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Abstract

Many different topic models have been used
successfully for a variety of applications.
However, even state-of-the-art topic models
suffer from the important flaw that they do
not capture the tendency of words to appear
in bursts; it is a fundamental property of lan-
guage that if a word is used once in a doc-
ument, it is more likely to be used again.
We introduce a topic model that uses Dirich-
let compound multinomial (DCM) distribu-
tions to model this burstiness phenomenon.
On both text and non-text datasets, the
new model achieves better held-out likeli-
hood than standard latent Dirichlet alloca-
tion (LDA). It is straightforward to incorpo-
rate the DCM extension into topic models
that are more complex than LDA.

1. Introduction

The effectiveness of a topic model is dependent on the
appropriateness of its generative process for the task at
hand. For most common tasks, any computationally
feasible generative model will be a substantial simpli-
fication of the true generative process. Nevertheless,
some tractable generative models are more reflective of
the true generative process than others. In this paper,
we propose a new generative process for topic mod-
els that significantly improves the statistical fidelity
of the process with minimal additional model com-
plexity. Specifically, we replace the multinomial distri-
butions in standard latent Dirichlet allocation (LDA)
(Blei et al., 2003) by Dirichlet compound multino-
mial (DCM) distributions (Madsen et al., 2005; Elkan,
2006). The result is a better model for text data and
for at least some other non-text data.

Appearing in Proceedings of the 26 th International Confer-
ence on Machine Learning, Montreal, Canada, 2009. Copy-
right 2009 by the author(s)/owner(s).

Our primary concern in the current study is accounting
for the phenomenon of burstiness. Church and Gale
(1995) note that real texts systematically exhibit this
phenomenon: a word is more likely to occur again in a
document if it has already appeared in the document.
Importantly, the burstiness of a word and its seman-
tic content are positively correlated; words that are
more informative are also more bursty. The multino-
mial distribution does not take burstiness into account
(Rennie et al., 2003, Sect. 4.1), so it gives an inaccu-
rate model for the distribution of words in texts.

The phenomenon of burstiness is not limited to text.
In Section 4 we present an example of bursty data in
the financial realm. Burstiness also intuitively occurs
in other types of data that have been modeled using
topic models, including gene expression and computer
vision data (Airoldi et al., 2007; Fei-Fei & Perona,
2005). If a gene is transcribed once in a cell, then it
is more likely to be transcribed again. And if a patch
with certain properties occurs once in an image, then
it is more likely that similar patches will occur again.

The new DCMLDA model is only slightly more com-
plex than standard LDA. As a result, the LDA com-
ponent in complex topic models, such as Pachinko al-
location (Li & McCallum, 2006) and correlated topic
models (Blei & Lafferty, 2005), can be replaced with a
DCMLDA component. This should enable those mod-
els to account for burstiness and thereby improve their
effectiveness.

Because it uses DCMs to represent topics, the
DCMLDA model can capture the tendency of the same
topic to manifest itself with different words in dif-
ferent documents. Suppose that there is a natural
“sports” topic in a corpus, with the words “rugby”
and “hockey” being equally common overall. Within a
document, though, one appearance of “rugby” makes a
second appearance of “rugby” more likely than a first
appearance of “hockey.” The DCM distributions in
DCMLDA can represent this fact, while a standard
LDA model cannot. This property allows a single
DCMLDA topic to explain related aspects of docu-
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ments more effectively than a single LDA topic. Thus,
we hypothesize, a DCMLDA model with a few topics
can fit a corpus as well as an LDA model with many
topics. This hypothesis is confirmed by the experimen-
tal results below.

2. Overview of Models

The DCMLDA model combines the DCM and LDA
models, gaining the advantages of each. We review the
two component models before discussing DCMLDA.

Latent Dirichlet allocation (LDA). LDA has been
discussed in detail elsewhere (Blei et al., 2001; Blei
et al., 2003; Griffiths et al., 2004; Heinrich, 2005), so
we present only an overview here. The LDA gener-
ative model notionally posits that an author gener-
ates a document in two steps. First, the author deter-
mines the probability of each topic in the document.
Each topic is a multinomial distribution over words,
so to choose a word the author first draws a topic and
then draws a word based on that topic. The graphi-
cal model for LDA is shown in Figure 1(a), with the
unobserved variables distributed as follows:

θ ∼ Dirichlet(α) z ∼ Multinomial(θ)
φ ∼ Dirichlet(β) w ∼ Multinomial(φ).

This generative process does not account for burstiness
of words. The only way that burstiness can manifest
itself is indirectly, as a consequence of how topics are
distributed. The fact that a document contains the
word “rugby” from a sports topic, for instance, makes
it more likely that the document contains other words
from the same sports topic. Thus, the document is
likely to contain a second instance of the word “rugby.”
However, because the sports topic is the same across
the corpus, the presence of any sports word in a docu-
ment will have a similar effect. That is, an appearance
of the word “rugby” also indirectly makes an appear-
ance of the word “hockey” more likely, which is not a
desirable phenomenon.

The LDA model is bursty in topics, even though it is
not in words: the presence of one word from a given
topic in a document makes other words in the docu-
ment more likely to be generated by the same topic.
However, because the LDA generative process does not
account for word-level burstiness, LDA may in fact be
excessively bursty at the topic level. The reason is
that each occurrence of a word is treated as indepen-
dent extra evidence for its topic.

An LDA model has two Dirichlet hyperparameters, α
and β, which condition θ and φ respectively. Different
values for the hyperparameters cause different inferred
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Figure 1. Alternative graphical models.

values of φ and θ. In general α and β are vectors that
can be learned (Blei et al., 2003; Fei-Fei & Perona,
2005). However, often they are kept fixed and uniform,
meaning that each vector component is set to the same
scalar value.

Learning the hyperparameters can provide information
about the corpus: α indicates how semantically diverse
documents are, with lower α indicating increased di-
versity, while β indicates how similar the topics are,
with higher β indicating more similarity between top-
ics. Learning non-uniform values for the hyperparam-
eters allows different words and topics to have different
tendencies; some topics can be more general than oth-
ers (e.g., function words versus medical jargon), and
some words can be likely to appear in more topics than
others (e.g., words with multiple senses).

Despite not accounting for burstiness, LDA is an ef-
fective model that has proven useful for its ability to
model documents as varying mixtures of shared topics.
From a trained LDA model, one can infer the multino-
mial distributions θ that give the probability of each
topic in each document. These distributions can then
be used for many tasks, including classifying new doc-
uments and measuring similarity between documents.

Dirichlet compound multinomial (DCM). The
DCM model (Madsen et al., 2005) captures burstiness,
but it has no notion of topic. DCM uses a bag-of-bags-
of-words generative process. In this process, each doc-
ument is formed by drawing a document-specific multi-
nomial distribution φ from a shared Dirichlet distri-
bution, and then drawing words w according to φ. In
the DCM model, each document is composed of words
drawn from a single multinomial. This multinomial
can be viewed as a document-specific subtopic, or as-
pect, of the high-level topic β. The β vector is the only
parameter of DCM, so unlike the hyperparameters in
LDA, it must be non-uniform.

Since topics are drawn from a Dirichlet distribution
in LDA also, it is perhaps not immediately obvious
why DCM accounts for the burstiness of words and
LDA does not. The answer lies in the 1:1 mapping
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between subtopics and documents in the DCM model.
In LDA, the multinomial distribution of words in each
topic depends on the whole corpus, but DCM multi-
nomial distributions are document-specific.

Turning to the mathematics of the models, a key dif-
ference is that multinomial parameters are constrained
to sum to one, unlike Dirichlet parameters. This gives
the DCM model one extra degree of freedom to rep-
resent a topic. By working out an exponential-family
approximation of the DCM, Elkan (2006) shows ex-
plicitly that this degree of freedom allows the DCM
to discount multiple observations of the same word.
In bursty texts, additional appearances of a word are
less surprising than its first appearance. The smaller
the sum of the Dirichlet parameters β, the more the
emission of words is bursty. As the Dirichlet param-
eters tend to infinity, a DCM distribution approaches
equivalence with a multinomial distribution.

A single DCM model represents one high-level topic
that has alternative aspects. It cannot represent mul-
tiple distinct topics. Because of the 1:1 mapping be-
tween multinomials and documents, in a DCM model
each document comes entirely from one subtopic. All
these subtopics are closely related because the sum of
the β vector is typically quite high (a few hundred).
Elkan (2006) extended the DCM model to a mixture of
DCM distributions. This model can be trained to rep-
resent a set of documents where each document comes
from a different high-level topic, but it cannot rep-
resent the scenario where a single document contains
words from more than one high-level topic.

DCMLDA. To combine the advantages of DCM and
LDA, we need a model that allows multiple topics
in a single document, while still making the topics
document-specific to account for burstiness. Figure 1
contrasts the LDA and DCMLDA graphical models,
while Algorithm 1 is the DCMLDA generative process.

In LDA, for each topic k, one multinomial distribu-
tion φk is drawn from Dirichlet(β) and is used in all

Algorithm 1 DCMLDA Generative Model
for document d ∈ {1, . . . , D} do

draw topic distribution θd ∼ Dir(α)
for topic k ∈ {1, . . . ,K} do

draw topic-word distribution φkd ∼ Dir(βk)
end for
for word n ∈ {1, . . . , Nd} do

draw topic zdn ∼ θd
draw word wdn ∼ φzdnd

end for
end for

documents. In DCMLDA, for each topic k and each
document d a fresh multinomial word distribution φkd
is drawn. Each topic k has a different, non-uniform
βk vector. For each document d, φkd is drawn ac-
cording to Dirichlet(βk), so the instances of each topic
are linked across documents. Having per-document in-
stances of each topic allows for variations in the prob-
ability of each word in the same topic in different doc-
uments, which is the phenomenon of burstiness.

The change from a single set of multinomial topics to
multiple sets of multinomial subtopics shifts the focus
of attention in DCMLDA modeling. Let V be the size
of the vocabulary, let K be the number of topics, and
let D be the number of documents in the corpus. In
LDA, φ is the focus, a V ×K array of word probabili-
ties given topics. In DCMLDA, φ is three-dimensional
(V ×K×D), measuring word likelihoods for each topic,
for each document. Since in DCMLDA φ depends on
the specific document, it is not a representation of the
data that has sharply reduced dimensionality. Instead,
with DCMLDA the focus of attention is β, which is
a two-dimensional array of Dirichlet parameters for
words given topics. As mentioned in the previous sec-
tion, the β values are not constrained to sum to one.
This gives DCMLDA an extra K degrees of freedom
that allow it to capture word-level burstiness within
each topic. The β values have a similar intuitive inter-
pretation to the φ values in LDA. In particular, higher
β values mean that a word is more likely in a given
topic. Thus one can still use β values to identify the
most common words in each topic.

3. Methods of Inference

Both the standard LDA model and the DCMLDA
model have five unobserved variables: α, β, φ, θ, and
z. These variables can be classified into two groups:
the per-document or per-word parameters φ, θ, and z,
and the hyperparameters α and β. Given a training
set of documents, we learn appropriate values for the
variables by alternating between optimizing the topic
parameters given the hyperparameters, and optimiz-
ing the hyperparameters given the topic parameters.
Neither of these optimizations can be done analyti-
cally, but both yield to known estimation procedures.
Specifically, for fixed values of the α vector and β ar-
ray, we do collapsed Gibbs sampling to find the dis-
tribution of z given the documents. If desired, φ and
θ can be computed straightforwardly from samples of
z. Given a z sample, values of α and β that maximize
the likelihood of the training documents are obtained
by Monte Carlo expectation-maximization.

In this and subsequent sections, the notation β·k in-
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dicates that β is a two-dimensional array, with one
column for each topic k, so β·k is what was informally
called βk previously. Similarly, the notation α· is used
to emphasize that α is a vector.

Gibbs sampling. Gibbs sampling for DCMLDA is
similar to the method for LDA, which Heinrich (2005)
explains in detail. We present a condensed derivation,
highlighting what is novel for DCMLDA sampling. We
start by factoring the complete likelihood of the model:
p(w, z|α·, β··) = p(w|z, β··)p(z|α·). The first probabil-
ity is an average over all possible φ distributions:

p(w|z, β··) =
∫
φ

p(z|φ)p(φ|β··)dφ

=
∫
φ

p(φ|β··)
∏
d

Nd∏
n=1

φwdnzdnd dφ

=
∫
φ

p(φ|β··)
∏
d,k,t

(φtkd)ntkddφ.

Expanding p(φ|β··) as a Dirichlet distribution yields

p(w|z, β··) =
∫
φ

∏
d,k

1
B(β·k)

∏
t

(φtkd)βtk−1


×

∏
d,k,t

(φtkd)ntkd

 dφ
=
∏
d,k

∫
φ

∏
t

(φtkd)βtk−1+ntkddφ

=
∏
d,k

B(n·kd + β·k)
B(β·k)

. (1)

Above, B(·) is the multidimensional Beta function,
and ntkd is how many times word t is assigned topic
k in document d. DCMLDA and LDA are struc-
turally identical over the α-to-z pathway, so p(z|α·)
in DCMLDA is the same as for LDA:

p(z|α·) =
∏
d

B(n··d + α·)
B(α·)

. (2)

Combining Equations 1 and 2 yields that the complete
likelihood p(w, z|α·, β··) is

∏
d

[
B(n··d + α·)

B(α·)

∏
k

B(n·kd + β·k)
B(β·k)

]
. (3)

To perform collapsed Gibbs sampling, we need to cal-
culate p(zi|z−i, w), where z−i is the set of topic assign-
ments to all words but wi. Letting ntkd be the count
of word t in topic k and document d in the complete

corpus {w−i ∪ wi}, and letting n′tkd be the count for
the limited corpus w−i, we get the DCMLDA Gibbs
sampling equation:

p(zi|z−i, w) =
p(z, w)
p(z−i, w)

=
B(n··di

+ α·)B(n·zidi
+ β·zi

)
B(n′··di

+ α·)B(n′·zidi
+ β·zi

)

=
(n·zidi + αzi − 1)(nwizidi + βwizi − 1)

(
∑
k n·kdi

+ αk − 1)(
∑
t ntzidi

+ βtzi
− 1)

.

Hyperparameter EM. Many applications of LDA
are successful using default uniform values for α and
β, for example α = 50/K and β = .01, where K is
the number of topics, as suggested by Griffiths and
Steyvers (2004). Therefore it is not always necessary
to learn the hyperparameters in LDA. However, it is
imperative to learn the hyperparameters in DCMLDA.
The information contained in the φ values with LDA is
contained in the β values with the DCMLDA model.

Ideally, we would compute optimal α and β val-
ues by maximizing the likelihood p(w|α, β) directly.
Unfortunately, even evaluating this likelihood is in-
tractable. What can be computed is the complete
likelihood p(w, z|α, β). Based on this, we use single-
sample Monte Carlo EM to learn α and β. The
single-sample method is recommended by Celeux et al.
(1996) because it is computationally simple and gen-
erally outperforms multiple-sample Monte Carlo EM.
Algorithm 2 summarizes the method as applied to
DCMLDA.

To implement the M-step of the algorithm we need to
find α and β that maximize Equation 3, given the cur-
rent topic assignments. Expanding the Beta functions
yields

p(w, z|α, β) =
∏
d

[
(
∏
k Γ(n·kd + αk))Γ(

∑
k αk)

(
∏
k Γ(αk))Γ(

∑
k n·kd + αk)

]
×
∏
d,k

[
(
∏
t Γ(ntkd + βwk)Γ(

∑
t βtk)

(
∏
t Γ(βtk))Γ(

∑
t ntkd + βtk)

]
.

Algorithm 2 Single-Sample Monte Carlo EM
Start with initial α· and β··
repeat

Run Gibbs sampling to steady-state
Choose a specific topic assignment for each word
using Gibbs sampling
Choose α· and β·· to maximize complete likelihood
p(w, z|α·, β··)

until convergence of α· and β··
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Now we convert to log-likelihood:

L(α, β;w, z) =
∑
d,k

[log Γ(n·kd + αk)− log Γ(αk)]

+
∑
d

[log Γ(
∑
k

αk)− log Γ(
∑
k

n·kd + αk)]

+
∑
d,k,t

[log Γ(ntkd + βtk)− log Γ(βtk)]

+
∑
d,k

[log Γ(
∑
t

βtk)− log Γ(
∑
t

ntkd + βtk)].

This is a separable function, since the first term de-
pends only on α and the second only on β. Further-
more, the second term is a sum over topics, so each β·k
can be independently maximized. This gives a collec-
tion of K + 1 equations to maximize:

α′· = argmax
∑
d,k

(log Γ(n·kd + αk)− log Γ(αk))

+
∑
d

[log Γ(
∑
k

αk)− log Γ(
∑
k

n·kd + αk)]

β′·k = argmax
∑
d,t

(log Γ(ntkd + βtk)− log Γ(βtk))

+
∑
d

[log Γ(
∑
t

βtk)− log Γ(
∑
t

ntkd + βtk)].

Each equation above defines a vector, either α· or β·k.
We use limited memory BFGS (Zhu et al., 1997) to
perform the maximizations. For one iteration of EM
with 20 topics on S&P500 data explained below, a
careful Matlab implementation requires about 100 sec-
onds on a 2.4GHz CPU with 6GB memory.

The implementation of DCMLDA allows both the
α vector and β array to be non-uniform. For the
DCMLDA model to be useful, β must be non-uniform,
since it carries the information that φ carries in LDA.
The vector α could be uniform in DCMLDA, but learn-
ing non-uniform values allows the model to give certain
topics higher prior probability than others.

4. Experimental Design

Our experimental goal is to test whether the han-
dling of burstiness in a DCMLDA model creates a
better topic model than standard LDA. We compare
DCMLDA models with LDA models, rather than with
more complex topic models, for two reasons. First,
DCMLDA and LDA are of comparable conceptual
complexity. Second, and more important, they are
competing models. DCMLDA is not in competition
with more complex topic models, because these mod-
els can be modified to include DCM components.

Given a test set of documents not used for training, we
estimate the held-out likelihood p(w|α, β) for LDA and
DCMLDA models. The latter probability uses a vector
α· and an array β·· learned as described above. The
former probability uses α = ᾱ· and β = ¯̄β··, the scalar
means of the values learned by DCMLDA training.
We also compare these two models to LDA using the
values proposed by Griffiths and Steyvers (2004).

We compare LDA and DCMLDA as models for both
text and non-text data. The textual dataset is a col-
lection of papers from the 2002 and 2003 NIPS dataset
compiled by Globerson et al. (2004) and organized by
Elkan (2006). This dataset comprises 520955 words
(6871 unique word types) in 390 documents. The sec-
ond is a newly-compiled dataset of stock price fluc-
tuations for the stocks that compose the S&P 500.
This dataset contains 501 days of stock transactions
between January 2007 and September 2008, with each
document being a single day of trading. Each word
is a concatenation of a stock symbol and a direc-
tion (+ or –), and each day contains one copy of
a word for each (rounded) percentage point change
between the opening and closing price of the stock.
This dataset contains 469642 words in 501 documents.
Both datasets are bursty, and approximately equally
so, with B = 2.63 for NIPS and B = 2.51 for S&P500,
where B is the burstiness measure from Church and
Gale (1995), with B = 1 indicating no burstiness and
higher values indicating more burstiness.

In analyzing the S&P500 data, the goal is to find
groups of companies whose stock prices tend to move
together. For example, a learned topic might hy-
pothetically include the words IBM+, MSFT+, and
AAPL–. This would indicate that IBM and Microsoft
frequently rise together, while Apple tends to fall on
the same days. Because different groups of stocks can
move independently, each day can be a combination of
a different set of topics.

5. Empirical Likelihood

Comparing the goodness-of-fit of topic models is a no-
toriously tricky endeavor. Ideally, we would calculate
the incomplete likelihood p(w|α, β) for each model and
compare those values. However, the incomplete like-
lihood is intractable for topic models. The complete
likelihood p(w, z|α, β) is tractable, so previous work
(Griffiths & Steyvers, 2004, e.g.) has calculated the
harmonic mean of the complete likelihood from the
topic assignments generated during Gibbs sampling.
This approach is based on a true mathematical iden-
tity, but Newton and Raftery (1994) have argued that
it is unreliable.
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Another possibility is to measure classification accu-
racy, but that entwines the usefulness of the topics
with the separability of the dataset. This is an impor-
tant consideration because datasets do not always lend
themselves to obvious classification schemes. Also,
learned topics can be meaningful even if they are not
well correlated with pre-assigned class labels.

We follow a third approach suggested by Li and Mc-
Callum (2006). This approach is to approximate the
true held-out likelihood with so-called empirical likeli-
hood (EL). To measure EL, we first train each model
to obtain its parameter values α and β. These param-
eter values are then fed into the generative model, and
a large set of pseudo documents is produced. Each
of these documents has θ and φ distributions. (For
DCMLDA the φ distribution of each document is dif-
ferent, while for LDA they are identical.) The pseudo
documents are then used to train a tractable model.
In the present case, we use a mixture of multinomi-
als. Following Li and McCallum (2008), each multi-
nomial model is inferred directly from the generated
φ and θ distributions; individual words are not gener-
ated in the pseudo documents. The true likelihood of
the test set is then estimated as its likelihood under
the tractable model of the pseudo corpus. We report
the arithmetic mean of log likelihoods of documents in
the test set.

We investigate the stability of EL as a measure of
goodness-of-fit by running it multiple times for the
same DCMLDA model. Specifically, we train three
separate 20-topic DCMLDA models on the S&P500
dataset, and run the EL method five times for each of
these models. The mean absolute difference between
EL values for the same model is 0.08%, with maximum
0.20%. Furthermore, the mean absolute difference
between EL values for separately trained DCMLDA
models is 0.11%, with maximum 0.29%, showing that
likelihood values are stable over DCMLDA models
with the same number of topics. The relationship
between empirical likelihood and other measures of
goodness-of-fit measures is unclear, but this stability
suggests that EL is a sensible measure.

6. Results

An important, but informal, measure of the success of
a topic model is the plausibility of the topics that it
proposes. Since DCMLDA creates document-specific
subtopics based on corpus-level topics, it is fair to
ask if these corpus-level topics are as interpretable as
LDA topics. Table 1 shows two topics from a 20-topic
DCMLDA model trained on the S&P500 dataset. The
words shown are the most likely based on the rank-

Table 1. Sample topics found by a 20-topic DCMLDA
model trained on the S&P 500 dataset. The six most likely
words for each topic are listed.

“Computer Related” “Real Estate”
Stock Company Stock Company

NVDA+ Nvidia SPG+ Simon Prop.
SNDK+ SanDisk AIV+ Apt. Invest.
BRCM+ Broadcom KIM+ Kimco Realty

JBL+ Jabil Circuit AVB+ AvalonBay
KLAC+ KLA-Tencor DDR+ Developers
NSM+ Nat’l Semicon. EQR+ Equity Resid.

Table 2. Sample topics found by a 20-topic LDA model
trained on the same S&P 500 dataset. The six most likely
words for each topic are listed.

“Computer Related” “Real Estate”
Stock Company Stock Company

NVDA+ Nvidia LEN+ Lennar
SNDK+ SanDisk CTX+ Centex
AMD+ AMD PHM+ Pulte Homes
MU+ Micron DHI+ D. R. Horton

BRCM+ Broadcom KBH+ KB Home
CIEN+ Ciena PLD+ ProLogis

order of the βtk values over words t for a given topic
k, in the same way that φtk indicates the most likely
words for an LDA topic. The topics discovered by
DCMLDA generally follow accepted stock classifica-
tion systems. The 25 most likely stocks in the “com-
puter related” topic are all in the Information Technol-
ogy sector of the Global Industry Classification Stan-
dard (GICS), and 24 of the 25 most likely stocks in
the “real estate” topic are in the Financials sector.

The DCMLDA topics are similar to topics from a 20-
topic LDA model trained on the same data, as shown
in Table 2. Three of the top six companies in the com-
puter topic are shared between the models. The LDA
topic most similar to the DCMLDA “real estate” topic
is also shown; all six top companies in the DCMLDA
topic are among the top 15 of the LDA topic. Sub-
jectively, the interpretability of the DCMLDA topics
is comparable to the interpretability of the LDA top-
ics. Looking closely suggests that the DCMLDA topics
may be better. For example, all six top stocks for the
DCMLDA “computer related” topic are suppliers to
computer manufacturers, while Ciena in the matching
LDA topic is not. In the LDA “real estate” topic the
top five stocks are homebuilders but ProLogis is quite
different. In contrast, all six stocks in the DCMLDA
topic are corporate landlords.

As discussed in Section 5, we use empirical likeli-
hood to compare the goodness-of-fit of the DCMLDA
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Figure 2. Mean per-document log-likelihood on the
S&P500 dataset for DCMLDA and fitted LDA models.
The heuristic model is omitted here because its likelihood
is too low. The maximum standard error is 11.2.

and LDA models on the NIPS and S&P500 datasets.
We perform five 5-fold cross-validation trials for each
number of topics and each dataset. We first train
a DCMLDA model, then create two LDA models.
One (“fitted LDA”) uses the mean values of the
DCMLDA hyperparameters. The other (“heuristic
LDA”) uses the uniform hyperparameter values sug-
gested by Griffiths and Steyvers (2004). For both
datasets, DCMLDA is better than fitted LDA, which
in turn is better than heuristic LDA.

Figure 2 shows performance on the S&P500 dataset.
The highest likelihood comes from DCMLDA with
seven topics, where DCMLDA has a major advantage
over the fitted LDA model. This supports the idea
that a DCMLDA model with few topics is comparable
to an LDA model with many topics. This may also in-
dicate that the a natural set of topics for this dataset
has cardinality about seven.

Above 100 topics, the likelihood of the fitted LDA
model remains approximately constant, while that of
DCMLDA continues dropping, ending up lower than
that of LDA. This is likely a result of data sparsity pre-
venting the estimation of good β values. As there are
only 1000 unique symbols in the dataset, poor behav-
ior with more than 100 topics is not a major source of
concern. The likelihoods for heuristic LDA model are
not shown in Figure 2 because they are much lower
than those of the other models, especially when the
number of topics is low. For 100 topics, heuristic LDA
has mean log-likelihood −7383, which approaches that
of the other two models, but for three topics, its mean
log-likelihood is −34130.
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Figure 3. Mean per-document log-likelihood on the NIPS
dataset for DCMLDA and LDA models. The maximum
standard error is 183.6.

Figure 3 shows performance on the NIPS dataset.
For this dataset, the DCMLDA model does not ex-
hibit the few-topics bump seen in the S&P500 dataset.
DCMLDA outperforms the fitted LDA model at ev-
ery tested number of topics. For the NIPS dataset,
LDA never surpasses DCMLDA as the number of top-
ics grows, presumably because the larger number of
unique words (6871) in this corpus keeps data sparsity
from becoming a major issue. LDA with the heuris-
tic hyperparameter values is not as bad on the NIPS
dataset as on the S&P500 dataset, almost catching up
with the fitted LDA model at 50 topics. This confirms
that the suggestions of Griffiths and Steyvers (2004)
are reasonable for textual data. However, the fitted
LDA model retains a substantial advantage, especially
when the number of topics is small.

7. Discussion

While the choice of α and β in a topic model is some-
times viewed as a formality, and heuristic values are
used without much consideration, we find that heuris-
tic values can lead to much worse likelihood than fitted
values, especially when the number of topics is small.
Thus learning α and β can be beneficial, and optimized
values can be significantly different from previously
suggested heuristic values. In addition, we see that
accounting for burstiness improves held-out likelihood
for both text and non-text data. To be completely
confident that the EL improvement is due to modeling
burstiness, DCMLDA should be compared also to a
version of LDA with a single optimized non-uniform β
parameter.



Accounting for Burstiness in Topic Models

Recent years have seen a profusion of topic model vari-
ants, such as the correlated topic model (Blei & Laf-
ferty, 2005) and the Pachinko allocation model (Li &
McCallum, 2006). These newer models outperform
LDA on many tasks, so comparing the performance
of DCMLDA only to that of LDA may seem inap-
propriate. However, DCMLDA is not in competition
with the more complex topic models, but rather with
LDA. The more complex topic models share an LDA
core, in that they use multinomials to represent top-
ics. These multinomials can be replaced by DCMs to
improve, potentially, the performance of these models.
Thus the DCMLDA idea and complex topic models
are complementary.
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