
CSE21 - Math for Algorithm and Systems
Analysis

Asymptotic Analysis : Building Better Algorithms

Russell Impagliazzo and Miles Jones. Thanks to Janine
Tiefenbruck

April 6, 2016



Today’s agenda

1. Using order notation to analyse algorithm time: some simple
rules

2. Finding better algorithms: When is an improvement
meaningful?

3. Illustrate some basic algorithm design principles:
pre-processing, re-use of computation



Order of time taken by algorithms

Order is frequently used to describe the time taken by algorithms.
We want a simple expression that estimates the time T (n) the
algorithm takes on an input of size n. (This can be the worst-case
time, best-case time or average time. Most frequently, it is
worst-case, because that is the most useful to know.)

Basic operation: A basic operation is one whose time does not
depend on the input. Because of this, any basic operation takes
constant time, O(1). (Each one is some fixed number, which
might depend on all the factors we discussed last class, and order
does not distinguish between different constants).



Order of time for algorithms, cont.

Simple loops: If the guards of a loop are basic operations, and
the body is constant time, the time the loop takes will be of the
same order as the total number of iterations.

Combining non-nested parts: The time to do two separate
non-nested algorithms is the sum of the times for them
individually. By the additivity property, the order of a sum is the
maximum. So for two non-nested parts of an algorithm, the time
for the whole is the greater of the parts.



Analyzing nested loops: simple case

Suppose a loop will be executed at most T1 times, and each time,
the body (the inner loop) gets executed. If we’ve already analysed
the body as taking time O(T2) in the worst case, we can conclude
that the total time for the loop is the product of the number of
iterations and the time for the body, i.e., O(T1 ∗ T2).

Remember that O is an upper bound, not the exact amount of
time. Sometimes, this bound is not tight, i.e., there are smaller
upper bounds that are also true. We will talk about this next class.



Sub-routines

If we use a sub-routine S in our algorithm, and we have already
analysed its time as TS(n), then the total cost for all invocations
of the sub-routine will be at most the number of times we use it
times the worst-case time it might take. So if we use it T1 times
(such as in a loop with T1 executions), and we use it on inputs of
size at most m, the total time for all uses is O(T1TS(m)).

Note that we need to distinguish m the size of input we feed to the
sub-routine from n, the original input size for the main procedure.



Example: Selection (Min) Sort

MinSort(A[1, . . . , n]) : arrayofintegers

1. FOR K ← 1 TO n − 1 do:

2. Min← A[K ], index ← K

3. FOR J ← K + 1 TO n do:

4. IF A[J] < Min THEN Min← A[J], index ← J.

5. A[index ]← A[K ],A[K ]← Min.

We work from the inside out, going from the body of the inside
loop to the main algorithm.



Example: Selection (Min) Sort

MinSort(A[1, . . . , n]) : arrayofintegers

1. FOR K ← 1 TO n − 1 do:

2. Min← A[K ], index ← K

3. FOR J ← K + 1 TO n do:

4. IF A[J] < Min THEN Min← A[J], index ← J.

5. A[index ]← A[K ],A[K ]← Min.

The inner-most Line 4 is defined in terms of a fixed number of
basic operations: a comparison, some logic, some variable writes.
It is thus O(1).



Example: Selection (Min) Sort

MinSort(A[1, . . . , n]) : arrayofintegers

1. FOR K ← 1 TO n − 1 do:

2. Min← A[K ], index ← K

3. FOR J ← K + 1 TO n do:

4. O(1) time

5. A[index ]← A[K ],A[K ]← Min.



Example: Selection (Min) Sort

MinSort(A[1, . . . , n]) : arrayofintegers

1. FOR K ← 1 TO n − 1 do:

2. Min← A[K ], index ← K

3. FOR J ← K + 1 TO n do:

4. O(1) time

5. A[index ]← A[K ],A[K ]← Min.



Example: Selection (Min) Sort

MinSort(A[1, . . . , n]) : arrayofintegers

1. FOR K ← 1 TO n − 1 do:

2. Min← A[K ], index ← K

3. FOR J ← K + 1 TO n do:

4. O(1) time

5. A[index ]← A[K ],A[K ]← Min.

Line 3 is a loop, with constant time line 4 inside. It repeats n − K
times, so the total time is O(n − K ). This ranges from constant
time when K reaches n − 1 to O(n) when K = 1. So the
worst-case is O(n).



Example: Selection (Min) Sort

MinSort(A[1, . . . , n]) : arrayofintegers

1. FOR K ← 1 TO n − 1 do:

2. Min← A[K ], index ← K

3. O(n) time loop

4. already included

5. A[index ]← A[K ],A[K ]← Min.



Example: Selection (Min) Sort

MinSort(A[1, . . . , n]) : arrayofintegers

1. FOR K ← 1 TO n − 1 do:

2. Min← A[K ], index ← K

3. O(n) time loop

4. already included

5. A[index ]← A[K ],A[K ]← Min.



Example: Selection (Min) Sort

MinSort(A[1, . . . , n]) : arrayofintegers

1. FOR K ← 1 TO n − 1 do:

2. Min← A[K ], index ← K

3. O(n) time loop

4. already included

5. A[index ]← A[K ],A[K ]← Min.



Example: Selection (Min) Sort

MinSort(A[1, . . . , n]) : arrayofintegers

1. FOR K ← 1 TO n − 1 do:

2. Min← A[K ], index ← K

3. O(n) time loop

4. already included

5. A[index ]← A[K ],A[K ]← Min.

Line 2 and 5 are constant time, so the body of the FOR loop in
line 1 takes O(1 + n + 1) = O(n) total.



Example: Selection (Min) Sort

MinSort(A[1, . . . , n]) : arrayofintegers

1. FOR K ← 1 TO n − 1 do:

2. O(1) time

3. O(n) time loop

4. already included

5. O(1) time



Example: Selection (Min) Sort

MinSort(A[1, . . . , n]) : arrayofintegers

1. FOR K ← 1 TO n − 1 do:

2. O(1) time

3. O(n) time loop

4. already included

5. O(1) time



Example: Selection (Min) Sort

MinSort(A[1, . . . , n]) : arrayofintegers

1. FOR K ← 1 TO n − 1 do:

2. O(1) time

3. O(n) time loop

4. already included

5. O(1) time



Example: Selection (Min) Sort

MinSort(A[1, . . . , n]) : arrayofintegers

1. FOR K ← 1 TO n − 1 do:

2. O(1) time

3. O(n) time loop

4. already included

5. O(1) time

Line 2 and 5 are constant time, so the body of the FOR loop in
line 1 takes O(1 + n + 1) = O(n) total.



Example: Selection (Min) Sort

MinSort(A[1, . . . , n]) : arrayofintegers

1. FOR K ← 1 TO n − 1 do:

2. absorbed below

3. O(n) time

4. already included

5. absorbed above

Finally, line 1 is a loop whose body is O(n) and gets repeated
n − 1 < n times So the whole algorithm is O(n2).
MinSort(A[1, . . . , n]) : arrayofintegers

1. O(n2) time

2. included

3. included

4. included

5. included



Is this the best answer?
O is an upper bound, not always tight. We can ask: is the running
time also lower bounded by a quardratic, or is there a smaller
upper bound? We don’t need to find the “worst-case input” or
give an exact formula to answer this question, just show that
sometimes the algorithm performs at least on the order of n2

operations of some kind.
MinSort(A[1..n]) : arrayofintegers

1. FOR K ← 1 TO n − 1 do:

2. Min← A[K ], index ← K

3. FOR J ← K + 1 TO n do:

4. IF A[J] < Min THEN Min← A[J], index ← J.

5. A[index ]← A[K ],A[K ]← Min.

Look at the first n/2 times we run the loop in line 3. Then
K ≤ n/2, so n − K ≥ n/2. Thus, we run it at least
n/2 ∗ n/2 = n2/4 times total. This is Ω(n2). Thus, the time is
both O(n2) and Ω(n2), so our analysis is tight, and the time is
Θ(n2). So in this example, our first analysis is the best possible.



Order counts all operations

Here’s an example where the non-comparison operations for a
sorting algorithm dominate run time. So counting just the
comparisons doesn’t tell us the complete picture.
BinaryInsertSortr(A[1..n] : arrayofintegers)

1. FOR K ← 2 to n do:

2. Use bin. search to find predecessor position p of A[K ] in
A[1...K − 1].

3. Save A[K ] as V

4. Move elements p + 1...K − 1 over one place in the array.

5. A[p + 1]← V

6. Return A[1..n].

Note that we use at most log n comparisons to perform the binary
search in line 2, and the other operations don’t involve comparisons
at all. So the total number of comparisons is at most n log n.



Order counts all operations
Using our standard inside-out method:
BinaryInsertSortr(A[1..n] : arrayofintegers)

1. FOR K ← 2 to n do:

2. binary search: O(log n) time Use bin. search to find
predecessor position p of A[K ] in A[1...K − 1].

3. O(1) time

4. Up to n elements to move = O(n) time

5. O(1) time

6. Return A[1..n].

So the total time for the inside of the loop (lines 2-5) is:

A O(log n)

B O(1)

C O(n)

D O(n2)

E None of the above



Order counts all operations

Using our standard inside-out method: BinaryInsertSort(A[1..n])

1. FOR K ← 2 to n do:

2. Total time O(n)

3. Return A[1..n].

Hence, total time over all is O(n2).



Is this tight ?

BinaryInsertSortr(A[1..n] : arrayofintegers)

1. FOR K ← 2 to n do:

2. Use bin. search to find predecessor position p of A[K ] in
A[1...K − 1].

3. Save A[K ] as V

4. Move elements p + 1...K − 1 over one place in the array.

5. A[p + 1]← V

6. Return A[1..n].

Which is true?

A The time is Ω(n2) on an already sorted input

B The time is Ω(n2) on a reversely sorted input

C Both of the above

D The time is never Ω(n2).



How O distinguishes between major and incremental
improvements

We have already seen the defininition of O and related order
notations, and have seen some simple ways of using the properties
of O to analyze the time of algorithms up to order.



The summing triple problem

I Input: An array A[1, . . . , n] of integers.

I Summing Triple: A summing triple is a list of three indices
1 ≤ I , J,K ≤ n so that A[I ] + A[J] = A[K ].

I Problem: Is there a summing triple?

I Example: If A[1..5] = [3, 6, 5, 7, 8], 1, 3, 5 would be a summing
triple, since A[1] + A[3] = A[5].



Most Obvious Algorithm

SumTriples(A[1, . . . , n])

1. FOR I = 1 TO n do:

2. FOR J = 1 TO n do:

3. FOR K = 1 to n do:

4. IF A[I ] + A[J] = A[K ] THEN Return True

5. Return False

This algorithm’s time is

A O(n)

B O(n2 log n)

C O(n2)

D O(n3)



Time analysis worked out

SumTriples(A[1, . . . , n])

1. FOR I = 1 TO n do:

2. FOR J = 1 TO n do:

3. FOR K = 1 to n do:

4. IF A[I ] + A[J] = A[K ] THEN Return True

5. Return False

Time analysis: Line 4 : O(1) time.
Three nested loops each always make n iterations, so n3 total
iterations.
Therefore, T (n) ∈ O(n3).



Eliminating Some Redundancy

SumTriples(A[1, . . . , n])

1. FOR I = 1 TO n do:

2. FOR J = I TO n do:

3. FOR K = 1 to n do:

4. IF A[I ] + A[J] = A[K ] THEN Return True

5. Return False

Before, we checked every I and J twice, in both orders. So this
algorithm has eliminated about half of the work of the previous
one. But a constant factor of 1/2 does not change the order, so
T (n) ∈ O(n3) still.



Viewing the algorithm more conceptually

Here’s another way of describing the same algorithm:
For each 1 ≤ I ≤ J ≤ n, we use linear search to see if A[I ] + A[J]
is in the array A[1, . . . , n].

It doesn’t change the algorithm, but it raises the possibility of
using a different search to replace linear search.



If the array were sorted

If we knew A was sorted, then we could replace the linear search
with binary search.

SortedSumTriples(A[1, . . . , n]: sorted array of integers)

1. FOR I = 1 TO n do:

2. FOR J = I TO n do:

3. IF BinarySearch(A,A[I ] + A[J]) Then Return True

4. Return False

How long would this take?

A O(n)

B O(n2 log n)

C O(n2)

D O(n3)



Time analysis of SortedSumTriples

SortedSumTriples(A[1, . . . , n]: sorted array of integers)

1. FOR I = 1 TO n do:

2. FOR J = I TO n do:

3. IF BinarySearch(A,A[I ] + A[J]) Then Return True

4. Return False

Since binary search takes O(log n) time, and we have two nested
loops with fewer than n iterations each, the total time is
O(n2 log n).



No assumptions

We cannot assume the array A is sorted, but we can ensure that
it is sorted:

SumTriples(A[1, . . . , n]: array of integers)

1. BubbleSort(A)

2. Return SortedSumTriples(A).



Is it better?

How much time does SumTriples take? Is it better or worse than
our first O(n3) algorithm?

SumTriples(A[1, . . . , n]: array of integers)

1. BubbleSort(A)

2. Return SortedSumTriples(A).



Analysis of new algorithm

The new algorithm has two unnested parts, sorting and then using
Sorted Sum Triples. We’ve already analyzed the two parts.
BubbleSort takes time O(n2), and SortedSumTriples takes time
O(n2 log n). So the total time is O(n2 + n2 log n) = O(n2 log n).

Because BubbleSort’s time is o of the total time, a better sorting
procedure won’t improve the total time significantly.

Because n2 log n ∈ o(n3), this is an asymptotically strictly better
algorithm than what we started with.



Digression

The best algorithms known for SumTriple take O(n2) time. The
question of whether there is a better algorithm than that is
unknown, and the subject of much active research. If SumTriples
really does require about O(n2 time so do many other problems in
geometry, such as testing whether points are in “general
position”,i..e., no three co-linear.


