, 134x over a multicore i7 CPU implementation, 850x over a serial

implementation, and 111x over a 48 core MPI cluster implementation. Indeed our

implementation is fast enough that it would be feasible to use in clinical setting

for patient specific modeling without the use of a cluster.

Chapter 6

Discussion and Conclusion

6.1 Applicability to other domains

Our approach to automatic optimization should have a broad appeal for

other domains. In particular, we have demonstrated that when faced with a highly

complex kernel, as exemplified by the Flaim model, the use kernel partitioning

and an automatic shared memory cache can lead to significant performance im-

provements. Additionally, the use of a compile time automatic caching should

be better exploited by the compiler. Since CUDA kernels are often designed as

non-branching (as is typically required for maximum efficiency) our use of Belady’s

MIN algorithm may be ideally suited to the CUDA architecture. Further, we would

hope that a future version of the nVidia compiler should be able to automatically

use shared memory as a compile time cache to reduce spilling to global memory.

Forcing the user to manage this cache creates an additional burden on the appli-

cation writer which could be alleviated with compiler support. Perhaps to address

this concern, Fermi [37] will indeed include a hardware cache for global memory.

71

72

6.2 Suggestions for GPU hardware developers

6.2.1 Increase transparency

Perhaps one of the most challenging aspects of fine tuning CUDA kernels

for performance is the lack of transparency with automatic compiler optimizations.

Frequently, a developer attempts a novel, or even a well-known optimization, only

to find that the change unexpectedly hurts performance or makes absolutely no

difference. Most developers resort to a “trial and error” strategy in which the effec-

tiveness of optimizations can only be determined by measuring actual performance.

We recommend that GPU compiler authors consider making these automatic com-

piler optimizations more transparent to facilitate performance tuning.

Currently, the compiler can be configured to output an intermediate “ptx”

assembly file and some general diagnostics about register, local, and shared memory

usage. However, at a later stage in the compilation process, this intermediate ptx

file is assembled to binary while performing additional optimizations completely

hidden from the developer. In order to gain some insight into this last phase of

compilation, a developer must resort to using a third party disassembler (decuda)

and wade though potentially thousands of lines of uncommented assembly. We

suggest the GPU chipset developers open up this currently closed proprietary in-

formation so that a developers are better able to understand what optimizations

will work in certain circumstances. Additionally, we recommend that additional

output be made available to the user in terms of global memory usage, estimated

frequency of device memory usage, etc. Information from the CUDA occupancy

calculator could also be incorporated into the compiler to provide suggestions for

alternative configurations that should improve performance, such as reducing reg-

ister pressure.

6.2.2 Automatic Performance Tuning

In additional to improving transparency, GPU chipset developers might

consider incorporating the large body of techniques for automatic performance

tuning into the compilers themselves. As discussed in Section 5, Liu et al. [32]

73

implemented a source-to-source translator for CUDA to automatically optimize a

kernel against program inputs, and they use statistical learning techniques to search

the optimization space obtained by running the application repeatedly for different

inputs and optimization parameters. Automatic performance tuning has been used

for years to optimize CPU code as well [56, 10], and frequently use Automated

Empirical Optimization of Software (AEOS) to determine the best optimizations

based on empirically measured timings. For example, Automatically Tuned Linear

Algebra Software (ATLAS)[42] uses such timings to automatically identify the

best optimizations for a linear algebra solver on a particular target architecture.

With the rapidly changing landscape of GPU architectures these techniques might

provide a mechanism for automatically tuning GPU kernels to keep pace with the

changing architectures. Another notable example is the work done by the Berkeley

Benchmarking and Optimization Group (BePop)1 such as the Optimized Sparse

Kernel Interface (oski)[55], which includes both offline and online tools to build

matrix solvers well suited for a given platform. These empirical techniques may be

applicable to the GPU and compiler designers might consider adding facilitates to

automatically discover the best optimizations to automatically apply for a given

compute kernel.

6.2.3 Spill to shared memory

Our experience indicates that shared memory can provide an excellent cache

for global memory. However, simply allowing the compiler to spill to local memory

(effectively using registers as a device memory cache) was also effective, even more

so in many situations. We suggest compiler support that would combine both

strategies automatically. If a kernel is not using shared memory for communicating

between CUDA cores, the compiler should be able to automatically use shared

memory as an additional register resource. This could reduce register pressure,

obviate the need to spill to local memory, etc., and improve performance. This

would cost nothing in terms of hardware - it would just require additional compiler

support.

1http://bebop.cs.berkeley.edu/

74

6.2.4 Exploit Belady’s algorithm

As we have also demonstrated, CUDA can be an ideal platform for Belady’s

optimum page swapping algorithm. Since some kernels involve non-branching

code (or nearly non-branching in our case) the compiler may be able to deter-

mine caching strategies at compile time more effectively than a general purpose

compiler which can make no such assumptions.

6.2.5 Improve Multi-GPU support

Optimizing algorithms across multiple GPUs proved very challenging. In-

deed, multiple CPU threads are required to control multiple GPUs which required

additional synchronization primitives as well as experience with pthreads. We sug-

gest improved compiler support to automatically and transparently make use of

the multiple GPUs available on a system. Ideally the compiler should be able to

handle a heterogenous collection of GPUs and perform some degree of load balanc-

ing so that a GPU with greater computation power is assigned a greater portion of

the work. For example, if a system has a GTX 120 with 32 cores and a GTX 285

with 240 cores, the compiler would ideally be be able to allocate an appropriate

amount of work for each system.

6.2.6 Split large kernels

Our most complex kernels with many equations and many variables proved

very challenging for the CUDA compiler. After breaking up a kernel into smaller

and more manageable pieces the compiler was able to do its job more effectively.

Although we relied on the application specific knowledge that state variables could

be calculated independently, it may be possible for the compiler to automatically

partition kernels to reduce register pressure to improve performance.

75

6.3 Conclusion

We have demonstrated an effective technique that encapsulates expert knowl-

edge in a translator, allowing the domain scientists to work at the level of the cell

model, without becoming entangled in low level implementation details. We have

shown that a very complex cell model with 87 state variables, and hundreds of

equations evaluated inside of a backwards Euler scheme, is amenable to GPU

computing. Further we have shown that by using the shared memory as an of-

fline global memory cache and by partitioning complex kernels we can improve

performance even more.

In addition to the obvious benefits of faster cardiac simulations (e.g. faster

research, larger models, etc.) our implementation scheme enables our accelerated

heart simulator to be a transformational tool in the clinical setting; it will be a

key step to enabling the use of these models for patient-specific modeling and di-

agnosis. Simulations must be highly efficient in clinical applications because of the

time constraints involved in diagnosis and treatment, and because the simulations

typically must be run many times in parameter sweeps to be useful. There is also

a greater case for dedicated desktop computing in the clinical setting for reliability

and privacy and security versus cluster computing on a shared resource outside of

the clinic.

Having reduced the ODE bottleneck in electrophysiology simulations, we

find that new bottleneck becomes apparent: the PDEs. Previously we have mostly

ignored the PDE performance as they had such a limited impact on the overall

performance of the simulation. However, now that over 50% of the simulation time

is spent working with PDEs, we are investigating the opportunity to executing the

PDEs on the GPU as well. This amounts to solving a sparse system of linear

equations on the GPU, which has been the subject of other work [49] While we

currently use serial and distributed SuperLU sparse linear, direct solvers, we are

also looking at iterative solvers.

We are also interested in further optimizing the ODE performance by using

a cluster of GPU enabled nodes and by exploring the applicability of more exotic

ODE solvers to the GPU. Finally, we plan to further optimize our GPU perfor-

76

mance by introducing additional locality optimizations into our code generator.

Appendix A

MFHN Example

We now take a more detailed look at the output generated by our translator.

First, we’ll look at a FitzHugh Nagumo model as it might be specified as input

to the translator. This is the model that the domain scientist would author. By

allowing the user to create the model as a high level description it relieves him

of the burden of dealing with low level GPU implementation details which our

translator provides.

1 s t i m s t a r t , st im dur , stim mag = params

2 ug , vg = s t a t e v a r s

3 vmax = cm = d = 1.0

4 v r e s t = 0 .0

5 a = b = 0.130

6 c1 = 0.260

7 c2 = 0.10

8 st im end = s t i m s t a r t + st im dur#! end time o f s t imu lu s

9 heavi = Heav i s ide (t−s t i m s t a r t) ∗ Heav i s ide (stim end−t)

10 i s t i m = stim mag∗heavi

11 ug norm = (ug−v r e s t) /(vmax−v r e s t)

12 dug dt = (ug norm ∗ (ug norm − a) ∗ (1 . 0 − ug norm) ∗ c1 − c2 ∗ vg

∗ ug norm) ∗ (vmax − v r e s t) + i s t i m ∗ (1 . 0 / cm)

13 dvg dt = b∗ug norm − b∗d∗vg

Listing A.1: sympy modified FitzHugh Nagumo model

77

78

Using the sympy library, our translator creates a symbol for each equation,

and generates corresponding C expressions. sympy also replaces any variables with

constants if it a constant can be determined at compile time.

Our translator takes this C code and identifies the dependencies for each

state variable. Combining the dependency information with the single iteration

backwards Euler method, our translator generates the following CUDA kernel.

This kernel corresponds to Optimization1 - any variables which were redundantly

calculated have been removed.

79

1 g l o b a l void y next (REAL t , REAL t end , REAL ∗ y g loba l , REAL ∗
y global temp , REAL ∗ rpa r g l oba l , int num gauss pts) {

2 REAL bi , yi , b i be , aj , he t g rad i en t , ug norm , dvg dt , dug dt ,

heavi , st im end , i s t im , dt = t end−t ;

3 int i , j , idx = blockIdx . x ∗ blockDim . x + threadIdx . x ;

4 y g l o b a l [0∗ num gauss pts + idx] += d e l t a ;

5 st im end = (r p a r g l o b a l [0∗ num gauss pts + idx] + r p a r g l o b a l [1∗
num gauss pts + idx]) ;

6 heavi = (HeavisideEq ((t − r p a r g l o b a l [0∗ num gauss pts + idx])) ∗
Heavis ideEq ((st im end − t))) ;

7 i s t i m = (heavi ∗ r p a r g l o b a l [2∗ num gauss pts + idx]) ;

8 ug norm = y g l o b a l [0∗ num gauss pts + idx] ;

9 dug dt = ((i s t i m − ((0 . 1 ∗ ug norm) ∗ y g l o b a l [1∗ num gauss pts +

idx])) − (((0 . 2 6 ∗ ug norm) ∗ (1 . 0 − ug norm)) ∗ (0 . 1 3 −
ug norm))) ;

10 y g l o b a l [0∗ num gauss pts + idx] −= d e l t a ;

11 a j = dug dt ;

12 dug dt = ((i s t i m − ((0 . 1 ∗ ug norm) ∗ y g l o b a l [1∗ num gauss pts +

idx])) − (((0 . 2 6 ∗ ug norm) ∗ (1 . 0 − ug norm)) ∗ (0 . 1 3 −
ug norm))) ;

13 b i be = (a j − dug dt) / de l t a ;

14 y g loba l temp [0∗ num gauss pts + idx] = y g l o b a l [0∗ num gauss pts +

idx] − (−dug dt∗dt) /(1−dt∗ b i be) ;

15 y g l o b a l [1∗ num gauss pts + idx] += d e l t a ;

16 ug norm = y g l o b a l [0∗ num gauss pts + idx] ;

17 dvg dt = ((0 . 0 1 3 ∗ ug norm) − (0 . 013 ∗ y g l o b a l [1∗ num gauss pts +

idx])) ;

18 y g l o b a l [1∗ num gauss pts + idx] −= d e l t a ;

19 a j = dvg dt ;

20 dvg dt = ((0 . 0 1 3 ∗ ug norm) − (0 . 013 ∗ y g l o b a l [1∗ num gauss pts +

idx])) ;

21 b i be = (a j − dvg dt) / d e l t a ;

22 y g loba l temp [1∗ num gauss pts + idx] = y g l o b a l [1∗ num gauss pts +

idx] − (−dvg dt ∗dt) /(1−dt∗ b i be) ;

23 }

Listing A.2: CUDA source for MFHN model with many global memory references

80

Although this code will execute without trouble on the GPU (and at a

tremendous speedup) it accesses the devices DRAM more frequently than nec-

essary. To reduce the number of global memory references, we can store global

memory in a shared memory cache. We use Belady’s algorithm at translation time

to decide which cache entries to evict when the shared memory is full. However,

MFHN is so simple that no memory eviction is required.

81

1 g l o b a l void y next opt imized (REAL t , REAL t end , REAL ∗ y g loba l

, REAL ∗ y global temp , REAL ∗ rpa r g l oba l , int num gauss pts)

2 {
3 s h a r e d REAL y sm0 [6 4] , y sm1 [6 4] ;

4 REAL bi , yi , b i be , aj , ug norm , dvg dt , dug dt , heavi , st im end ,

i s t im , dt = t end−t ;

5 int i , j , idx = blockIdx . x ∗ blockDim . x + threadIdx . x ;

6 y sm0 [threadIdx . x] = y g l o b a l [0∗ num gauss pts + idx] ;

7 y sm0 [threadIdx . x] += d e l t a ;

8 st im end = (r p a r g l o b a l [0∗ num gauss pts + idx] + r p a r g l o b a l [1∗
num gauss pts + idx]) ;

9 heavi = (HeavisideEq ((t − r p a r g l o b a l [0∗ num gauss pts + idx])) ∗
Heavis ideEq ((st im end − t))) ;

10 i s t i m = (heavi ∗ r p a r g l o b a l [2∗ num gauss pts + idx]) ;

11 ug norm = y sm0 [threadIdx . x] ;

12 y sm1 [threadIdx . x] = y g l o b a l [1∗ num gauss pts + idx] ; // prepended

13 dug dt = ((i s t i m − ((0 . 1 ∗ ug norm) ∗ y sm1 [threadIdx . x])) −
(((0 . 2 6 ∗ ug norm) ∗ (1 . 0 − ug norm)) ∗ (0 . 1 3 − ug norm))) ;

14 y sm0 [threadIdx . x] −= d e l t a ;

15 a j = dug dt ;

16 dug dt = ((i s t i m − ((0 . 1 ∗ ug norm) ∗ y sm1 [threadIdx . x])) −
(((0 . 2 6 ∗ ug norm) ∗ (1 . 0 − ug norm)) ∗ (0 . 1 3 − ug norm))) ;

17 b i be = (a j − dug dt) / de l t a ;

18 y g loba l temp [0∗ num gauss pts + idx] = y sm0 [threadIdx . x] − (−
dug dt∗dt) /(1−dt∗ b i be) ;

19 y sm1 [threadIdx . x] += d e l t a ;

20 ug norm = y sm0 [threadIdx . x] ;

21 dvg dt = ((0 . 0 1 3 ∗ ug norm) − (0 . 013 ∗ y sm1 [threadIdx . x])) ;

22 y sm1 [threadIdx . x] −= d e l t a ;

23 a j = dvg dt ;

24 dvg dt = ((0 . 0 1 3 ∗ ug norm) − (0 . 013 ∗ y sm1 [threadIdx . x])) ;

25 b i be = (a j − dvg dt) / d e l t a ;

26 y g loba l temp [1∗ num gauss pts + idx] = y sm1 [threadIdx . x] − (−
dvg dt ∗dt) /(1−dt∗ b i be) ;

27 }

Listing A.3: CUDA source for MFHN model using shared memory cache

82

Finally, we could split the kernel up into smaller pieces. Since MFHN is

already very small and there is no risk of spilling registers to the device’s DRAM,

this optimization would provide no benefit and would actually result in a perfor-

mance penalty due to additional global memory references. However, with more

complex cell models, such as the Flaim, splitting up the kernel reduces register

pressure and can result in a performance speedup.

83

1 g l o b a l void y n e x t o p t i m i z e d s p l i t 1 (REAL t , REAL t end , REAL ∗
y g loba l , REAL ∗ y global temp , REAL ∗ rpa r g l oba l , int

num gauss pts)

2 {
3 s h a r e d REAL y sm0 [6 4] ; s h a r e d REAL y sm1 [6 4] ;

s h a r e d REAL y sm2 [6 4] ; s h a r e d REAL y sm3 [6 4] ;

s h a r e d REAL y sm4 [6 4] ; s h a r e d REAL y sm5 [6 4] ;

s h a r e d REAL y sm6 [6 4] ;

4

5 REAL bi , yi , b i be , aj , ug norm , dvg dt , dug dt , heavi , st im end ,

i s t im , dt = t end−t ;

6 int i , j , idx = blockIdx . x ∗ blockDim . x + threadIdx . x ;

7

8 // dug d t

9 y sm0 [threadIdx . x] = y g l o b a l [0∗ num gauss pts + idx] ;

10 y sm0 [threadIdx . x] += d e l t a ;

11 st im end = (r p a r g l o b a l [0∗ num gauss pts + idx] + r p a r g l o b a l [1∗
num gauss pts + idx]) ;

12 heavi = (HeavisideEq ((t − r p a r g l o b a l [0∗ num gauss pts + idx])) ∗
Heavis ideEq ((st im end − t))) ;

13 i s t i m = (heavi ∗ r p a r g l o b a l [2∗ num gauss pts + idx]) ;

14 ug norm = y sm0 [threadIdx . x] ;

15 y sm1 [threadIdx . x] = y g l o b a l [1∗ num gauss pts + idx] ;

16 dug dt = ((i s t i m − ((0 . 1 ∗ ug norm) ∗ y sm1 [threadIdx . x])) −
(((0 . 2 6 ∗ ug norm) ∗ (1 . 0 − ug norm)) ∗ (0 . 1 3 − ug norm))) ;

17 y sm0 [threadIdx . x] −= d e l t a ;

18 a j = dug dt ;

19 dug dt = ((i s t i m − ((0 . 1 ∗ ug norm) ∗ y sm1 [threadIdx . x])) −
(((0 . 2 6 ∗ ug norm) ∗ (1 . 0 − ug norm)) ∗ (0 . 1 3 − ug norm))) ;

20 b i be = (a j − dug dt) / de l t a ;

21 y g loba l temp [0∗ num gauss pts + idx] = y sm0 [threadIdx . x] − (−
dug dt∗dt) /(1−dt∗ b i be) ;

22 }

Listing A.4: CUDA source for MFHN model using shared memory cache split into
2 kernels (kernel 1)

84

1 g l o b a l void y n e x t o p t i m i z e d s p l i t 2 (REAL t , REAL t end , REAL ∗
y g loba l , REAL ∗ y global temp , REAL ∗ rpa r g l oba l , int

num gauss pts)

2 {
3 // ke rne l 1 needs 2 vars

4 s h a r e d REAL y sm0 [6 4] ; s h a r e d REAL y sm1 [6 4] ;

s h a r e d REAL y sm2 [6 4] ; s h a r e d REAL y sm3 [6 4] ;

s h a r e d REAL y sm4 [6 4] ; s h a r e d REAL y sm5 [6 4] ;

s h a r e d REAL y sm6 [6 4] ;

5

6 REAL bi ;

7 REAL dt = t end−t ;

8 int i , j ;

9 int idx = blockIdx . x ∗ blockDim . x + threadIdx . x ;

10

11 REAL yi , b i be , aj , ug norm , dvg dt , dug dt , heavi , st im end , i s t i m ;

12

13 // dvg d t

14 y sm1 [threadIdx . x] = y g l o b a l [1∗ num gauss pts + idx] ;

15 y sm1 [threadIdx . x] += d e l t a ;

16 y sm0 [threadIdx . x] = y g l o b a l [0∗ num gauss pts + idx] ;

17 ug norm = y sm0 [threadIdx . x] ;

18 dvg dt = ((0 . 0 1 3 ∗ ug norm) − (0 . 013 ∗ y sm1 [threadIdx . x])) ;

19 y sm1 [threadIdx . x] −= d e l t a ;

20 a j = dvg dt ;

21 dvg dt = ((0 . 0 1 3 ∗ ug norm) − (0 . 013 ∗ y sm1 [threadIdx . x])) ;

22 b i be = (a j − dvg dt) / d e l t a ;

23 y g loba l temp [1∗ num gauss pts + idx] = y sm1 [threadIdx . x] − (−
dvg dt ∗dt) /(1−dt∗ b i be) ;

24 }

Listing A.5: CUDA source for MFHN model using shared memory cache split into
2 kernels (kernel 2)

Bibliography

[1] R. R. Aliev and A. V. Panfilov. A simple two-variable model of cardiac
excitation. Chaos, Solitons and fractals, 7(3):293–301, 1996.

[2] Auckland. Overview - cellml. http://www.cellml.org/, 2009.

[3] G.W. Beeler and H. Reuter. Reconstruction of the action potential of ventric-
ular myocardial fibres. The Journal of physiology, 268(1):177–210, 1977.

[4] L. A. Belady. A study of replacement algorithms for virtual-storage computer.
IBM Systems Journal, 5(2):78–101, 1966.

[5] N. Bell and M. Garland. Efficient sparse matrix-vector multiplication on cuda.
2008.

[6] E. Bendersky. pycparser: http://code.google.com/p/pycparser/, 2009.

[7] S. G. Campbell, F. V. Lionetti, K. S. Campbell, A. D., and McCulloch. Cou-
pling of adjacent tropomyosins enchances crossbridge-mediated cooperative
activation in a markov model of the cardiac thin filament. Biophysical Jour-
nal. In Press.

[8] O. Certik. Sympy python library for symbolic mathematics. 2008.

[9] A. A. Cuellar, C. M. Lloyd, P. F. Nielsen, D. P. Bullivant, D. P. Nickerson,
and P. J. Hunter. An overview of cellml 1.1, a biological model description
language. Simulation, 79(12):740, 2003.

[10] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc, R. C.
Whaley, and K. Yelick. Self-adapting linear algebra algorithms and software.
Proceedings of the IEEE, 93(2):293–312, 2005.

[11] J. W. Demmel, J. R. Gilbert, and X. S. Li. Superlu users guide. University
of California at Berkeley, Berkeley, CA, 1997.

[12] A. E. Eichenberger, JK OBrien, KM OBrien, P. Wu, T. Chen, P. H. Oden,
D. A. Prener, J. C. Shepherd, B. So, and Z. Sura. Using advanced compiler

85

86

technology to exploit the performance of the cell broadband engine architec-
ture. IBM Systems Journal, 45(1):59–84, 2006.

[13] F. H Fenton and E. M. Cherry. Models of cardiac cell. Scholarpedia, 3(8):1868,
2008.

[14] R. Fitzhugh. Impulses and physiological states in theoretical models of nerve
membrane. Biophysical journal, 1(6):445–466, 1961.

[15] S. N. Flaim, W. R. Giles, and A. D. McCulloch. Contributions of sustained ina
and ikv43 to transmural heterogeneity of early repolarization and arrhythmo-
genesis in canine left ventricular myocytes. American Journal of Physiology-
Heart and Circulatory Physiology, 291(6):H2617, 2006.

[16] E. Grandi, F. S. Pasqualini, J. L. Puglisi, and D. M. Bers. A novel com-
putational model of the human ventricular action potential and ca transient.
Biophysical journal, 96(3S1):664–665, 2009. Accepted.

[17] J. L. Greenstein and R. L. Winslow. An integrative model of the cardiac
ventricular myocyte incorporating local control of ca2 release. Biophysical
journal, 83(6):2918–2945, 2002.

[18] E. Hairer, S. P. Noersett, and G. Wanner. Solving ordinary differential equa-
tions. Springer, 1993.

[19] E. Hairer and G. Wanner. Solving ordinary differential equations ii. stiff and
differential-algebraic problems. Springer Series in Computational Mathemat-
ics, 14, 1991.

[20] Monica Hanslien, Robert Artebrant, Aslak Tveito, Glenn Terje Lines, and
Xing Cai. Stability of two time-integrators for the aliev-panfilov system. jour-
nal for publication, 2009.

[21] C.S. Henriquez. Simulating the electrical behavior of cardiac tissue using
the bidomain model. Critical Reviews in Biomedical Engineering, 21(1):1–77,
1993.

[22] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane
current and its application to conduction and excitation in nerve. Journal of
Physiology, 117:500–554, 1952.

[23] T. J. R. Hughes. The finite element method. Prentice-Hall Englewood Cliffs,
NJ, 1987.

[24] L. A. Irvine, M. Saleet Jafri, and R. L. Winslow. Cardiac sodium channel
markov model with temperature dependence and recovery from inactivation.
Biophysical journal, 76(4):1868–1885, 1999.

87

[25] O. Skavhaug J. Sundnes, R. Artebrant and A. Tveito. A second order algo-
rithm for solving dynamic cell membrane equations. In Progress, 2009.

[26] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and
D. Shippy. Introduction to the cell multiprocessor. IBM J. Res. Dev.,
49(4/5):589–604, 2005.

[27] K. Kennedy and J. R. Allen. Optimizing compilers for modern architectures: a
dependence-based approach. Morgan Kaufmann Publishers Inc. San Francisco,
CA, USA, 2001.

[28] R.C.P. Kerckhoffs, S.N. Healy, T.P. Usyk, and A.D. McCulloch. Compu-
tational methods for cardiac electromechanics. Proceedings of the IEEE,
94(4):769–783, 2006.

[29] X. S. Li and J. W. Demmel. Superlu dist: A scalable distributed-memory
sparse direct solver for unsymmetric linear systems. ACM Transactions on
Mathematical Software, 29(2):110–140, 2003.

[30] J. D. C. Little. A proof for the queuing formula: L= λ w. Operations research,
9(3):383–387, 1961.

[31] Y. Liu, D. Maskell, and B. Schmidt. Cudasw++: optimizing smith-waterman
sequence database searches for cuda-enabled graphics processing units. BMC
Research Notes, 2(1):73, 2009. M3: 10.1186/1756-0500-2-73.

[32] Y. Liu, E. Z. Zhang, and X. Shen. A cross-input adaptive framework for gpu
program optimizations. volume 0, pages 1–10, 2009.

[33] R.J. Spiteri M.C. Maclachlan, J. Sundnes. A comparison of non-standard
solvers for odes describing cellular reactions in the heart. Computer Methods
in Biomechanics and Biomedical Engineering, 10(5), 2007.

[34] A. Michailova and A. McCulloch. Model study of atp and adp buffering,
transport of ca2 and mg2 , and regulation of ion pumps in ventricular myocyte.
Biophysical journal, 81(2):614–629, 2001.

[35] M. L. Neal and R. Kerckhoffs. Current progress in patient-specific modeling.
Briefings in Bioinformatics, 2009.

[36] nVidia. Programming guide 2.1: http://developer.download.nvidia.com
/compute/cuda/2 1/toolkit/docs/nvidia cuda programming guide 2.1.pdf.
NVIDIA CUDA Programming Guide, 2, 2008.

[37] nVidia. Nvidia’s next generation cuda compute architecture:
Fermi. http://www.nvidia.com/content/PDF/fermi white papers/
NVIDIA Fermi Compute Architecture Whitepaper.pdf, 2009.

88

[38] nVidia. Optimizing cuda. http://www.sdsc.edu/us/training/assets/docs/
NVIDIA-04-OptimizingCUDA.pdf, 2009.

[39] World Health Organization. The top 10 causes of death.
http://www.who.int/mediacentre/factsheets/fs310/en/index.html, 2004.

[40] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A. E. Lefohn,
and T. J. Purcell. A survey of general-purpose computation on graphics hard-
ware. In Computer Graphics Forum, volume 26, pages 80–113. Citeseer, 2007.

[41] David Patterson. The top 10 innovations in the new
nvidia fermi architecture, and the top 3 next chal-
lenges. http://www.nvidia.com/content/PDF/fermi white papers/
D.Patterson Top10InnovationsInNVIDIAFermi.pdf, 2009.

[42] A. Petitet, RC Whaley, and JJ Dongarra. Automated empirical optimization
of software and the atlas project. Parallel Computing, 27(1-2):3–25, 2001.

[43] J. L. Puglisi and D. M. Bers. Labheart: an interactive computer model of
rabbit ventricular myocyte ion channels and ca transport. American Journal
of Physiology- Cell Physiology, 281(6):2049–2060, 2001.

[44] J. M. Rogers, M. Courtemanche, and A. D. McCulloch. Finite Element Meth-
ods for modeling impulse propagation in the heart, chapter 7, pages 1–428.
Computational Biology of the Heart. Sussex: John Wiley and Sons, Ltd.,
1996.

[45] J.M. Rogers and A.D. McCulloch. A collocation-galerkin finite element model
of cardiac action potential propagation. IEEE Transactions on Biomedical
Engineering, 41(8):743–757, 1994.

[46] S. Rush and H. Larsen. A practical algorithm for solving dynamic membrane
equations. IEEE Transactions on Biomedical Engineering, pages 389–392,
1978.

[47] S. Rush and H. Larsen. A practical algorithm for solving dynamic membrane
equations. IEEE Trans. Biomed. Eng., BME-25(4):389–392, 1978.

[48] D. Sato, Y. Xie, J. N. Weiss, Z. Qu, A. Garfinkel, and A. R. Sanderson. Ac-
celeration of cardiac tissue simulation with graphic processing units. Medical
and Biological Engineering and Computing, 47(9):1011–1015, 2009.

[49] O. Schenk, M. Christen, and H. Burkhart. Algorithmic performance studies
on graphics processing units. Journal of Parallel and Distributed Computing,
68(10):1360–1369, 2008.

89

[50] M. Silberstein, A. Schuster, D. Geiger, A. Patney, and J. D. Owens. Efficient
computation of sum-products on gpus through software-managed cache. In
Proceedings of the 22nd annual international conference on Supercomputing,
pages 309–318. ACM New York, NY, USA, 2008.

[51] R.J. Spiteri and R.C. Dean. On the performance on an implicit-explicit runge-
kutta method in models of cardiac electrical activity. IEEE Transactions on
Biomedical Engineering, 55(5), 2008.

[52] T. P. Usyk and A. D. McCulloch. Computational methods for soft tis-
sue biomechanics. Biomechanics of Soft Tissue in Cardiovascular Systems,
441:273342, 2003.

[53] W. J. van der Laan. Decuda and cudasm, the cubin utilities package:
http://wiki.github.com/laanwj/decuda, 2009.

[54] V. Volkov and J. W. Demmel. Benchmarking gpus to tune dense linear alge-
bra.

[55] R. Vuduc, J. W. Demmel, and K. A. Yelick. Oski: A library of automati-
cally tuned sparse matrix kernels. In Journal of Physics: Conference Series,
volume 16, pages 521–530. Institute of Physics Publishing, 2005.

[56] R. Vuduc, E. J. Im, J. Demmel, A. Gyulassy, C. Hsu, and S. Kamil. Automatic
performance tuning of sparse matrix kernels. matrix, 35(40):45–50.

