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Abstract: This paper introduces a new approach to user interface design and related areas, called
algebraic semiotics. The approach is based on a notion of sign, which allows complex hierarchical
structure and incorporates the insight (emphasized by Saussure) that signs come in systems, and
should be studied at that level, rather than individually. A user interface can be considered as
a representation of the underlying functionality to which it provides access, and thus user interface
design can be considered a craft of constructing such representations, where both the interface and the
underlying functionality are considered as (structured) sign systems. In this setting, representations
appear as mappings, or morphisms, between sign systems, which should preserve as much structure as
possible. This motivates developing a calculus having systematic ways to combine signs, sign systems,
and representations. One important mode of composition is blending, introduced by Fauconnier and
Turner; we relate this to certain concepts from the very abstract area of mathematics called category
theory. Applications for algebraic semiotics include not only user interface design, but also cognitive
linguistics, especially metaphor theory and cognitive poetics. The main contribution of this paper is
the precision it can bring to such areas. Building on an insight from computer science, that discrete
structures can be described by algebraic theories, sign systems are defined to be algebraic theories
with extra structure, and semiotic morphisms are defined to be mappings of algebraic theories
that (to some extent) preserve the extra structure. As an aid for practical design, we show that
the quality of representations is closely related to the preservation properties of semiotic morphisms;
these measures of quality also provide the orderings needed by our category theoretic formulation of
blending.

1 Introduction

Analogy, metaphor, representation and user interface have much in common: each involves signs,
meaning, one or more people, and some context, including culture; moreover each can be looked at
dually from either a design or a use perspective. Recent research in several disciplines is converging
on a general area that includes the four topics in the first sentence above; these disciplines include
(aspects of) sociology, cognitive linguistics, computer science, literary criticism, user interface design,
psychology, semiotics, and philosophy. Of these, semiotics takes perhaps the most general view,
although much of the research in this area has been rather vague. A goal of the research reported
here is to develop a mathematically precise theory of semiotics, called algebraic semiotics, that
avoids the error of reification, that is, of identifying its abstractions with real world phenomena,
making only the more modest claim of developing potentially useful models. This paper focuses on
applications to user interface design, but the mathematical formalism also applies to the other areas
mentioned above, especially metaphor theory and cognitive poetics, within cognitive linguistics.

The job of user interface designers is to build good metaphors (representations, translations, etc.).
In this area, the domains to be represented are often very clear, though prosaic, the designers are often
engineers, the intended users are often mass market consumers, and quality can often be tested, e.g.,
by laboratory experiments and statistics. Therefore user interface design provides a good laboratory
for studying the general area that we have identified. It is interesting to contrast user interface design
with (say) poetry, where the objects of interest are unique brilliant creations, and analysis is difficult
(but rewarding). Nevertheless, they have much in common, including the applicability of semiotic
morphisms and blends.



User interface designers have long wanted the same capability as electrical and mechanical engineers
to make models and reason about them, instead of having to build prototypes and test them, because
proper experiments can be both time consuming and expensive. Clearly this requires an effective
understanding of what user interfaces are and what makes some better than others. A major difference
from the more established engineering disciplines is that social factors must be taken into account in
setting up the models. Therefore purely mechanistic procedures are unlikely to be achieved in the
near future. My claims are that user interfaces are representations, that their quality is determined
by what they preserve, and that this can be an effective basis for design.

User interface issues are exceedingly common, despite a persistent tendency to ignore them, to
downplay their importance, or to minimize their difficulty. A coffee cup is an interface between the
coffee and the coffee drinker; questions like thickness, volume, and handle shape are interface design
issues. A book can be considered a user interface to its content. Buildings can be seen as providing
interfaces to users who want to navigate within them, e.g., a directory in the lobby, buttons outside and
inside the elevators, “EXIT” signs, doorknobs, stairways, and even corridors (you make choices with
your body, not your mouse). A technical research paper can be seen as a user interface, that to succeed
must take account of its intended user community. Returning to the obvious, medical instruments
have user interfaces (for doctors, nurses, and even patients) that can have extreme consequences if
badly designed. By perhaps stretching a bit, almost anything can be seen as a user interface; doing so
will highlight certain issues of design and representation that might otherwise remain obscure, though
of course it will not include all possible relevant issues.

User interface issues are also important in mathematics, and have been given particular attention
in relation to choice of notation and to education. As Leibniz put it,

In signs, one sees an advantage for discovery that is greatest when they express the exact
nature of a thing briefly and, as it were, picture it; then, indeed, the labor of thought is
wonderfully diminished.

A good example is the difference in plane geometry between doing proofs with diagrams and doing
proofs with axioms (see also Appendix D). The above quotation also draws attention to signs and their
use, and indeed, our previous discussion about coffee cups, elevator buttons, etc. can be re-expressed
very nicely in the language of semiotics, which is the study of signs. Signs are everywhere: not just
icons on computer screens and corporate logos on T-shirts or racing cars, but more significantly, the
organization of signs is the very nature of language, natural human language both spoken and written,
artificial computer languages, and visual languages, as in architecture and art, both fine and popular,
including cinema.

We will see that the following ideas are basic to our general theory:

e Signs appear as members of sign systems®, not in isolation.

e Most signs are complex objects, constructed from other, lower level signs.

e Sign systems are better viewed as theories — that is, as declarations for symbols plus sentences,
called “axioms,” that restrict their use — than as (set-based) models.

e Representations in general, and user interfaces in particular, are “morphisms” (mappings) be-
tween sign systems.

Charles Sanders Peirce [49], a nineteenth century logician and philosopher working in Boston,
coined the word “semiotics” and introduced many of its basic concepts. He emphasized that meanings
are not directly attached to signifiers, but that instead, meaning is mediated through events (or
processes) of semiosis, each involving a signifier (i.e., a token of some kind), a signified (an “object”
of some kind - e.g., an idea), and an interpretant? that links these two; these three things are called

!There is a difficulty with terminology here: the phrase “semiotic system” sounds too broad, while “sign system” may
sound too narrow, since it is intended to include (descriptions of) conceptual spaces, as well as systems of physical signs.

2This is Peirce’s original terminology; “interpretant” should not be confused with “interpreter,” as it refers to the
link itself.



a “sign,” and to lesson confusion have often been called a semiotic triad; all three occur wherever there
is meaning. Signs, meanings, and referents only exist for a particular semiosis, which must include
its social context; therefore meaning is always embedded and embodied. In general, the signified is
not given, but must be inferred by some person or persons involved. Designers work in the reverse
direction, creating signs for a given signified. Peirce’s approach may sound simple, but it is very
different from more common and naive approaches, such as the use of denotational semantics for
programming languages. Peirce’s theory of signs is not a representational theory of meaning, in which
a sign has a denotation; instead, the interpretant makes it a relational theory of meaning. Peirce’s
important notions of icon, index and symbol are discussed below in Section 4. In addition, we use the
term signal for a physical configuration that may or may not be a sign.

Ferdinand de Saussure [54] was a late nineteenth century Swiss linguist, whose work inspired the
recent French structuralist and poststructuralist movements; if he were around today, he might not
wish to be called a semioticist. Nevertheless, he had an important insight that is perhaps most clearly
expressed using the language of signs: it is that signs are always parts of sign systems. He also gave
perhaps the first, and certainly one of the most influential examples of a sign system, with his theory
that phonemes, the smallest recognized units of spoken language, are organized into systems of binary
oppositions, which may be thought of as features. More complex linguistic signs are then constructed
from lower level signs: words (“lexemes”) are sequences of phonemes; sentences are sequences of words;
and tense, gender, number etc. are indicated by various syntactic features. (Recent research qualifies
and modifies this classical view in various ways, but it is a useful model, still widely used in linguistics.)

Composing signs from other signs is a fundamental strategy for managing the complexity of non-
trivial communication, regarding complex signs at one level as individual signs at a higher level. This
is illustrated by the linguistic levels discussed above. A simple computer graphics example might have
as its levels pixels (individual “dots” on the screen), characters, words, simple geometrical figures,
and windows, which are collections of signs at lower levels plus other windows; each sign at each level
has attributes for location and size, and perhaps for color and intensity. This whole/part hierarchical
structure puts each sign in a context of other signs with which it forms still higher level signs. Note
the recursivity in the definition of windows.

More recent uses of sign systems, for example in the classic literary study S/Z by Roland Barthes
[4], tend to be less rigid than the linguistics of Saussure or the anthropology of Levi-Strauss. Instead
of binary oppositions, there are multi-valued, even continuous, scales; instead of constructing higher
level signs by sequential composition, there are more complex relations of interpenetration and in-
fluence; and perhaps most importantly, there is a much greater sensitivity to context. Indeed, the
“structuralist” tendency of classical semiotics has been severely criticized by the post-structuralist
and deconstructionist schools for its limited ability to deal with context. Although Lyotard, Derrida,
Baudrillard, and the rest are surely correct in such criticisms, there is a danger of throwing out the
baby of structure with the dirty bathwater of decontextualization. Although meaning, as human ex-
perience, certainly does not confine itself to rigid systems of features, however complexly structured,
it is equally undeniable that we see structure everywhere, and not least in language.

Structure is part of our experience, and though seemingly more abstract than immediate sensations,
emotions, evaluations, etc., there is strong evidence that it too plays a crucial role in the formation
of such experiences (e.g., consider how movies are structured). Context, which for spoken language
would include the speaker, can be at least as important for meaning as the signs involved. For an
extreme example, “Yes” can mean almost anything given an appropriate context. Moreover, work in

3 A sign system that has just one element can’t convey any information, because there are no differences. For example,
imagine if Paul Revere, in describing how lamps in the church tower would indicate British invasion plans for Boston,
had said “One if by land and one if by sea.” instead of “One if by land and two if by sea.” More technically, with just
one sign, the Shannon information content of a message is zero. If there are two or more signs in a system, there must
be some systematic way to distinguish among them. Or as Gregory Bateson said, information is a difference that makes
a difference.



artificial intelligence has found contextual cues essential for disambiguation in speech understanding,
machine vision, and elsewhere.

The vowel systems of various accents within the same language show that the same sign system
can be realized in different ways; let us call these different models of the sign system. For computer
scientists, it may be helpful to view sign systems as abstract data types, because this already
includes the idea that the same information can be represented in different ways; for example, dates,
times, and sports scores each have multiple familiar representations. The Greek, Roman and Cyrillic
alphabets show that the sets underlying models can overlap; this example also shows that a signal
that is meaningful in one sign system may not be in another, even though they share a medium. The
same signal in a different alphabet is a different sign, because it is in a different sign system. The
vowel system example also shows that different models of the same sign system can use exactly the
same signals in different ways; therefore it is how elements are used that makes the models different,
not the elements themselves. Here are some further useful concepts:

¢ A medium expresses dimensions within which signs can vary; for example, standard TV is a two

dimensional pixel array with certain possible ranges of intensity and color, plus a monophonic
audio channel with a certain possible range of frequency, etc.

e A genre is a collection of conventions for using a medium; these can be seen as further delimiting
a sign system. For example, the daily newspaper is a genre within the medium of multisection
collections of large size pages. Soap operas are a genre for TV. Obviously, genres have subgenres;
e.g., soap operas about rich families.

e Multimedia are characterized by multiple simultaneous perceptual channels. So TV is multi-
media, and so (in a weak sense) are cartoons, as well as books with pictures.

¢ Interactive media allow inputs as well as outputs. So PCs are (potentially) interactive multi-
media. The web provides (at least one) genre within this medium; email is another.

We can even say that a book is interactive, because users can mark and turn pages, and can go to any
page they wish; indices, glossaries, etc. are also used in an interactive manner. Many museums have
interactive multimedia exhibits, and every museum is interactive in a more prosaic sense.

This paper proposes a precise framework for studying sign systems and their representations, as
well as for studying what makes some representations better than others, and how to combine repre-
sentations. The framework is intended for application to aspects of communication and cognition, such
as designing and understanding interfaces, coordinating information in different media, and choosing
effective representations in, e.g., natural language, video clips, interactive media, etc. One goal is
to get a calculational approach to user interface design, like that found in other engineering disci-
plines. Although our official name for this approach is algebraic semiotics, it might also be called
structural semiotics to emphasize that meaning is structural, or (in its philosophic guise) even
morphic semiotics, to emphasize that meaning is dynamic, contextual, embodied and social. In a
sense, this paper proposes a general theory of meaning, although it denies the possibility of traditional
context-independent meaning. The social nature of information is discussed in [21], using ideas from
ethnomethodology [53].

Familiarity with (a little bit of) OBJ3 and algebraic specification is needed for the examples in
Appendix A, and familiarity with basic category theory is needed for Appendix B; references for these
two topics are [28] and [33, 16, 17|, respectively. Most philosophical discussion has been banished
to Appendix C, while Appendix D is an essay on the social nature of proofs, which provides more
concrete illustrations of some points in Appendix C.

1.1 Semiotic Morphisms

One of the great insights of twentieth century mathematics, with consequences that are still unfolding,
is that structure preserving morphisms are often at least as important as the structures themselves.

4



For example, linear algebra is more fundamentally concerned with linear maps (often represented by
matrices) between vector spaces, than with vector spaces themselves (though the latter are of course
not to be despised); without giving details, there are also computable functions in recursion theory,
embeddings and tangent maps in geometry, analytic and meromorphic functions in complex analysis,
continuous maps in topology, and much more — all of them structure preserving maps.

This conceptual revolution took a more definite and systematic form with the invention of category
theory in the early 1940’s by Eilenberg and Mac Lane; see [41]. Technical developments within category
theory have in turn spurred further and deeper uses of morphisms within mathematics, and more
recently in applied fields like computer science. This process has not ceased, and applications continue
to inspire new theory, such as the %—categories and %—pushouts that are discussed in Appendix B of
this paper.

Semiotics has escaped this particular revolution, probably in part due to its increasing alienation
from formalization during the relevant period. But I claim there is much to be gained from this unlikely
marriage of semiotics and category theory (with cognitive linguistics as bridesmaid), not the least of
which is a theory of representation that can be applied to topics of current interest, like user interface
design, metaphor theory, and natural language understanding. The essential idea is that interfaces,
representations, metaphors, interpretations, etc. are morphisms from one sign system to another.

A user interface for a computer system can be seen as a semiotic morphism from (the theory of) the
underlying abstract machine (what the system does) to a sign systems for windows, buttons, menus,
etc. [31]. A web browser can be seen as a map from HTML (plus JavaScript, etc.) into the capabilities
of a particular computer on which it is running*. Metaphors can be seen as semiotic morphisms from
one system of concepts to another [10, 12, 58]. A given text (spoken utterance, etc.) can be seen as
the image under a morphism from some (usually unknown) structure into the sign system of written
English (or spoken English, or whatever). Conversely, we may be given some situation, and want to
find the best way to describe it in natural language, or in some other medium or combination of media,
such as text with photos, or cartoon sequences, or video, or online hypertext or hypermedia [27].

In these and many other cases, representations are signs in one system that relate systematically
to signs in another system. Generally it is just as fruitless to study representations of single signs
as to study single isolated signs. For representations also occur in systems, just as signs do: usually
there are systematic regularities in how signs of one system are represented as signs of another. Let
us use the notation M : S; — S2 for a morphism from sign system S; to sign system Sa. Of course,
in all but the most trivial cases, there is no unique morphism S; — Ss. Think, for example, of the
difficulties of translating from one language to another. Moreover in general, morphisms are partial,
that is, not defined for all the signs in the source system; some signs may be untranslatable, or at
least, not translated by a given morphism.

Here are some very simple examples. Let N1 be the familiar decimal Arabic numerals and let N2
be the Roman numerals. Then there is a natural morphism M : N; — Ny but it is undefined for
Arabic 0, since the Romans did not have the concept of zero. We can also consider transliterations
between the English and Greek alphabets: then certain letters just don’t map. Similarly, Scandinavian
alphabets make some distinctions that the English alphabet does not; Chinese and Sanskrit raise still
other problems. Ciphers (i.e., “secret codes”) are also representations, simple in their input and output
alphabets, but deliberately complex in their algorithmic construction.

Further examples and details about the systematic organization of signs are discussed later, but it
should now be clear that an ambitious enterprise is being proposed, taking a wide interpretation of the
notion of sign, and treating sign systems and their morphisms with great rigor. However, because this
enterprise is still at an early stage, our examples cannot be both complex and detailed. Hoping that
readers will forgive the ambition and effrontery of combining such diverse elements, I acknowledge the

4These two examples highlight the important but subtle point that theory morphisms go in the opposite direction
from the maps of models that they induce; this duality is explained at an abstract level by the theory of institutions [24],
but is well outside the scope of this paper.



deep indebtedness of this work to its precedents, and hope to have the help of readers of this paper in
developing its potential.

1.2 Some Related Work

An adequate survey of related work in semiotics, cognitive science, linguistics, user interface design,
literary criticism, etc. would consume many volumes. We have already mentioned the work of Peirce
[49] and Saussure [54], whose influence is pervasive; this brief subsection only sketches a few especially
closely related items of more recent vintage. First is joint work with Linde begun more than 15
years ago [27], which contains the seeds for the main ideas of this paper. Analogies and file names
were studied by Gentner [14] and Carroll [8] respectively, using set-based formalisms that can capture
structure, but without axioms, levels or constructors; Sacks’ ethnomethodological notion of “category
system” [52] seems similar to our notion of sign system, but is very informal. We build on work of
cognitive linguists Lakoff, Johnson and others [40] on metaphors, and Fauconnier and Turner’s exciting
proposal of blending (also called “conceptual integration”) as a fundamental cognitive operation for
metaphor, grammar, etc. [11, 12]; see also [58]. Shneiderman [55] is a good textbook on user interface
design, and Norman [48] gives a good overview of broader design issues. Latour [43] gives a fascinating
case study of design emphasizing the importance of social context, and [38] contains a number of case
studies in the area of computer systems design. Andersen [2] has done some fascinating work applying
semiotics and catastrophe theory to the design of interactive systems.

1.3 On Formalization

Sapir said all systems leak; he was referring to the fact that no grammatical system has ever successfully
captured a real natural language, but it is natural to generalize his slogan to the formalization of any
complex natural sign system. There are always “loose ends”; some deep reasons for this, having
to do with the social nature of communication, are discussed in [21]. Thus we cannot expect our
semiotic models to be perfect. However, a precise description that is somewhat wrong is better than
a description so vague that no one can tell if it’s wrong. We do not seek to formalize actual living
meanings, but rather to express our partial understandings more exactly. Precision is also needed
to build computer programs that use the theory. I do not believe that meaning in the human sense
can be captured by formal sign systems; however, human analysts can note the extent to which the
meanings that they see in some sign system are preserved by different representations. Thus we seek
to formalize particular understandings of analysts, without claiming that such understandings are
necessarily correct, or have some kind of ideal Platonic existence.
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2 Sign Systems

Sign systems usually have a classification of signs into certain sorts®, and some rules for combining
signs of appropriate sorts to get a new sign of another sort; we call these rules the constructors of
the system. Constructors may have parameters. For example, a “cat” sign on a computer screen
may have parameters for the size and location of its upper lefthand corner; changing these values does
not change the identity of the cat.

Constructors may have what we call priority: a primary constructor has greatest priority; sec-
ondary constructors have less priority than the primary constructor but more than any non-primary
or non-secondary constructor; tertiary constructors, etc. follow the same pattern. Priority is a partial
ordering, not total. Experiments of Goguen and Linde [27] (testing subjects after multimedia instruc-
tion in various formats about a simple electronic device) support the hypothesis that the reasoning
discourse type [32] has a primary constructor that conjoins reasons supporting a statement®.

Semiotics should focus on the structure of sign systems rather than on ad hoc properties of in-
dividual signs and their settings, just as modern biology focuses on molecular structures like DNA
rather than on descriptive classification schemes. For example, formalizing the handwritten letter “a”
(or the spoken sound “ah”) in isolation, is both far harder and less useful than formalizing relations
between written letters and words (or phonemes and spoken words).

It is natural to think of a sign system as a set of signs, grouped into sorts and levels, not necessarily
disjoint, with “constructor” functions at each level that build new signs from old ones. But such a
set-based approach does not capture the openness of sign systems, that there might be other signs we
don’t yet know about, or haven’t wanted to include, because we are always involved in constructing
only partial understandings. It is therefore preferable to view sign systems as theories than as pre-given
set theoretic objects. This motivates the following:

Definition 1: A sign system S consists of:

1. a set S of sorts for signs, not necessarily disjoint;
2. a partial ordering on S, called the subsort relation and denoted <;
3. a set V of data sorts, for information about signs, such as colors, locations, and truth values;
4. a partial ordering of sorts by level, such that data sorts are lower than sign sorts, and such that
there is a unique sort of maximal level, called the top sort;
5. a set C, of level n constructors used to build level n signs from signs at levels n or less,
and written r: si...8xdy...d; — s, indicating that its ¢th argument must have sort s;, its jth
parameter data sort dj;, and its result sort is s; constants ¢c: — s are also allowed;
6. a priority (partial) ordering on each Cp;
7. some relations and functions on signs; and
8. a set A of sentences (in the sense of logic), called axioms, that constrain the possible signs.
O

We can illustrate some parts of this definition with a very simple time of day sign system. It has
just one sort, namely time, and just two constructors, one the constant time 0 (for midnight), and the
other a successor operation s, where for a time ¢, s(t) is the next minute. There are no subsorts, data
sorts, levels, or priorities. But there is one important axiom,

SWe deliberately avoid the more familiar word “type” because it has had so many different uses in computer science.
The so called parts of speech in syntax, such as noun and verb, are one example of sorts in the sense that we intend.

5The primary constructor of a given discourse type is its “default” constructor, i.e., the constructor assumed when
there is no explicit marker in the text. In narrative, if one sentence follows another we assume they are connected by a
SEQUENCE constructor; this is called the narrative presupposition [39].



1440 indicates 1440 applications of s, or more prosaically’,

s449(0) = 0.

These axioms capture the cyclic nature of time over a day; any reasonable representation for time of
day must satisfy this condition. Let’s denote this sign system TOD.

An example illustrating some further parts of Definition 1 is a 24 line by 80 character display for
a simple line-oriented text editor. The main sorts of interest here are: char (for character), line, and
window. The sort char has two important subsorts: alphanum (alphanumeric) and spec (special);
and alphanum has subsorts alpha and num. Among the special characters should be characters for
space and punctuation, including comma, period, etc. The subsort relations involved here have the
following graph,

where s

char
/ \
alphanum spec
/ \
alpha num

where of course alpha and num are also subsorts of char. These sorts have levels in a natural way:
window is the most important and therefore® has level 1, 1ine has level 2, char has level 3, alphanum
and spec have level 4, and alpha and num have level 5 (or we could give all subsorts of char level 4, or
even 3; such choices can be a bit arbitrary until they are forced by some definite application). There are
various choices for the constructors of this sign system. Since lines are strings of characters, one choice
is an operation ~ that concatenates a character with a line to get a longer line, and another operation,
also denoted ~, that concatenates a line and a window to get another window; there must also be
constant constructors for the empty line and the empty window. (The constraints on the lengths of
lines and windows are given by axioms that are discussed below.) For each sort, the concatenation
operations have priority over the constant operations.

This editor also has data sorts for fixed data types that are used in an auxiliary way in describing
its signs: these include at least the natural numbers, and possibly colors, fonts, etc., depending on the
capabilities we want to give our little editor. Functions include windowidth and windowlength, and
there could also be predicates for the subsorts, such as a numeric predicate on characters. Then the
constraints of length can be expressed by the following axioms:

(VL: line) windowidth(L) < 24 .
(VW : window) windowlength(WW) < 80 .

Let us denote this sign system W.

If we want to study how tezts can be displayed in this window, we should define a sign system
for texts. Ome simple way to do this has sorts char, word, sent (sentence), and text, in addition
to the data sorts and the subsorts of char as in W above; the sort text is level 1, sent level 2,
word level 3, and char level 4. There are several choices for constructors, one of which defines any
concatenation of alphanumeric characters to be a word, any concatenation of words to be a sentence,
and any concatenation of sentences to be a text. Let us denote this sign system TXT. Clearly there
are many different ways to display texts in a window, and each one is a different semiotic morphism;
we will see some of these later.

A somewhat different sign system is given by simple parsed sentences, i.e., sentences with their
“part of speech” (or syntactic category) explicitly given. The most familiar way to describe these is
probably with a context free grammar like that below, where S, NP, VP, N, Det, V, PP and P stand
for sentence, noun phrase, verb phrase, noun, determiner, verb, prepositional phrase, and preposition,
respectively:

"An additional assumption that is explained later is needed to show the equivalence of these two axioms.
8This assumes the ordering of sorts by level takes 1 as the maximum level.



S ->NP VP

NP -> N
NP -> Det N
VP >V
VP -> V PP
PP -> P NP

The “parts of speech” S, NP, VP, etc. are the sorts of this sign system, and the rules are its constructors.
For example, the first rule says that a sentence can be constructed from a NP and a VP. There should
also be some constants of the various sorts, such as

N -> time
N -> arrow
V -> flies
Det -> an
Det -> the
P -> like

There is a systematic way to view context free rules as operations that “construct” things from their
parts (introduced in [15]), which in this case gives the following:

sen : NP VP -> S

nnp : N -> NP
np : N Det -> N
vvp : V -> VP

vp : VPP -> VP
pp : P NP -> PP
time : -> N
flies : >V

It is a more elegant use of the machinery we have available to regard N as a subsort of NP, and V as
a subsort of VP, than to have monadic operations N -> NP and V -> VP. Let’s call the resulting sign
system PS. It gives what computer scientists call abstract syntaz for sentences, without saying how
they are to be realized. We can of course still get “real” sentences, such as “time flies like an arrow”,
but this traditional linear form fails to show the syntactic structure, which is typically done using
trees, as in

S
/ \
NP VP
/ / N\
N Vv PP
/ I / \
time flies P NP

/7 N\

like an arrow



Another approach is to view a sentence as a “term” involving the operations above (terms are com-
positions of constructors); here’s how our little sentence looks in that notation:

sen(time, vp(flies, pp(like, np(an, arrow)))) .

So called bracket (or bracket-with-subscript) notation, as used in linguistics, also shows syntactic
structure; it is surely a bit harder to read, and looks like this:

[[time]n[[flies]v[[like]p [[an]|pet[arrow]n]|np]PP]VP]s -

(Another example of bracket notation appears in Section 4). In this setting, we can also use equations
to express constraints on sentences, for example, that the number of the subject and of the verb agree
(i.e., both are singular or both are plural).

Each of these concrete ways to realize abstract syntax (trees, terms, bracket notation, and lists)
can be considered to give a model of the sign system, providing a set of signs for each sort, and
operations on those sets which build new signs from old ones. You might have expected this to be
the definition of sign system, instead of what we gave, which is a language for talking about such
models. Our sign systems are theories rather than models. The distinction is that a model provides
concrete interpretations for the things in the theory: sorts are interpreted as sets; constant symbols
are interpreted as elements; constructors are interpreted as functions, etc. This allows much flexibility
for what can be a model.

We often wish to exclude models where two different terms denote the same thing; otherwise,
for example, two different times of day might be represented the same way®. This is called the no
confusion condition; more precisely, it says that if two terms cannot be proved equal using axioms
in the theory, then they must denote different elements in the model. Also it is often desirable to
restrict to models where all signs are denoted by terms in their theory; these are called the reachable
models'®. An important point brought out in the next section is that semiotic morphisms do the same
conceptual work as models, but in a way that is more convenient for many purposes.

It has been shown that any computable model can be defined using only equations as axioms'!.
Therefore we lose no generality by using equational logic for examples, as has been advocated in
the situated abstract data type approach described in [20]. More precisely, our examples (in the
appendices) use order sorted equational logic over a fixed data algebra [18, 29], although the reader
does not need to be familiar with the technicalities of this logic.

resident

owner

owner passenger

live-in

Figure 1: Two Simple Conceptual Spaces

What Fauconnier and Turner [10, 12] call conceptual spaces are also sign systems, of a rather
simple kind, where there are (usually) no constructors except constants, and where in addition, there
are some relations defined among these constants. Typical conceptual spaces are little theories of

9But see the 12 hour analog clock representation denoted A below, where this seems to happen.

10This is also called the no junk condition. It is now an interesting exercise to prove that the two different equations
previously given for expressing the cyclic nature of days are equivalent for reachable models.

1 Although an additional technical condition called initiality is needed; see [47] for a survey of this and related results.
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some everyday concept, including only as much detail as is needed to analyze some particular text.
For example, a theory of houses might have constants house, owner and resident, with relations
own and live-in making the obvious assertions. Similarly, a boat theory might have constants boat,
owner and passenger, with relations own and ride. These two spaces are illustrated in Figure 1. No
sorts are shown, but for this simple example, one is enough, say Thing. That a relation such as own,
holds of two things is given by a line in the figure, and in the corresponding logical theory is given by an
axiom, e.g., own(owner ,house). It is usually assumed that relation instances that are not shown (such
as ride (boat,owner)) do not hold, i.e., are false (one way to formalize this, which is related to the so
called frame problem in artificial intelligence, is given in Chapter 8 of [23]). Let us call this the default
negation assumption. But sometimes whether or not a relation holds may be unknown. Humans
generally do a good job of figuring all this out, using what is called “common sense”. However, the
deductions involved can actually be extremely complex; some hints of this complexity may be found
in the discussion of the blending examples in Section 5.

Formalism and representation feature in much recent work in sociology of science, with many
fascinating examples. For example, Latour [42] shows how representation by cartographic maps was
essential for European colonization, and Bowers [6] discusses the politics of formalism, including cscw
systems. Latour leaves representation undefined, while Bowers has a slightly formal notion of formal-
ism. I believe that such discussions could be given greater precision by using the framework proposed
in this paper.

3 Semiotic Morphisms

The purpose of semiotic morphisms!? is to provide a way to describe the movement (mapping, transla-
tion, interpretation, representation) of signs in one system to signs in another system. This is intended
to include metaphors as well as representations in the more familiar user interface design sense. Gen-
erating a good icon, file name, explanation or metaphor, or arranging text and graphics together in
an appropriate way, each involves moving signs from one system to another. Just as we defined sign
systems to be theories rather than models, so their morphisms are between theories, translating from
the language of one sign system to the language of another, instead of just translating the concrete
signs in the models. This may sound a bit indirect, but it has important advantages over a model
based approach; moreover, theories and their morphisms determine models and their mappings.

A good semiotic morphism should preserve as much of the structure in its source sign system
as possible. Certainly it should map sorts to sorts, subsorts to subsorts, data sorts to data sorts,
constants to constants, constructors to constructors, etc. But it turns out that in many real world
examples, not everything is preserved. So these must all be partial maps. Axioms should also be
preserved — but again in practice, sometimes not all axioms are preserved.

Definition 2: Given sign systems Si,S2, a semiotic morphism M: §; — S, from S; to Ss,
consists of the following partial functions (all denoted M):

1. sorts of §7 — sorts of s,
2. constructors of S1 — constructors of Sy, and
3. predicates and functions of S; — predicates and functions of Sy,
such that
1. if s < ¢’ then M(s) < M(s"),
2. if ¢: $1...8x — s is a constructor (or function) of Si, then (if defined) M(c): M (s1)...M(sg) —
M (s) is a constructor (or function) of Sa,
3. if p: s1...8 is a predicate of S1, then (if defined) M (p): M (s1)...M(s) is a predicate of Sz, and

12 Although the root “morph” of the noun “morphism” means “form,” this word has recently also become a verb that
means “to change form.”
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4. M is the identity on all sorts and operations for data in S;.
More generally, a semiotic morphism can map source system constructors and predicates to compound

terms defined in the target system!3. O

A semiotic morphism S; — So gives representations in Sy for signs in S7. If we know how a semiotic
morphism maps constructors, then we can compute how it maps complex signs. For example, if
M(CL) = a,aM(b) = blaM(C)(Iay) = Cl(.’E,y + 1) + 1, and M(f)(.’E,y) =z +y+1, then

M(c(a, f(3,))) = (d',b/ +5) +1.

We now consider some examples. First, suppose we want to represent time of day, TOD, in the
little window, W. Clearly there are many ways to do this; each of them must map the sort time to the
sort window, map the constructor 0 to some string of (less than 25) strings of (less than 81) characters,
and map the constructor s to a function sending each such string of strings to some other string of
strings. There isn’t anything else to preserve in this very simple example except the axiom, which
however is very important here.

Recall that the items of abstract syntax in TOD are strings of up to 1439 s’s followed by a single
0. One simple representation just maps these strings directly to strings of strings of s’s plus a final
0, such that the total number of s’s is the same; this is a kind of unary notation. Let N(t¢) be the
number of s’s in some t from TOD. Let Q(¢) and R(t) be the quotient and remainder after dividing
N (t) by 80. Then there will be Q(t) lines of 80 s’s followed by one line of R(t) s’s and a final 0.
This is guaranteed to fit in our window because Q(1439) = 17 is less than 24, and R(t) +1 < 80. For
humans, this representation is so detailed that it is more or less analog: I think after getting familiar
with it, a user would have a “feel” for the approximate number of (these strange 80 minute) hours in
a window and of minutes in the last line, just from its appearance. Let us call this representation U.
Figure 2 shows the time that we would call “1:15 pm” in it.

0

Figure 2: A Strange “Unary” Clock

Another obvious but naive representation just displays N(¢) in decimal notation, giving a string
of 1 to 4 decimal digits. This is very different from our usual representations; but we could imagine a
culture that divides its days into 14 “hours” each having 100 minutes, except the last hour, which only
has 40 (this is less strange than what we do with our months, with their varying numbers of days!).
Here N(0) is 0, and s just adds 1, except that s(1439) = 0. Figure 3 shows quarter after one in the
afternoon in this representation; the last two digits give the number of minutes, and those to the left
of that give the number of “hours”. Let us call this representation N.

795
Figure 3: A Naive Digital Clock

A more familiar representation is constructed as follows: Let N1 and N2 be the quotient and
remainder of N divided by 60, both in base 10, with 0’s added in front if necessary so that each
has exactly 2 digits. Now form the string of characters “N1 : N2”. This is the so-called “military”
representation of time; let’s denote it by M. Then M(0) = 00:00, and of course you know how s
goes. Figure 4 shows our usual afternoon time in a slight variant of this representation.

13This is illustrated by M (c) is the example just below this definition.
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Figure 4: A Military Time Clock

Notice that this representation has been defined as a composition of N with a re-representation of
TOD to itself. The spoken variant of military time has the form “N1 hundred N2 hours” (unless
N2 = 00, in which case Ny is omitted). The use of “hundred” and “hours” may seem odd here,
because it isn’t hundreds and it isn’t hours! — but at least it’s clear — and that’s the point. Part
of this clarity stems from the phonology: the aspirated “h” sound at the beginning of “hundred” and
“hour” does not occur in any of the numerals, and hence makes a good separator, especially over radio,
where it gets exaggerated.

Readers should now be able to construct other representations of time as semiotic morphisms,
including even the “analog” representation of a clock face. Here 0 has both hands up, satisfaction of
the axiom follows because something even stronger is true, namely s(719) = 0, which is built into the
circular nature of this geometrical representation. This is an example where no confusion seems to
fail — but does it really?'* Let’s call this representation A.

Now let’s consider displaying parsed sentences, from the sign system PS, in the window W, this
means constructing a semiotic morphism E from PS to W. One issue is placing spaces so that words
are always separated. The designer will also have to do something about words that want to go
past the end of a line; choices include wrapping around, hyphenating, and filling in with spaces; the
limit of 24 lines will also pose problems. This can clearly get complex. The designer may also want
to consider more sophisticated issues, such as automatic insertion of commas to show some of the
syntactic structure.

landlord  renter

Figure 5: A Conceptual Space Morphism

Morphisms of conceptual spaces are relatively simple; we map sorts to sorts, constants to constants
and relations to relations, so as to preserve the sorts of constants and relations. Because assertions that
relations hold are given by axioms, preservation of axioms implies preservation of the corresponding
relation instances, positive or negative. If no axiom is given for some relation instance in the source
theory, then either value is possible, and since there is nothing to preserve, the same holds for the
target theory. The pairs of constants, one from the source and one from the target, that are mapped
by a semiotic morphism are called connectors by Fauconnier and Turner [10, 12]. For example, there
is a connector from object to house (though we have not drawn it, as Fauconnier and Turner would).

A natural task in the experiments of [27] is to describe the condition of four lights on the face of
an experimental device. This involves constructing a sequence of clauses arranged in narrative order,
and can be seen as a semiotic morphism from the sign system of lights to that of English; a typical
sentence would (in part) have the form “the first light is on, the second is off, ...”.

"Think about why a clock modulo 720 might work, but (say) modulo 120 or modulo 300 would not work; what about
modulo 3607 Why? Hint: consider the context in which the representation is typically used. Answers to these exercises
appear in Section 4.
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For another example, a source sign system might contain instructions for repairing some piece of
equipment, with target sign system a non-color graphics screen plus a speech chip. We can then ask
how to generate instructional material using these particular capabilities in the most effective way.

Star [56] introduced the notion of boundary object, which (for our purposes) can be seen as a
sign system that is interpreted in different ways by different social groups. These interpretations can
be seen as semiotic morphisms from the sign system of the boundary object into the more specific
sign systems of each group. For example, bird sightings are taken in different ways by amateur and
professional ornithologists; the former make lists, emphasizing rare birds in friendly competition with
other amateurs, whereas the latter integrate sightings with much larger datasets to construct migration
patterns, population densities, long term trends, etc. A sighting may first appear as a field notebook
entry, and then move into the two very different contexts. (A similar example is given in [56].)

3.1 First Steps of a Calculus of Representation

Semiotic morphisms can be composed; this is important because it is very common to compose repre-
sentations, for example, in processes of iterative design, where details are added in progressive stages.
The composition of semiotic morphisms satisfies some simple equations, which show that sign systems
together with semiotic morphisms form what is called a category in mathematics; surprisingly, this is
enough to define some important concepts and derive their main properties (much more information
on the category of sign systems is given in Appendix B).

Given semiotic morphisms M: S; — S; and M': Sy — Ss3, then their composition, which is
denoted!® M; M': §; — Ss, is formed just by composing the component functions of each morphism,
not forgetting that these are partial functions, so that the result is also partial. For example, the sort
set function for M; M’ is the composite of the sort set functions of M and M'. Then it is easy to see
that M; M’ is also a semiotic morphism, and that if in addition we are given M": S3 — Sy, then

(M;M'); M" = M;(M'; M") |

i.e., composition of semiotic morphisms is associative. Moreover, for every sign system S, there is
an identity semiotic morphism 1g: S — S, which is defined to have as its component functions the
identities on each set from S. This trivial morphism is rarely useful in practical design, but it plays
an important role in the theory, just as do identity elements in algebra. For any M : S; — So, the
following equations are satisfied,

ls;;M =M
M;152 =M.

Composition of semiotic morphisms can be used to factor design problems, i.e., to separate concerns
into different stages. For example, designing a text editor using the window W involves constructing
a semiotic morphism E from TXT to W. In addition to the issues already mentioned for displaying
sentences, we need to mark the boundaries of sentences, e.g., with a period followed by two spaces at
the end. Issues that concern separating units, e.g., adding spaces and periods, can be separated from
issues that concern the size of the window, e.g., hyphenation, by “factoring” the morphism E into
two morphisms, £1: TXT — STG and E2: STG — W, where STG is a sign system of strings of
characters, and F is the composition E1; E2.

Composition and identity of semiotic morphisms allow us to define the notion of isomorphism for
sign systems, as a morphism M : S; — So such that there exists an inverse morphism M': Sy — S
such that M; M' = 1g, and M'; M = 1g,. Isomorphic sign systems define exactly the same structure,
and have the same models. Remarkably, it now follows from just the associative and identity laws
that the inverse is unique if it exists, and that the relation of isomorphy (i.e., of being isomorphic)

15We use the symbol “” for composition, to indicate the opposite order from that associated with the usual symbol
“o” — that is, “f; ¢” means first do f, then do g, as with commands in a programming language.
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on sign systems is reflexive, symmetric and transitive. If we write & for the isomorphy relation, then
these facts may be written

S>g,
Sl = SQ implies Sg = Sl ,
51 = SQ and SQ = 53 implies 51 = S3 .

Moreover, if we denote the inverse of M by M ™!, then the following equations are also easily proved,

(1s)'=1s,
MYH)"1=M, and

( :

(M; M/)—l — MI—I;M—I .

The last equation particularly has some not entirely trivial content, and can be useful in thinking
about the composition of isomorphism representations.

4 The Quality of Semiotic Morphisms

The goal of user interface design is to produce high quality representations; unfortunately, it has not
been very clear how to determine quality. Also, as in other areas of engineering, design is subject to
constraints, and typically involves tradeoffs, i.e., compromises between competing measures of success,
such as cost, size, complexity and response time. Limits on human capability for dealing with complex
displays implies that some information may have to be compressed, deleted, or moved elsewhere. This
in turn implies that we need to understand priorities on what should be preserved.

In determining what makes one representation better than another, the entire structure of the
sign systems involved should be considered. The structure that is preserved by semiotic morphisms
provides an important way to compare their quality. First, notice that because a semiotic morphism
M: §1 — S need not be total, some signs in S7 may have no representation in Ss; moreover, some
of the complex internal structure of signs in S; could be lost. This might seem undesirable, but if
representations in Sy get too complex, they will not be useful in practice. For example, if S7 is English
sentences and S5 is bracket notation, then the representation (from the data of [27])

[[[[the] pet[light] n] np [[on] prepl[the] pet [left] N np] PP NP [[comes]y [on] part] v ] sent

is not as useful for human communication as the linear representation would be. In fact, we very
often want what Latour [42] calls a re-representation, which concentrates or abstracts information.
For example, the representation “{[NP PP]|VP” is more useful than that above for some purposes,
precisely because it omits some information. Statistics, such as the mean and median of a population,
are also re-representations in this sense, as are cartographic maps.

Peirce [49] introduced a well-known three-fold classification of signs into icon, index, and symbol.
These terms have precise technical meanings that differ from their everyday use. Peirce defined an
icon as a “sign which refers to the Object that it denotes merely by virtue of characters of its own ...
such as a lead-pencil streak representing a geometrical line.” In contrast, a sign x is an index for an
object y if z and y are regularly connected, in the sense “that always or usually when there is an z,
there is also a y in some more or less exactly specifiable spatio-temporal relation to the z in question”
[1]. “Such, for instance, is a piece of mould with a bullet-hole in it as sign of a shot” [49]. In this
example, the spatio-temporal relation is a causal one, which applies with great generality. However
many indices only work in very particular spatio-temporal contexts, e.g., the use of first names for
persons. Finally, Peirce defines a symbol as a “sign which is constituted a sign merely or mainly by
the fact that it is used and understood as such.” In addition, we use the term signal for a physical
configuration that may or may not be a sign.

Thus, an iconic representation preserves some important properties of signified signs; for a semiotic
morphism, these might appear as axioms and/or data valued functions (for which the word “attribute”
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is commonly used in the object oriented community). An indexical representation participates in some
larger situation (i.e., theory) within which we can deduce the connection between the signified and
signifying signs. For a symbol, there is no such more basic relationship between source and target
signs.

For purposes of design, other things being equal, there is a natural ordering to these three kinds
of sign: icons are better than indices, and indices are better than symbols. However, things are not
always equal. For example, base 1 notation for natural numbers is iconic, e.g., 4 is represented as
[111,3as |||, and we get their sum just by copying and appending,

LEEE+ 0= 11,

which is iconic. But base one notation is very ineflicient for representing large numbers. With Arabic
numerals, the use of 1 for “one” is iconic (one stroke), but the others are symbolic'®. Using the
blank character for “zero” would be iconic, but of course this would undermine the positional aspect
of decimal notation and introduce ambiguities. Chinese notation for several of the small numerals is
iconic.

Peirce’s three classes of sign overlap, so some signs will be hard to classify. Also, complex situations
may involve all three kinds of sign, interacting in complex ways; indeed, different aspects of the same
sign can be iconic, indexical, and symbolic. It is often necessary to consider the context of a sign, e.g.,
how is it used in practice, and of course its relation to other signs in the same system. See [19, 35]
for further examples and discussion, the former mainly from computer science, and the latter mainly
from language.

The following definition gives some precise ways to compare the quality of representations:

Definition 3: Given a semiotic morphism M : §; — Sy, then:

(1) M is level preserving iff the partial ordering on levels is preserved by M, in the sense that if
sort s is lower level than sort s’ in S7, then M(s) has lower (or equal) level than M(s') in Ss.

(2) M is priority preserving iff ¢ < ¢/ in S; implies M(c) < M(c') in Ss.

(3) M is axiom preserving iff for each axiom a of Si, its translation M(a) to So is a logical
consequence of the axioms in Ss.

(4) Given also M': S; — S, then M’ is (at least) as defined as M, written M C M’, iff for each
constructor ¢ of S1, M'(c) is defined whenever M(c) is.

(5) Given also M': S; — S, then M’ preserves all axioms that M does, written M < M’, iff
whenever M preserves an axiom, then so does M'.

(6) Given also M': S; — Sy, then M' is (at least) as inclusive as M iff M(z) = z implies
M'(z) = z for each sign z of S.

(7) Given also M': S; — S5, then M’ preserves (at least) as much content as M, written
M < M', iff M' is as defined as M and M’ preserves every selector that M does, where a
morphism M : S — Sy preserves a selector f; of Sy iff there is a selector fy for So such that
for every sign x of S; where M is defined, then fo(M(z)) = fi(z), where

(8) a selector for a sign system S is a function f: s — d, where s is a sign sort and d a data sort
of S, such that there are axioms A’ such that adding f and A’ to S is consistent and defines a
unique value f(z) for each sign = of sort s. For example, each parameter of a constructor has a
corresponding selector to extract its value.

O

The intuition for (7) is that content is preserved if there is some way to retrieve each data value of the
source sign from its image in the target sign system; the definition of selector in (8) is unfortunately
rather technical.

8 Though there is a trick for regarding several of the small Arabic numerals as symbolic.
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It may be that neither M nor M’ preserves strictly more than the other; for example, M might
preserve more constructors while M’ preserves more content. Also, each of these orderings is itself
partial, not total. Still other orderings on morphisms than those defined above may be useful for some
applications; for example, special measures may be important at certain levels of some signs systems,
such as phonological complexity (which is the effort of pronunciation) for spoken language. In general,
specific “designer orderings” which combine various preservation properties in a specific way, may be
needed to reflect the design tradeoffs of specific applications (e.g., see the end of Appendix B). As a
result of this, given sign systems S1, S5, we can assume a partial ordering on the collection of semiotic
morphisms from S; to So, as is needed for the %-categories of Appendix B.

We can see some of the complexities involved in comparing the quality of representations by
considering simple examples where there is not very much structure to preserve. For example, in the
time of day representations, simplicity, uniformity, and precision of the display are important: the naive
decimal representation IV lacks uniformity in the size of its “hours”; the strange unary representation
U lacks precision (at least for humans who refuse to count very carefully) as well as simplicity and
(to an extent) uniformity. The representations that are most straightforward mathematically may not
be very close to the ones we use every day; for example, military time and analog clock time require
mathematically more complex operations for their definition than do the decimal and strange unary
representations.

Now let’s consider the no confusion condition in regard to the cyclicity of clocks. The military
clock M satisfies the condition. But for the standard 12 hour analog clock A, we could say it is
only “half satisfied,” because one extra bit, as found on most watches, to indicate “am” or “pm,” is
necessary and sufficient to avoid confusion. Of course this extra bit is often available just by looking
out the window to see if it’s day or night; but if you lived underground for a few weeks with just a 12
hour clock and no other information (such as radio), you might well lose track of that one bit. A 6
hour analog clock would only satisfy the no confusion condition only “one quarter,” because two extra
bits are needed. A 5 or 7 or 17 hour analog clock would be much worse, because these numbers are
relatively prime to 24. An alternative way to talk about this is to say that a selector for the number
of elapsed minutes from midnight can be defined that is not preserved. So although the general rule
is that the more preservation the better, sometimes we can recover lost information some other way,
and then less preservation may be better, because it allows for a more compact representation.

For another example, let’s consider representing (abstract) texts as strings, i.e., let’s consider
semiotic morphisms M : TXT — STG. The sign system TXT has sorts for sentences, words, and
characters, while the sign system STG only has sorts for strings and characters. Because characters
are a data sort, any morphism M : TXT — STG must preserve the sort char, and there is also
no choice about how to map the other sorts of TXT: they must all go to the sort string. The top
level constructor of TXT forms texts by concatenating sentences, while its second level constructor
concatenates words to form sentences, and its third level constructor concatenates characters to form
words. Since the only constructor for STG concatenates characters to form strings, the obvious thing
to do is map each concatenation of TXT to the concatenation of STG. However, the sign resulting
from a text would now be just one huge ugly string which “mushes” everything together. As we know,
it is usual to insert spaces between words, and a period and two spaces after each sentence. It is easy
to define a morphism that does this, though it is more complex than the “mushing” representation.

Both these morphisms preserve the structure of TXT. But what would it mean for a morphism
M: TXT — STG not to preserve this structure? There are many possibilities, including dropping
some characters, words, and/or sentences, and permuting them in a random order. Phenomena like
these will clearly produce a low quality display.

Experiments reported in [27] show that preserving high levels is more important than preserving
priorities, which in turn is more important than preserving content. They also show a strong tendency
to preserve higher levels at the expense of lower levels when some structure must be dropped. This may
be surprising, because of emphasis by cognitive psychologists on the “basic level” of lexical concepts
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(e.g., Rosch [50, 51]). For natural language, the sentential level was long considered to be basic, but
research like that of [27] shows that the discourse level is higher in our technical sense, and thus
more important. This is consistent with the important general principle that structure has priority
over content, i.e., form is more important than content (if something must be sacrificed to limit the
complexity of the display).

Much more detailed empirical work is needed to determine more precisely the tradeoffs among
various preservation and other optimality criteria for semiotic morphisms. At start is being made
by assembling a collection of examples of bad design arising from failures of semiotic morphisms to
fully preserve structure in the “world-famous”!” UC San Diego Semiotic Zoo. Although not all the
explanations are available yet, the animals can be visited at any hour of the day or night, at

http://www.cs.ucsd.edu/users/goguen/zoo/
where much additional information (and some bad jokes about zoos) can also be found. Most of
the exhibits there involve color and/or interactive graphics, and so cannot easily be discussed in this
traditional medium of print.

The tatami project at UCSD is applying semiotic morphisms and their orderings to design the
user interface of a system to supports cooperative distributed proofs over the world wide web [31, 25].
We found that certain ways we had used to represent proofs were not semiotic morphisms, which then
led us to construct better representations; we also used semiotic morphisms to determine aspects of
window layout, button location, etc. Details can be found especially in [22, 25], and of course on the
project website

http://www.cs.ucsd.edu/groups/tatami/
which should always have the very latest information.

5 Blending, Ambiguity and Pushouts

Fauconnier and Turner [10, 12] study the “blending” of conceptual spaces, to obtain new spaces that
combine the parts of the input spaces. Blends are common in natural language, for example, in words
like “houseboat” and “roadkill,” and in phrases like “artificial life” and “computer virus,” as well as
in metaphors that have more than one strand (as is usually the case).

The most basic kind of blend may be visualized using the diagram below, where I and Iy are
called the inputs, G the generic, and B the blend!'8. More precisely, we define a blend of sign
systems I; and I, over G (using given semiotic morphisms G — I; and G — I5) to be a sign system
B with morphisms I; — B, I — B, and G — B, which are all called injections, such that the
diagram weakly commutes, in the sense that both the compositions G - I; - Band G — I, -+ B
are weakly equal to the morphism G — B, in the sense that each sign in G gets mapped to the
same sign in B under them, provided that both morphisms are defined on it'?. Tt follows that the
compositions G — I; — B and G — I, — B are also weakly equal when G — B is totally defined,
but not necessarily otherwise. The special case where all sign systems are conceptual spaces is called
a conceptual blend. In general, we should expect the morphisms to the blend to preserve as much
as possible from the inputs and generic.

"For some reason, the real San Diego Zoo, which really is world famous, almost always precedes its name with
“world-famous,” with the hyphen.

18The form of this diagram is “upside down” from that used by Fauconnier and Turner, in that our arrows go up, with
the generic G on the bottom, and the blend B on the top; this is consistent with the metaphor (or “image scheme” [40])
that “up is more” as well as with conventions for drawing such diagrams in mathematics. Also, Fauconnier and Turner
do not include the map G — B.

19Strict commutativity, which is usually called just commutativity, means that the compositions are strictly equal.
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Mathematically, it is more perspicuous to think of blending the two morphisms a;: G — I; than the
two spaces I, I, and for this reason we will sometimes use the notation a; ¢ a9 to stand for an
arbitrary blend of a1 and as; this will be especially helpful in writing formulae for our calculus of
blending.

Blends have applications in computer interface design, some of which are described in [31]. For a
simple example, suppose we want to display both temperature and time of day on the same device.
This is an example of the product of sign systems: if TMP is a sign system for temperature; then the
sign system for our device is TOD X TMP. Before giving the technical definition, let 1 denote the “trivial”
sign system that has only one sort (its top sort) and no operations (except those for data). Now given
sign systems S; and So, their product, denoted S; x Ss, is the blend of S; and S over 1 with the
obvious (and only) morphisms 1 — S;, formed by taking the disjoint union?® of S; and S, and then
identifying their top sorts to get a new sort called the product sort. Both injections are injective and
both triangles strictly commute.

It is not hard to prove some simple properties of product, including the following, where S, S1, S2, S3
are arbitrary sign systems,

Sx1=§,

1x5=5,

S1 X Sy =28 xS,
51X(SQXS3)§(51XSQ)X53.

These are only a modest addition to our calculus of representation, but the notion of product be-
comes more interesting later on, when extended from sign systems to representations. Forms of the
commutative and identity laws also hold for blends, and may be written as

a1<>a2:a2<>a1,
a<lg=a,
lgCa=a,

where the first should be read as saying that any blend of a1, a2 is also a blend of a9, a1, and the next
two as saying that one blend of any space with its generic space is the space itself.

Before doing a slightly more complex example in some detail, we generalize the concept of blend
to a labeled graph, with sign systems on its nodes and morphisms on its edges, such that if e is an
edge from ng to ni, then the morphism on e has as its source the sign system on ng and as its target
the one on n;. We will call this labeled graph the base graph. Some morphisms in the base graph
may be designated as auxiliary?!, indicating that the relationships that they embody do not need to
be preserved. Then a blend for a given base graph is some sign system, together with a morphism
called an injection to it from each sign system in the graph, such that any triangle of morphisms

20This involves renaming sorts and operations, if necessary, so that there are no overlaps except for the data sorts and
operations. Thus this blend is a sort of “amalgamated sum” of its two inputs (this phrase is used in algebraic topology,
among other places). Due to the duality between theories and models (as formalized in the theory of institutions [24]),
this corresponds to taking products of models.

21 More technically, it is the edges that are designated as auxiliary, because it is possible that the same morphism
appears on more than one edge, where not all instances of it are auxiliary.
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involving two injections and one non-auxiliary morphism in the base graph weakly commutes. The
exclusion of auxiliary morphisms is important, because commutativity should not be expected for
auxiliary information; this is illustrated in the example below. The base graph for the basic kind of
blend considered at the beginning of this section has a “V” shape; let us use the term V-blends for
this case. Also, let us call a node in the base graph auxiliary if all morphisms to and from it in the
base graph are auxiliary?.

Appendix B develops the above ideas more precisely, and puts blending in the rich mathematical
framework of category theory, relating V-blends to what are called “pushouts”, and the more general
blend of a base graph to what are called colimits. In addition, Appendix B develops a special kind
of category, called a %—category, and shows that (what we there call) %—pushouts and %—colimits give
blends that are “best possible” in a certain precise sense that involves ordering semiotic morphisms by
quality, e.g., that they should be as defined as possible, should preserve as many axioms as possible,
and should be as inclusive as possible (see Definition 3).

resident water

live-in live-in

resident land

pasngr

live-in

person medium

Figure 6: Two Different Blends of Two Input Spaces

We now show several ways to blend spaces for the words “house” and “boat”; see Figure 6, in which
the generic space is auxiliary. We do not aspire to great accuracy in linguistic modeling here; certainly
much more detail could be added to the various spaces, and some details could be challenged??. Our
interest is rather to illustrate the mathematical machinery introduced in this section with a simple,

221 thank Grigore Rosu for the suggestion to generalize from auxiliary nodes to auxiliary edges.
23This is consistent with our belief that unique best possible theories do not exist for most real world concepts [21].
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intuitive example. The generic space has three constants, object, medium, and person, plus two
relations, on and use. The house input has constants for house, land, and resident; these are
mapped onto by object, medium, and person from the generic space, respectively; the relations are
live-in, and on, where the first is mapped onto by use, and where the house is on land. Similarly,
the boat input space has constants for boat, water, and passenger, which are mapped onto by
object, medium, and person, respectively; and it has relations ride and on, where the first is mapped
onto by use, and where the boat is on water. In forming a blend, there is a conflict between being
on water and being on land, and for “houseboat”, water wins. Here all triangles commute. The blend
for boathouse chooses land instead of water. But the most interesting things to notice about the
boathouse blend are that the boat becomes the resident, and that this leads to a non-commutative
triangle of morphisms on the right side.

There are also some other, more surprising, blends for these two conceptual spaces: one gives a
boat for transporting houses, and another gives an amphibious house! See Figure 7. The first blend
(to the left in Figure 7) is dual to houseboat: instead of the boat ending up in the house, the house
ends up on the boat; there’s nothing strange about this except that we don’t have any established
word for it, and it doesn’t correspond to anything in (most people’s) experience?*. The second blend
(to the right in Figure 7) is more exotic, since the resulting object can be either on land or on water,
and the user both rides and lives in it. Although no such thing exists in our world now, we can easily
imagine some mad engineer trying to build one. Now it is interesting to see which triangles commute
for each of these, and then to compare the naturalness of each blend with its degree of commutativity.
The left triangle of the first blend fails to commute (again just dual to “boathouse”). For the second,
although both its triangles commute, the situation here is actually worse than if they didn’t, because
the injections fail to preserve some of the relevant structure, namely the (implicit) negations of relation
instances, such as that the boat is not on land.

moves
live-in

Figure 7: Two Less Familiar Blends

The above is a good illustration of the very important fact that blends are not unique. Ambiguity
and its resolution are pervasive in natural language understanding. A word, phrase or sentence with
an “obvious” meaning in one context, or in isolation, can have a very different meaning in another
context. What is amazing is that we resolve ambiguities so effortlessly that we aren’t even aware that
they existed, so that it takes some effort to discover the other possibilities that were passed over so
easily! For another example, Appendix A constructs a context in which the old aphorism “Time flies
like an arrow” undergoes a drastic change of meaning, and also gives a formal specification of the
conceptual spaces involved, using the OBJ system [28] to compute the blend, parse the sentence, and
then evaluate it to reveal the “meaning”. A different way to illustrate the ambiguity of blends can
be seen in the beautiful analyses done by Hiraga [37, 36] of haiku by the great Japanese poet Basho;
she shows that several different blends coexist for these haiku, and argues that this is a deliberate
exploitation of ambiguity as a poetic device.

24But we can easily imagine a construction project on an island where prefabricated houses are transported by boat.
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Ambiguity also plays an interesting role in so called “oxymorons” (like “military intelligence”):
these involve two different blends of two given words, one of which has a standard meaning, and the
other of which has some kind of conflict in it. The second meaning only arises because the word
“oxymoron” has been introduced, and this deliberate creation of a surprising ambiguity is what makes
these a form of humor. For “military intelligence” the standard meaning is an agency that gathers
intelligence (i.e., information, especially secret information) for military purposes, while the second,
conflictual meaning is something like “stupid smartness”, playing off the common (but incorrect)
prejudice that the military are stupid, plus the more usual meaning of intelligence. A lot of humor
seems to have a similar character: an informal survey of cartoons in the local newspaper found that
more than half of the intendedly humorous cartoons achieved their effect by recontextualization,
through blending a given conceptual space with some new conceptual space, to give some parts of the
old one surprising new meanings.

Semiotic morphisms can also arise when signs should have some additional structure in order to
be considered “good”. For example, typical recent Hollywood movies have a three act structure with
two specific “plot points” that move the action from one act into the next; let’s call this the “Syd
Field” structure after an author who advocates it [13]. Blending this with the “film medium” structure
(consisting of shots, scenes, angles, etc.) gives a precise sign system that can help with understanding
certain aspects of films. (This is a rather different approach to applying semiotics to cinema than that
of the large literature found in the semiotics of film, e.g., [9], but is still compatible with it.)

Now let’s consider products of representations. For example, we might have reprepresentations
M; and M, for time and of temperature that we want to use to realize the sign system TOD x TMP,
where say M;: TOD — S; and My: TMP — S5. Then what we want is a semiotic morphisms M; X
M,y : TOD x TMP — S X S, defined to be My on TOD and My on TMP, except that the product sort
of each source maps to that of its target. We can now prove the following laws, analogous to those
for products of sign systems, where M, My, My, M3, M4 are semiotic morphisms, and 1 now denotes
the identity semiotic morphism on the trivial sign system 1, and where = now refers to a consistent
family of isomorphisms, one for each choice of the morphisms involved?®:

Mx12M

IxM=M

My x My = My x M,

My % (M2 XM3) = (Ml XMZ) X Mjy

(M1 X MQ);(Mg X M4) = (Ml;Mg) X (MQ;M4) .

It is clear that a great deal more could be done along these lines, for example, giving laws for the
more general forms of blending. This introductory paper does not seem the right place for such a
development, but a few more laws are found in Appendix B.

A traditional view is that a metaphor is a mapping from one cognitive space to another, as in the
formalization of Gentner [14]. However, the work of Fauconnier and Turner [12] suggests a different
view, in which the existence of such a “cross space mapping” between two input spaces is a special
asymmetric condition that may occur if one input space dominates the other in the blend. In general,
there may be more than two input spaces, and the information about links between the contents of
these spaces is distributed among the injections in a complex way that cannot be summarized in any
single map.

6 Discussion

This paper has introduced algebraic semiotics, a new approach to user interface design, cognitive
linguistics, and other areas, based on a notion of sign allowing complex hierarchical structure, thus

%5In the technical language of category theory, they are natural isomorphisms.
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elaborating Saussure’s insight that signs come in systems. Representations are mappings, or mor-
phisms, between sign systems, and a user interface is considered a representation of the underlying
functionality to which it provides access. This motivates a calculus for combining signs, sign systems,
and representations. One important mode of composition is blending, introduced by Fauconnier and
Turner, which is related to certain concepts from category theory. The main contribution of this paper
is the precision that its approach can bring to applications. Building on an insight from computer
science, that discrete structures can be described by algebraic theories, sign systems are defined as
algebraic theories with some extra structure, and semiotic morphisms are defined as mappings of
algebraic theories that preserve the extra structure to some extent; the quality of representations was
found to correlate with the degree to which structure is preserved.

When one sees concrete examples of sign systems like graphical user interfaces, it is easy to believe
that these sign systems “really exist”. It is amazing how quickly and easily we see signs as actually
existing with all their structure “out there” in the “real world”. Nevertheless, what “really exists”
(in the sense of physics) are the photons coming off the screen; the structure that we see is our own
construction. This paper provides a way to describe and study perceived regularities, as modeled by
sign systems, without claiming that these regularities correspond to real objects, let alone that best
possible descriptions exist for any given phenomenon. This is consistent with ordinary engineering
practice, which constructs models for bridges, aircraft wings, audio amplifiers, etc. that are good
enough for the practical purpose at hand, without claiming that the models are the reality, and indeed,
with a deep awareness, based on practical experience, that the models are definitely not adequate in
certain respects, some known and some unknown?®. Another advantage of our approach is that it
enables us to avoid a lot of distracting philosophical problems, e.g., having to do with the doctrine of
realism.

The use of morphisms of theories for representations instead of morphisms of models relates to
the above point, in that we tend to think of models as finally grounding the representation process in
something “real”, whereas morphisms never claim more than to be re-representations, which may add
more detail, but do not exhaust all of the possibilities for description.

William Burroughs said language is a virus [7], meaning (for example) that peculiarities of accent,
vocabulary, attitude, disposition, confusion, neurosis, etc. are contagious, and tend to spread within
communities. Mikhael Bakhtin [3] emphasized that language is never a single homogeneous system,
using the word “heteroglossia”. Paraphrasing Burroughs in the light of Bakhtin, we might say that
language s an ecology of interacting viruses. So despite our use of formal mathematical description
techniques, we should not expect such a realm to be characterized by formal modernist order, but
rather to exhibit multiple species of interacting chaotic evolution: signs and interpretations are co-
evolving co-emergent social phenomena that are too complex to be fully described; order appears
in our multiple, partial descriptions, and such descriptions are what we can formalize. But these
descriptions should never be confused with “reality”. In contrast with situation theory [5], we do not
consider that signs and representations are pre-existing residents of some Platonic heaven, but instead
claim that they arise in a context of social interaction. (Further philosophical discussion related to this
appears in Appendix C, where in brief, we find that realism is difficult to reconcile with the practice
of engineering design, and that phenomenology is more congenial.)

The dynamic aspect of sign systems that emerges from the above discussion brings out an important
limitation of the formal apparatus introduced in this paper: it does not address the history-sensitive
aspects that are needed for many applications to user interface design. For example, most text editors
have an undo command that takes one back to the state before the last command was executed. By
a fortunate coincidence, a recent advance in algebraic semantics called hidden algebra [29, 30, 18]
provides exactly the technical apparatus that is needed for this extension, by using hidden sorts for

%6For example, Hook’s law for the length of a spring as a function of the weight it is holding, fails if the weight is too
heavy, because the spring will be damaged.
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internal states. The extension is actually very straightforward mathematically, but to develop the
methodology for its application will require some further work.

There are many other dynamic aspects of sign systems. Real world sign systems evolve; for example,
in natural languages, words change their meanings, new words are added, old words disappear, syntax
changes, and of course the huge contextual background changes, as social experience changes. In yet
another important kind of dynamics, a listener or reader (or “user”) constructs meanings dynamically
and incrementally, in real time. How this happens is a very difficult problem, about which little
information is directly available. It is however clear that no simple algorithm based on just the
structure of the sign systems involved can be used compute meanings, because even for the simple
blend of two conceptual spaces, selection among the manifold possibilities is governed by external
contextual factors in a very complex way, crucially including the values of the person doing the blend.
Moreover, the perception that the blend is in some way coherent seems to be at least as important as
any of the more mechanical measures of optimality. This paper does not attempt to solve these difficult
problems, but only the simpler problem of providing a precise language for describing structural aspects
of particular understandings. In a dynamic context, these static descriptions will be snapshots of
evolving structures.

Another area that needs further work is “higher order” signification, which concerns explicit refer-
ences to meaning; one approach to this problem is to provide some form of “meta-spaces.” Meaning is
one of the deepest and most difficult of all subjects, and it should not be thought that the explorations
in the present paper are more than early steps down one particular path into a great jungle.
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A Two Examples in OBJ3

Consider the following “science fiction” fragment, which constructs a context in which the old aphorism
“Time flies like an arrow” undergoes a drastic change of meaning;:

A gravity kink forced the ship enough off course that realtime was needed to calculate
corrections. Taking realtime in a wormhole creates a local space-time vector, and time flies
were already buzzing about, making the corrections even harder. “They hang onto any
vector they can find out here,” Randi said. “Time flies like an arrow. We may never get
out.”

Here the original verb “flies” becomes the subject; the original subject “time” now modifies “flies”;
the preposition “like” becomes the verb; and “arrow” becomes the object of “like”. The only word
that doesn’t change its syntactic role is the lowly article “an”! How does this happen? The “local
space-time vector” (whatever that is) prepares the reader for “an arrow”, and then “time flies” are
introduced explicitly. These two conceptual spaces blend into another, where our sentence gets its
new interpretation; they share a subspace where a ship takes realtime in a wormhole.

We describe these three conceptual spaces, form a blend, and then parse and evaluate our sentence
using the OBJ language (for more on OBJ and its underlying theory, see [28]), which is especially
suitable because of its rich facilities for combining theories. The keyword pair th...endth delimits
OBJ modules that introduce “theories” which allow any model that satisfies the axioms. The two “pr
SHIP” lines indicate importation of the theory SHIP in such a way that it is shared; + tells OBJ to
form a blend (which is actually their colimit in the sense of Appendix B below), which is then named
POUT as part of the make. . .endm construct, which just builds and names a module. Predicates appear
as Bool(ean) valued functions. Finally, red tells OBJ to parse what follows, apply equations as left
to right rewrite rules, and then print the final result (if there is one):

th SHIP is sort Thing .

ops (the ship) wormhole vector : -> Thing .

op _in_ : Thing Thing -> Bool .

op _makes_ : Thing Thing -> Bool .

eq the ship in wormhole = true .

var X : Thing .

cq X makes vector = true if X in wormhole .
endth

th FLIES is pr SHIP .
op time flies : -> Thing .
ops (_like_) (_buzz around_) :
Thing Thing -> Bool .
eq time flies buzz around the ship = true .
var X : Thing .
cq time flies like X = true if X == vector .
endth

th ARROW is pr SHIP .

op an arrow : —-> Thing .
eq an arrow = vector .
endth

make POUT is FLIES + ARROW . endm

red the ship makes an arrow .
red time flies like an arrow .
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Of course, as an understanding of the text, this formal system is grossly oversimplified; however, it is
precise. These sign systems have only two levels (for “words” and “sentences”), no priority, and few
signs; the morphisms are just inclusions. Probably the hardest part, that an arrow is a vector, has
been just posited, because OBJ cannot do this kind of “selection” process, although it is well suited
for defining and blending sign systems, and for parsing and evaluating expressions. Here is OBJ’s
output from the above:

N ERRARRARRRARRRRRYS
—-- Welcome to 0BJ3 ---
JULTERETETTEETTETIN
0BJ3 version 2.04 built 1994 Feb 28 Mon 15:07:40
Copyright 1988,1989,1991 SRI International
1997 Jan 18 Sat 22:25:11
0BJ>

obj SHIP

obj FLIES

obj ARROW

make POUT

reduce in POUT : the ship makes an arrow
rewrites: 3
result Bool: true

reduce in POUT : time flies like an arrow
rewrites: 3

result Bool: true

0BJ> Bye.

This shows OBJ parsing both sentences and then “understanding” that they are “true”; note that
neither sentence parses outside the blend. I hope the reader is as pleased as the author at how easy?’
all this is. Of course, we could get the usual understanding of the sentence by evaluating it in a
different context.

We now consider a somewhat more complex example, a proof that one metaphor is better than
another, under certain assumptions. The assumptions are given in the five theories, the metaphors
in the two views, and the proof in the four reductions. The first metaphor, “The internet is an
information tornado,” comes from a press release from the Federal Communications Commission,
while the second, “The internet is an information volcano,” comes from a poster that the author of
this paper prepared for a course on material in this paper at UCSD. The keyword “us” (from “using”)
indicates importation by copying rather than sharing, and *(op A to B) indicates a renaming of the
operation A to become B.

th COMMON is
sorts Agent Effect .
op effect : Agent Agent -> Effect .
ops hurt nil helped : -> Effect .
endth

th PROCESS is us COMMON .

2Tt took about 15 minutes to write the code, and less than a second for OBJ to process it, most of which is spent on
input-output, rather than on processing the various declarations and doing the 6 applications of rewrite rules.
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sort Volume .

ops subject process : -> Agent .

op flow : Agent Agent -> Volume .

ops low medium high huge : -> Volume .
endth

th INTERNET is us (PROCESS *(op subject to user)*(op process to internet)).
eq flow(internet,user) = huge .
eq flow(user,internet) low .
eq effect(internet,user) = hurt .

endth

th VOLCAND is us (PROCESS *(op subject to victim)*(op process to volcano)).

eq flow(volcano,victim) = huge .

eq flow(victim,volcano) = low .

eq effect(volcano,victim) = hurt .
endth

th TORNADO is us (PROCESS *(op subject to victim)*(op process to tornado)).

eq flow(tornado,victim) = low .

eq flow(victim,tornado) = huge .

eq effect(tornado,victim) = hurt
endth

*%* The internet is an information tormnado.
view TORNADO from TORNADO to INTERNET is
op victim to user .
op tornado to intermnet .
endv

th TESTT is us (TORNADO + INTERNET). endth
red flow(victim,tornado) == flow(user,internet).
red flow(tornado,victim) == flow(internet,user).

*** The internet is an information volcano.
view VOLCANO from VOLCANO to INTERNET is
op victim to user .
op volcano to intermet .
endv

th TESTV is us (VOLCANO + INTERNET). endth
red flow(victim,volcano) == flow(user,internet).
red flow(volcano,victim) == flow(internet,user).

The OBJ3 output from this shows that the first two reductions give false and the second two give
true. This means that the first semiotic morphism does not preserve the axioms (which concern the
flow of material between the user and the object, either tornado or volcano), while the second morphism
does, which implies that the second metaphor is better than the first with respect to preserving these
axioms. (On the other hand, the tornado metaphor resonates with many common phrases such as
“winds of change,” which are part of our culture, whereas we have less collective experience and
associated language for volcanos.)
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B Categories, Blends, Pushouts, 3-Categories and 2-Pushouts

Although this appendix is written under the assumption that readers already know some basic category
theory?8, it is nonetheless essentially self-contained, though terse, in order to fix notation for the new
material. The essential intuition behind categories is that they capture mathematical structures; for
example, sets, groups, vector spaces, and automata, along with their structure preserving morphisms,
each form a category, and their morphisms are an essential part of the picture.

Definition 4: A category C consists of: a collection, denoted |C|, of objects; for each pair A, B of
objects, a set C(A, B) of morphisms (also called arrows or maps) from A to B; for each object A,
a morphism 14 from A to A called the identity at A; and for each three objects A, B, C, an operation
called composition, C(4, B) x C(B,C) — C(A4,C) denoted “” such that f;(g;h) = (f;g);h and
fi1la = f and 1459 = g whenever these compositions are defined. We write f: A — B when
f € C(4A, B), and call A the source and B the target of f. O

Results in the body of this paper show that sign systems with semiotic morphisms form a category.
We will review the notions of pushout, cone and colimit for ordinary categories, relate this to blending,
and then consider the more general setting of %—categories, which captures more of the phenomenology
of blending.

The intuition for colimits is that they put some components together, identifying as little as
possible, with nothing left over, and with nothing essentially new added [17]. This suggests that
colimits should give some kind of optimal blend. We will see that there are problems with this, so that
the traditional categorical notions are not quite appropriate for blending. Nevertheless, they provide
a good place to begin our journey of formalization.

Definition 5: Given a category C, a V in C is a pair a;: G — I; (i = 1,2) of morphisms, and
a cone with apex B over a V aj,a9 is a pair b;: I; — B (i = 1,2) of morphisms; then a1, as and
b1, by together are said to form a diamond (or a square). The cone (or its diamond) commutes iff
a1;b1 = ag; b, and is a pushout iff given any other commutative cone ¢;: I; — C over ai, a9, there
is a unique arrow u: B — C such that b;;u = ¢; for i =1, 2.

A diagram D in a category C is a directed graph with its nodes labeled by objects from C and
its edges labeled by arrows from C, such that if an arrow f: D; — D, labels an edge e: ¢ — j, then
the source node 7 of e is labeled by D; and the target node j of e is labeled by D;. A cone over D
is an object B, called its apex, together with an arrow b;: D; — B, called an injection, from each
object of D to B, and is commutative iff for each f: D; — D; in D, we have?® b; = f; bj. A colimit
of D is a commutative cone b;: D; — B over D such that if ¢;: D; — C is any other commutative
cone over D, then there is a unique v: B — C such that3? b;;u = ¢; for all nodes i of D. O

Pushouts are the special case of colimits where the diagram is a V. However there seems to be a
discrepancy in the definitions, because pushouts are not required to have an arrow G — B. But when
the diagram is a V, this missing arrow is automatically provided by the morphism a1;b; = as;bs.

There is a short proof that any two colimits of a diagram D are isomorphic. Let the cones be
bi: D; — B and b,: D; — B'. Then there are unique arrows u: B — B’ and v: B’ — B satisfying
the appropriate triangles, and there are also unique arrows B — B and B’ — B’ satisfying their
appropriate triangles, namely the respective identities 1p and 1p/; but u;v and v;u also satisfy the
same triangles; so by uniqueness, u;v = 1p and v;u = 1p'.

Following the suggestion of Section 5 that blends are commutative cones, it follows that colimits
should be some kind of optimal blend. For example, the “houseboat” blend of “house” and “boat” is

28See [33, 16, 17] for relatively gentle introductions to some basic ideas of category theory; there are also many many
other papers and many other books.

PThese equations are called triangles below, after the corresponding three node commutative diagrams.

30These equations may also be called “triangles” below.
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a colimit. But the fact that colimits are only determined up to isomorphism seems inconsistent with
this, because the names attached to the elements in a blend are important; that is, isomorphic cones do
not represent the same blend. This differs from the situation in group theory or topology, where it is
enough to characterize an object up to isomorphism. However the requirement (also motivated by the
examples in Section 5) that the injections should be inclusions to as great an extent as possible, causes
the actual names of elements to be captured by blends, and thus eliminates the apparent inconsistency.

Another problem with defining blends to be commutative cones is that, as shown in Section 5, not
all blends actually have fully commutative cones; for “house” and “boat”, only the “houseboat” blend
has all its triangles commutative. But as suggested there, the notion of auxiliary morphism solves this
problem. The auxiliary morphisms in D are those whose triangles are not required to commute;
these morphisms can be removed from D, to yield another diagram D’ having the same nodes as D.
Commutative cones over D' are then cones over D that commute except possibly over the auxiliary
morphisms. Now we can also form a colimit of D’, to get a “best possible” such cone over D. It
therefore makes sense to define a blend to be a commutative cone over a diagram with the auxiliary
morphisms removed.

One advantage of formalization is that it makes it possible to prove general laws, in this case, laws
about blends based on general results from category theory, such as that “the pushout of a pushout is a
pushout.” This result suggests proving that “the blend of a blend is a blend,” so that compositionality
of the kind of optimal blends given by pushouts follows from the above quoted result about pushouts.
The meaning of these assertions will be clearer if we refer to the following diagram:

Ve
\

/\/

Here we assume that bo, b3 is a blend of a9, a3, and ca,c3 is a blend of a1, bo, i.e., that as; b2 = a3;bs
and ai;co = bo;c3; then the claim is that co, b3;cs is a blend of ag;a1, az, which follows because

a9;a1; o = ag; bs;c3. Using the notation ay < a3 for an arbitrary blend of a9, a3, we can write this
result rather nicely in the form

a1 < (ag © a3) = (az;a1) < ag
taking advantage of a convention that a; < (as < a3) indicates blending a; with the left injection of
(ag © a3) (the top left edge of its diamond).

The pushout composition result (proved e.g. in [33, 41]) states that if bo, b3 is a pushout of as, a3,
and ¢, cg is a pushout of a1, by, then co, bs;c3 is a pushout of as; a1, az. If we write ag < a3 for the
pushout of ag, asg, then this result can also be written neatly, as

a1 X (ag ™ a3z) = (az;a1) ™ ag .

We can also place a second blend (or pushout) on top of b3 instead of be; corresponding results

then follow by symmetry, and after some renaming of arrows can be written as follows:

(a1 <o a2) & a3 — ai <o (a2;a3) .

(a1 ™ ag) X a3 =a; < (a9;a3) .
We can further generalize to any pattern of diamonds: if they all commute, then so does the outside
figure; and if they are all pushouts, then so is the outside figure. Another very general result from
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category theory says that the colimit of any connected diagram can be built from pushouts of its parts.
Taken all together, these results give a good deal of calculational power for blending.

Now it’s time to broaden our framework. The category of sign systems with semiotic morphisms
has some additional structure over that of a category: it is an ordered category, because of the orderings
by quality of representation that can be put on its morphisms. This extra structure gives a richer
framework for considering blends; I believe this approach captures what Fauconnier and Turner have
called “emergent” structure, without needing any other machinery. Moreover, all the usual categorical
compositionality results about pushouts and colimits extend to %-categories.

Definition 6: A g-category?’1 is a category C such that each set C(A, B) is partially ordered,
composition preserves the orderings, and identities are maximal. O

Because we are concerned here with ordered categories, a somewhat different notion of pushout is
appropriate, and for this notion, the uniqueness property is (fortunately!) lost:

Definition 7: Given a V, a;: G — I; (1 = 1,2) in a %-category C, a cone by,by over ai,as is
consistent iff there exists some d: G — B such that a1;b6; < d and a2;bs < d, and is a %-pushout
iff given any consistent cone ¢;: I; — C over a1, ao, the set

{h: B—= C |b;h<c; and by;h < o}
has a maximum element. O
Proposition 8: The composition of two %—pushouts is also a %—pushout.

Proof: Let by,by be a %-pushout of a1,as, and let ¢1,co be a %-pushout of as, by; we will show that
c1 bojeop is a %—pushout of a1;as, as.

Suppose di,ds together with a;;a3 and ag form a consistent diamond. Then as;d; and do with a1, a3
also form a consistent diamond, and because by,bs is a %—pushout for aj,ay, the set {g | b1;9 <
as;di, by;g < do} has a maximum element, which we denote h. Note that di,h with a3, b, form a
consistent diamond. Then because c1,co is a %—pushout of as, by, the set {g | c1;9 < d1, co;9 < h} has
a maximum element, which we denote h. We now claim that the following two sets are equal:

M1 ={g|ci1;9 <dy and ¢3;9 < h} ; and

My ={g | c1;9 < di and by;co; g < da}.
First let g € M1. Then be; (c2;9) < ba;h < dy. Therefore ¢ € My. Conversely, suppose g € Mo;
then all we have to prove is that co; g < h. Because bo; (c2;9) < do and by; (c2;9) = (as;c1);9 < as; dy,
and because h is the maximum element satisfying the inequalities above, we get ca; g < h. Therefore
M1 = My, which implies they have the same maximum, namely A. O

3!In the literature, similar structures have been called “one and a half” categories, because they are half way between
ordinary (“one dimensional”) categories and the more general “two (dimensional)” categories.
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However, unlike the situation for ordinary pushouts, the composition of consistent diamonds need not
be consistent, and two different 3 5-pushouts need not be isomorphic; this means that ambiguity is
natural in this setting. The followmg is another compositionality result for ——pushouts

Proposition 9: In the diagram below, if the four small squares are %-pushouts, then so is the large
outside square.

d1

Ve AN
N A

NN
NJNUA

Proof: Applying Proposition 8 twice gives two %-pushouts shown below,

/ N
/w/
A/

and applying Proposition 8 once more gives us that the big square is a %-pushout. O

Passing from V’s to arbitrary diagrams of morphisms generalizes 2-pushouts to 2-colimits, and
g y diag p g 2P 2

provides what seems a natural way to blend complex interconnections of meanings. The notion of
consistent diamond extends naturally to arbitrary diagrams, as follows:

Definition 10: TLet D be a diagram. Then a family {;};c|p| of morphisms is D-consistent iff
a; aj < a; whenever there is a morphism @ : ¢ — j in D. Similarly, given J C |D|, we say a family of
morphisms {a; };cs is D-consistent iff {a;};cs extends to a D-consistent family {ai}ie| pl- O

Fact 11: A diamond a1, a9, b1, by is consistent if and only if {b1,bs} is {a1, a9 }-consistent.

Proof: If the diamond is consistent then there is some d such that a1;b1 < d and asg;by < d.
But then {b1, by,d} is {a1, as}-consistent, i.e., {b1,be} is {a1, as}-consistent. Conversely, if {b1,be} is
{a1,as}-consistent, then some d exists such that {b1,bs,d} is {a1, a2 }-consistent, which says exactly
that a1;b; < d and a9;be < d, i.e., that the diamond is consistent. O

Definition 12: Let D be a diagram. Then a family {a;};c|p is a 3_colimit of D iff it is a cone
and for any D-consistent family {f;}cp|, the set {h | a;;h < f;, for each i € |D|} has a mazimum
element. O

The following is another typical result that extends from ordinary colimits to %-colimitsz
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Theorem 13: Let a W diagram consist of two V’s connected at the middle top. If D is a W
diagram, then a %-colimit of D is obtained by taking a %-pushout of each V, and then taking a
pushout those two pushouts, as shown below.

Proof: Let D contain the morphisms a1, a9, a3, a4, let by, by be a %-pushout of ay,a9, let bg, by be
a %—pushout of as, a4, and let c1,c be a %—pushout of bobs. Then we must show that the family of
morphisms {b;c1, as;bo;ci, bojcr, as;bs;ca, basca} is a 3-colimit of D.

[ ]
CHAMY
“hi ( ¢:: h2
di - / N \ - ds
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Let {di,ds,ds,ds,ds} be a D-consistent family. Then d; and d3 with a;,as form a consistent diamond
(because a1;d1 < dp and ag;ds < dy), and because by, b is a %—pushout, we deduce that there exists hy
(as the maximum of a set of morphisms) such that by;h; < di and by; hy < d3. Similarly there exists
ho such that b3; ho < ds and by; ho < ds5. Now note that hq, ho with bs, bs give a consistent diamond
(because there is ds such that bo; by < d3 and b3; hy < d3). We next claim that the following two sets
are equal:

M ={h|c1;h < hyand co;h < hg} ; and

My ={h | (by;¢1);h < dj and (bo;c1);h < d3 and (bg;co); h < d5}-
(The corresponding inequalities for dy and d4 are omitted from My because they are implicit). First
we show M1 C M. If h € My then

o (bi;c1);h =bis(cish) <bihy <dj .

o (ba;ci);h = ba;(cish) < by hy < ds .

o (bg;ca);h = ba; (co;h) < bg;hy < ds .
This implies h € Ms. Conversely, if h € Mo then by; (c1;h) < bi;hy < di and be; (15 h) < bg; by < ds.
Then by maximality of hy, we get c1;h < hi. In a similar way, we can show co;h < hg, and thus
h € M;. Therefore M1 = My, which implies that these sets have the same maximum element. O

Extending our pushout notation & to %-categories, the above result can be rather neatly written
in the form

(a1 ™ ag) ™ (a3 1 aq) = Colim(W) ,

where W is the bottom part of the diagram, with edges labeled a1, a2, a3,a4. A generalization of the
above result implies that %—pushouts can be used to compute the %—colimit of any connected diagram.
Observe that the notion of auxiliary morphism carries over to the framework of %-categories without
any change.

It is natural to use the conditions that morphisms should be as defined as possible, should preserve
as many axioms as possible, and should be as inclusive as possible, to define a quality ordering (see
Definition 3). More precisely, given morphisms f,g: A — B between conceptual spaces A, B, let us
define f < g iff g preserves as much content as f, preserves all axioms that f does, and is as inclusive
as f. Although more work should be done to determine whether this particular “designer ordering”
really works the best for this particular application, the situation with respect to our house and boat
example from Section 5 really is quite satisfying, in that the most natural blend is an ordinary pushout,
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all the other good blends are %—pushouts, and various blends that fail to preserve as much structure
as they could are not any kind of pushout.

C Some Philosophical Issues

The research program of which this paper is part, is primarily concerned with practical applications,
and the goal of this paper is to provide some of the theory that is needed to support such applications.
By contrast, most work in semiotics has had a much more philosophical focus. As a result, a great
deal of philosophical discussion could be generated concerning the heretical approach of this paper.
This appendix confines itself to just a few points that seem to have some practical significance.

Today humanists of nearly all schools reject the notion that some kind of “Cartesian coordinates”
can be imposed on experience, despite partial evidence to the contrary from fields like linguistics
and music. This rejection is understandable as a reaction to the scientistic reductionism that nearly
always accompanies projects to impose structure on experience. Such tendencies are deeply ingrained
in Western civilization, going back at least to Pythagoras and Plato. But evidence from a wide range
of fields now makes it clear that traditional reductionism has serious limitations. The following are
brief descriptions of some better known examples:

1. Work on mechanical speech recognition has shown that contextual information is essential for
determining what phoneme some raw acoustic waveform represents (if anything); this contextual
information may include not just prior but also subsequent speech, a profile for the individual
speaker (accent, eccentricities, etc.), the topic of discourse, and much more, up to arbitrary
shared cultural knowledge.

2. In music, the same acoustic event in a different context can have a radically different impact,
ranging from ugly and incongruous, to great beauty and elegance. Moreover, the background
of the listener is crucial; for example, naive listeners have little chance of appreciating the
subtleties and beauties of Cecil Taylor or Ornette Coleman, however familiar with theories of
psycho-acoustics and harmony they might be.

3. Similar things happen in cinema and poetry, and indeed any art or craft, from architecture and
interior design, to basket weaving, pottery, and flower arranging. Often a great deal of cultural
context is needed to appreciate (in any deep sense) a single artifact; buildings, rooms, baskets
and pots are used by ordinary people in their ordinary lives, as part of the complex social fabric.
The “Gucci” label on a purse is not lovely in itself, but nonetheless it has a meaning to those
who go out of their way to acquire it. A brightly colored postmodern bank building in Lisbon
has a complex cultural meaning that does not transfer to Paris, London, or New York.

4. Despite the stunning success of applying simple atomic theory to basic molecular chemistry,
physics has found it necessary to postulate nonlocalized quantum fields to explain many impor-
tant phenomena, some of which appear even in applied chemistry, to say nothing of more rarefied
areas.

5. Metamathematics has had great success in formalizing mathematics, and in studying what is
provable. But its greatest successes have been results, like Godel’s incompleteness theorem, that
demonstrate the limitations of formalization. Moreover, formal proofs lack the comprehensibility,
and the human interest, of well done informal proofs. See Appendix D for more discussion along
these lines, demonstrating the importance of context for making proofs “come alive.”

Returning now to our main point, there is a justifiable opposition to totalizing reductionist structuralist
systems, while at the same time, there is the utterly pervasive presence of structured signs. What are
we to do about this seemingly contradictory situation?

Two alternatives have been most explored, each with some valuable results. The first is to pursue
the quest for structure, digging deeper wherever it seems to work, and avoiding the (very many) areas
where things just seem too slippery to admit much precision. This inevitably results in a partial
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view, which is open to criticism in various ways (as post-structuralism has criticized the structuralism
of Saussure, Levi-Strauss, Barthes, etc.). The second alternative is to abandon structure and work
with intuitive experiences and descriptions (some currently fashionable words are “rich,” “nuanced,”
“textured,” and “postmodern”). This too inevitably results in a partial view, which in the extreme
avoids criticism by refusing to be pinned down, even to the extent of using inconsistent, incoherent
language. Through both are extreme positions, it seems difficult to find a clear, consistent, defensible
middle ground. (A general reference for continental philosophy is [44].)

It seems to me that ethnomethodology provides some valuable hints on a way out of this impasse.
Often presented as a principled criticism of traditional sociology, especially its normative category
schemes (gender, race, status, etc.), ethnomethodology can perhaps better be seen positively as an
approach to understanding social phenomena (such as signs!) by seeing how members of some group
come to see those sign as present. Thus, ethnomethodology wants to know what categories the mem-
bers of a social group use, and what methods they use to determine instances of those categories.
This requires careful attention to real social interaction, and avoids the Platonist assumption that the
categories have a pre-given existence “in nature.” Rather, we see how members of a group achieve
categorization in actual practice, without having to give these either the categories or their instances
any status other than what has been achieved in a particular way at a particular time. The branch
of ethnomethodology called conversation analysis has taken a rather radical approach to the social
context of language, showing that even simple features such as whose turn it is to speak are always
negotiated in real time by actual social groups [52, 53], and should not be considered as given. Words
like “reification” and “transcendentalizing” are used to describe approaches that take the opposite
view. (Of course, any one paragraph description of ethnomethodology is necessarily a gross oversim-
plification; more information may be found in [57] and [21] among many other places, some of which
may be very difficult to read.)

Although this paper is not the place to discuss it, phenomenology has also been an important
influence on our formulation of a philosophical foundation for semiotics, particularly in its insistence
that the only possible starting point is the ground of our own actual experience, with all metaphysical
principles firmly bracketed.

The sign, object, interpretant triad of classical semiotics (Peirce, Morris, Eco, etc.) presupposes
an objective world, whereas our morphic semiotics is consistent with the view that mind (usually
unconsciously) constructs models by selecting and blending (abstractions from) immediate and past
experience, using (e.g.) templates derived from embodied motion [40], so that what we see as “objects”
are actually parts of these models. This does not deny that a “world” exists, but it does deny that
we experience it directly. As Heidegger observed, we come closest to experiencing “reality” when our
models break down [34]. Similarly, we may reinterpret the syntax, semantics, pragmatics triad of
classical semiotics, by claiming that its instances can probably be better understood through the use
of semiotic morphisms.

The above ideas suggest various ways to avoid the extremes of mindless reductionism and mind-
less holism. The most straightforward approach is to admit that while each individual analysis no
doubt has biases and limitations, it nonetheless embodies certain structures, values, insights, etc. A
given analysis, if it is clear, coherent and consistent, can be formalized, and may have some value as
such; for example, its limitations will be easier to spot. Such an analysis should not pretend to be
objective, factual, complete, universal, or even self-contained; it is a momentary snapshot of a partial
understanding of one (or more) interested party, and of course, can only be understood by other in-
terested parties who have a more or less comparable background. It has frozen out the fluid processes
of interpretation that actually produced the understanding.

The previous paragraph may claim too little, because sometimes analyses can have great impact,
with broad acceptance, important applications, etc., e.g., Newtonian mechanics®2. However this pa-

32We should not forget that, according to today’s science, Newtonian mechanics, despite its tremendous utility, is not
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per is not the place to try to understand why some analyses may work better than others in some
given social context. It is enough for our purposes that analyses exist, exhibit structure, and can be
formalized, without requiring a totalizing, reductionist, or realist stance.

D What is a Proof?

Mathematicians talk of “proofs” as real things. But all we can ever actually find in the real world
of actual experience are proof events, or “provings”, each of which is a social interaction occurring at
a particular time and place, involving particular people, who have particular skills as members of an
appropriate mathematical social community.

A proof event minimally involves a “proof observer” with the relevant background and interest, and
some mediating physical objects, such as spoken words, gestures, hand written formulae, 3D models,
or printed words, diagrams or formulae. But none of these can be a “proof” by itself, because each
must be interpreted in order to come alive as a proof event.

The efficacy of some proof events depends on the marks that constitute a diagram being seen to be
drawn in a certain order; e.g., Euclidean geometric proofs, and commutative diagrams in algebra; in
some cases, the order may not be easily inferred from just the diagram. Therefore we must generalize
from proof objects to proof processes, such as diagrams being drawn, movies being shown, and Java
applets being executed.

Mathematicians habitually and professionally reify, and it seems that what they call proofs are
idealized Platonic “mathematical objects,” like numbers, that cannot be found anywhere on this earth.
So let us agree to go along with this confusion (I almost wrote “joke”) and call any object or process
a “proof” if it effectively mediates a proof event, not forgetting that an appropriate context is also
needed. Then perhaps surprisingly, almost anything can be a proof! For example, 3 geese joining a
group of 7 geese flying north is a proof that 7 + 3 = 10, to an appropriate observer. Peirce’s notion
of semiosis takes a cognitive view of examples like this, placing emphasis on a sign having a relation
to an interpretation.

Notice that a proof event can have many different outcomes. For a mathematician engaged in
proving, the most satisfactory outcome is that all participants agree that “a proof has been given.”
Other outcomes may be that most are more or less convinced, but want to see some further details;
or they may agree that the result is probably true, but believe there are significant gaps; or they
may think that the proof is bad and the result is false. And of course, some observers may be lost
or confused. In real provings, outcomes are not always just ‘true’ or ‘false’. Moreover, a group of
proof observers need not agree among themselves, in which case there may not be any definite socially
negotiated “outcome” at all!

Going a little further, the distinction between a proof giver and a proof observer is often artificial
or problematic; for example, a group of mathematicians working collaboratively on a proof may argue
among themselves about whether or not some given person has contributed substantively to “the
proof”. Hence we should speak of “proof participants”, however they happen to be distributed in
space and time, and be aware that the nature of their participation is subject to social negotiation,
like everything else.

The above deconstruction of “proofs” as objectively existing real things is only the first part of a
more complex story. In addition to a proof object (or process), certain practices (also called methods)
are needed to establish an interpretation of a proof object as a proof event. For example, to interpret
the flying geese as a proof about addition requires a practice of counting. This runs counter to the
tendency, in mathematics as well as in literature and linguistics, to insist on the “primacy of the text”
ignoring the practices required to bring texts to life, as well as the communities that embody those
practices.

a correct physical theory, but only a practical approximation that holds within certain (not entirely well specified) limits.
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In fact, practices and their communities are at least as important as proof objects; in particular,
it is clear that they are indispensable for interpreting some experience as a proof; if you can’t count,
then you can’t see goose patterns as proofs, and if you haven’t been taught about the numerals ‘7’, ‘3’,
‘10’, then you can’t explain your proof to the decimal digit speaking community. Of course, this line of
thought takes us further from the objective certainties that mathematics likes to claim, but if we look
at the history of mathematics, it is clear that there have been many different communities of proving
practice; for example, what we call “mathematical rigor” is a relatively very new viewpoint, and even
within it, there are various competing schools, including formalists, intuitionists and constructivists,
each of which itself has many variants. Moreover, the availability of calculators and computers is even
now once more changing mathematical practice.

Mathematical logic restricts attention to small sets of simple mechanical methods, called rules of
inference, and claims that all proofs can be constructed as finite sequences of applications of such rules.
While this approach is appropriate for foundational studies, and has been interesting and valuable in
many ways, it is far from capturing the great diversity and vital living quality of natural proofs.

Unfortunately, we lack the detailed studies that would reveal the full richness of mathematical
practice, but it is already clear that proof participants bring a tremendous variety of resources to bear
on proof objects (see [45] for an excellent discussion). For example, a discussion among a group of
mathematicians at a blackboard will typically involve the integration of writing, drawing, talking and
gesturing in real time multimedia interaction. In at least some cases, this interaction has a high level
“narrative” structure, in which sequentially organized proof parts are interleaved with evaluation and
motivation in complex ways.

Aristotle said “Drama is conflict”, meaning that the dramatic interest, or excitement, of a play
comes from conflict, that is, from obstacles and difficulties. Anyone who has done mathematics knows
that many difficulties arise. But the way proofs are typically presented hides those difficulties, showing
only the specialized bulldozers, grenades, torpedos, etc. that were built to eradicate them. Thus
reading a conventional proof can be a highly alienating experience, since it is difficult or impossible to
understand why these particular weapons have been deployed. No wonder the public’s typical response
to mathematics is something like “I don’t understand it. I can’t do it. I don’t like it”. I believe that
mathematicians’ systematic elision of conflict must take a significant part of the blame for this. (Note
the military metaphor used above; it is suggestive, and also very common in mathematical discourse.)

So called “natural deduction” (due to Gentzen) is a proof structure with some advantages, but it
is very far from “natural” in the sense of being what provers do in natural settings; natural deduction
presents proofs in a purely top down manner, so that, for example, lemmas cannot be proved before
they are used. We need to move beyond the extreme poverty of the proof structures that are traditional
in mathematical logic, by developing more flexible and inclusive structures. A first step towards
accommodating conflict in proofs might be to allow alternative proofs that are incomplete, or even
incorrect. For example, to show why a lemma is needed, it is helpful to first show how the proof fails
without it; or to show why transfinite induction is needed, it may help to show how ordinary induction
fails. A history of attempts to build a proof records conflicts, and hence reintroduces drama, which
can make proofs more interesting and less alienating. Of course, we should not go too far with this;
no proof reader will want to see all the small errors a proof author makes, e.g., bad syntax, failure to
check hypotheses of a theorem before applying it, etc. As in a good movie, conflict introduction should
be carefully structured and carefully timed, so that the clarity of the narrative line is not lost, but
actually enhanced. The tatami system, which embodies many of these ideas, is described in [25, 26],
and more detail on the application of ideas in this paper to that system can be found in [31, 22]; for
a less formal introduction to some of the ideas of algebraic semiotics, see also [46].

The narrative structures of natural proofs seem to have much in common with cinema: there is a
hierarchical structuring (of acts, scenes, shots in cinema, and of proof parts in mathematics); there are
flashbacks and flashforwards; there is a rich use of multimedia; etc. The traditional formal languages
for proofs are also very impoverished in the mechanisms they provide for structuring proofs into parts,
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and for explaining these structures and parts. Probably we could learn much about how to better
structure proofs by studying movies, because a movie must present a complex world, involving the
parallel lives of many people, as a linear sequence of scenes, in a way that holds audience interest, e.g.,
see [9]. No doubt there are many other exciting areas for further exploration in our quest to improve
the understandability of proofs. Success in this quest could have a significant impact on mathematics
education, given the impending pervasiveness of computers in schools, and the mounting frustration
with current mathematical education practices.

(The essay in this appendix was in part inspired by remarks of Eric Livingston, whom I wish to
thank, though I may still have got it wrong. The remarks on narrative draw on detailed studies by
the sociolinguist William Labov [39]. See [21] for some related discussion and background.)
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