
PDIP: Priority Directed Instruction Prefetching
Bhargav Reddy Godala

Princeton University
USA

bgodala@princeton.edu

Sankara Prasad Ramesh
University of California, San Diego

USA
spramesh@ucsd.edu

Gilles A. Pokam
Intel Corporation

USA
gilles.a.pokam@intel.com

Jared Stark
Intel Corporation

USA
jared.w.stark@intel.com

Andre Seznec
Intel Corporation

France
andre.seznec@intel.com

Dean Tullsen
University of California, San Diego

USA
tullsen@ucsd.edu

David I. August
Princeton University

USA
august@princeton.edu

Abstract
Modern server workloads have large code footprints which are
prone to front-end bottlenecks due to instruction cache capac-
ity misses. Even with the aggressive fetch directed instruction
prefetching (FDIP), implemented in modern processors, there
are still significant front-end stalls due to I-Cache misses. A
major portion of misses that occur on a BPU-predicted path
are tolerated by FDIP without causing stalls. Prior work on
instruction prefetching, however, has not been designed to
work with FDIP processors. Their singular goal is reducing
I-Cache misses, whereas FDIP processors are designed to
tolerate them. Designing an instruction prefetcher that works
in conjunction with FDIP requires identifying the fraction of
cache misses that impact front-end performance (that are not
fully hidden by FDIP), and only targeting them.

In this paper, we propose Priority Directed Instruction
Prefetching (PDIP), a novel instruction prefetching technique
that complements FDIP by issuing prefetches for only targets
where FDIP struggles – along the resteer path of front-end
stall-causing events. PDIP identifies these targets and asso-
ciates them with a trigger for future prefetch. At a 43.5KB
budget, PDIP achieves up to 5.1% IPC speedup on important
workloads such as cassandra and a geomean IPC speedup
of 3.2% across 16 benchmarks.

ACM Reference Format:
Bhargav Reddy Godala, Sankara Prasad Ramesh, Gilles A. Pokam,
Jared Stark, Andre Seznec, Dean Tullsen, and David I. August.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0385-0/24/04
https://doi.org/10.1145/3620665.3640394

2024. PDIP: Priority Directed Instruction Prefetching. In 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2 (ASPLOS ’24), April
27-May 1, 2024, La Jolla, CA, USA. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3620665.3640394

1 Introduction
Modern data center and cloud applications are becoming
increasingly complex, featuring a code stack that spans sev-
eral layers of software. As a result, these applications often
exhibit instruction footprints much larger than the instruc-
tion cache, often even the L2 cache. Moreover, the trend is
continuing toward even larger instruction footprints [19, 29].
Applications with such large code footprints are typically
dominated by front-end bottlenecks, as shown in Figure 1,
which analyzes one important, representative workload (top-
down analysis [53] obtained on Alderlake desktop CPU us-
ing Intel’s VTune profiler [6]). This shows three times as
many issue slots lost to front-end bottlenecks than slots used
for instructions that actually commit. Large code footprints
put enormous strain on the instruction cache (L1-I), with ca-
pacity misses inducing a large number of stalls [29] in the
instruction fetch unit. This limits the number of useful in-
structions flowing into the pipeline backend. Increasing the
cache size can address this problem but at a large area and
power cost, and creates implementation challenges related
to meeting strict timing constraints, as the L1-I sits on the
critical path. Prefetching has the potential to address this bot-
tleneck at a lower cost [19, 23, 24, 30, 32, 37, 49]. However,
these techniques have been less effective for datacenter and
cloud workloads which exhibit instruction footprints several
orders of magnitude larger than traditional server applications
[31, 34, 35]. Modern processors implement a decoupled front-
end, aka fetch directed instruction prefetching (FDIP) [45],
as an attempt to remedy this problem [15, 26, 42, 48]. With
FDIP, the L1-I fill is disassociated from its demand access
thus allowing the front-end to aggressively prefetch along the

https://doi.org/10.1145/3620665.3640394
https://doi.org/10.1145/3620665.3640394


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Bhargav, Sankara et al.

16.9%

53.6%

10.6%

18.9%

Retiring Front-End Bound Bad Speculation
Back-End Bound

Figure 1. Top-down issue slots breakdown of cassandra
benchmark on Alderlake host machine.

predicted path with very little sensitivity to decode and back-
end back-pressure. This allows the FDIP prefetcher to hide
most or all of the latency of L1-I misses. FDIP dramatically
changes both the access/miss pattern seen by the L1-I, and
the criticality of misses (some misses are completely hidden
by FDIP, others are not). Recent work on instruction prefetch-
ing [17, 18, 25, 27, 33, 39, 46, 51] have shown they can be
effective in reducing misses, but either fail to account for
the existence of FDIP or the variance in criticality of those
misses. This work, in contrast, seeks to augment FDIP with a
new instruction prefetcher that focuses on only those misses
whose latency is not already tolerated by FDIP. The defin-
ing characteristic of those misses is often their distance from
a branch mispredict (or other front-end mispredict/hazard).
Misses far removed from a mispredict are typically fully cov-
ered by the FDIP prefetch with its ability to run far ahead.
Misses that occur shortly after mispredicted branches are
typically not hidden. This paper presents Priority Directed In-
struction Prefetching (PDIP), a novel instruction prefetching
technique that complements FDIP, only issuing prefetches
for targets known to be front-end critical, or FEC; that is,
misses that in the past have truly resulted in front-end stalls
because they were insufficiently hidden by FDIP. Prior work
(EMISSARY [38]) showed that front-end criticality could be
used to design a more effective instruction cache replacement
algorithm. In this work, we also show that even in the pres-
ence of a FEC-based replacement policy, many FEC misses
remain. Thus, an FEC-based prefetch mechanism can aug-
ment, and even be synergistic with, an FEC-based cache. In
PDIP, cache lines are marked FEC if a prior miss occurred
along a resteered (i.e., after branch misprediction) predicted
path, and exposed the front-end to one or more stalls. PDIP
only considers those lines as prefetch candidates.

In addition, we need a trigger to initiate prefetches. This
work shows that we can associate FEC cache lines with an
instruction that caused a disruption of the front-end (since
it requires a disruption to empty or stall the Fetch Target
Queue, preventing FDIP from hiding the latency). Thus, PDIP
achieves timely prefetch by triggering the prefetch of FEC

cache lines when it sees the associated instruction. In sum-
mary, this paper makes the following contributions:

• We describe the design of PDIP and show how it ad-
dresses two key issues impeding instruction prefetching
today, namely low prefetch effectiveness and high stor-
age requirements.

• We present an evaluation of PDIP alongside a best-
effort evaluation of EIP (Entangled Instruction Prefetcher)
[46]. To the best of our knowledge, EIP is the first in-
struction prefetching work to consider FDIP. Using a
series of 16 large footprint workloads on a detailed
processor simulator modeled after a Golden Cove ma-
chine [12], we demonstrate a geomean IPC gain of
3.2% across all benchmarks for only 43.5 KB storage
cost for PDIP, against a gain of 1.5% for EIP at similar
hardware budget.

• We show that even in the presence of a front-end critical-
ity based cache replacement algorithm such as EMIS-
SARY [38], PDIP is still able to provide great value, re-
alizing a geomean IPC of 3.7% across all benchmarks.

2 Background
This section provides background knowledge of decoupled
front-end microarchitectures and their implications on instruc-
tion prefetching techniques. It also describes prior work [38]
on front-end criticality aware cache replacement.

2.1 Decoupled Front-end
Figure 2 shows a decoupled front-end machine where the
instruction fetch unit (IFU) is decoupled from the instruction
address generator (IAG) via the Fetch Target Queue (FTQ).
The branch prediction unit (BPU), a part of the IAG, includes
the conditional branch predictor, the direct jump address pre-
dictor (aka BTB), the indirect jump predictor, and a return
address stack all feeding the IAG to speculatively compute the
address of the next instruction block to be fetched. The FTQ
is a FIFO queue that is filled with the targets computed by
the IAG along the predicted path. The cache lines en-queued
in the FTQ are prefetched in to the L1-I, thus non-resident
instruction blocks can be prefetched into the L1-I when the
address enters the FTQ rather than on demand when the ad-
dress reaches the IFU. It is common for the IAG to exceed
the throughput of the back-end, keeping the FTQ full in the
absence of squashes in the pipeline.

Demand
Fetch

BPU

N
IP Fetch

Engine

FTQ

Decode Back-
end

Branch Resteer Address

Front-end

IAG
ICachePrefetch Req

IFU

Figure 2. Generic decoupled front-end microarchitecture



PDIP: Priority Directed Instruction Prefetching ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

An important component in a decoupled front-end machine
is the depth of the FTQ, which determines how far the pre-
dicted instruction stream (which drives the prefetching) can
get ahead of the actual fetch demand. A sufficiently large FTQ
offers a deep enough instruction prefetching window such
that a full L1-I miss, and possibly even an L2 miss, can be tol-
erated without stalling the IFU. This assumes the FTQ is full;
given that the BPU nearly always sustains a higher throughput
than the back-end, the FTQ is generally full in the absence of
FTQ resetting events (e.g., branch mispredicts). Modern de-
coupled front-end processors therefore implement deep FTQs
to get the most benefit of prefetching and tolerate cache miss
latency. The importance of FTQ in the context of instruction
prefetching was amply discussed in [28]. The authors show
that most of the performance benefits obtained with recent
instruction prefetching proposals [46] vanish with a decou-
pled front-end machine implementing a modest 24-entry FTQ.
The key insight here is that in the presence of FDIP, which
has the potential to hide the full latency of the majority of
misses, we see high variance in the performance-criticality
of L1-I misses. Some misses have no impact on front-end
(or, naturally, back-end) performance, while others still do.
In this work, therefore, we show that limited prefetching re-
sources should be focused on only the latter, the front-end
critical (FEC) misses. A line is considered as FEC when it
meets the following conditions: (1) the line must have retired
an instruction, (2) the line must have missed the instruction
cache, and (3) the line must have produced front-end stalls as
a result of the miss.

2.2 Front-end Critical Cache Replacement
While this work is the first to consider front-end criticality in
the prefetcher, in this section we describe work that accounts
for FEC misses in the cache itself.

The EMISSARY [38] cache replacement policy identifies
lines as front-end critical, and gives such lines priority in the
replacement policy.

The main idea behind EMISSARY is to preserve the FEC
instruction lines in the L2 cache. Lines identified as priority
L2 cache lines in that work (which we call FEC lines in this
work) are given higher priority for retention at eviction over
the lines that are not preserved (non priority lines). Each
cache block has an additional status bit called P-bit (Priority).

Information pertaining to front-end stall exposure and cache
miss are collected at decode time and cache access time, re-
spectively, and then propagated to the retirement stage. Then,
when a line retires an instruction, these conditions are checked
and the decision to label the line is made.

The EMISSARY policy shields up to n ways per set. They
show that protecting up to 8 ways shows the best performance,
which is also confirmed by our exploration. FEC lines are pro-
moted in an EMISSARY cache by setting their corresponding
P-bit. To avoid over promotion of FEC lines only 3.125% of

all FEC lines are promoted. This helps it avoid over-reacting
to single-instance FEC lines.

In this paper, we show that PDIP is synergistic with EMIS-
SARY in two ways. First, there is a physical synergy – we
only need one mechanism to identify FEC misses, and we can
exploit it either in the cache [38] or the prefetcher (this work),
or both. Second, the two techniques do not redundantly attack
the same problem, but rather are complementary – PDIP pro-
vides higher gains in a system with FEC-aware caches than
in a system without.

3 Do We Need Another Prefetcher?
EMISSARY seeks to remove the most damaging (i.e., front-
end critical) misses from the front-end, and improves overall
performance as a result. Figure 3 shows improved front-end
performance with an EMISSARY cache, on top of FDIP,
which exceeds the gains from doubling the size of the L1-I.
However, this performance still falls far short of FEC-Ideal,
which represents a front-end where every FEC line (as defined
in the previous section) is fully hidden. This argues that there
is still much to be gained by better handling these misses, and
there is likely a role for an additional prefetch engine.

Also included in Figure 3 is the current state of the art
front-end prefetcher, EIP. In this figure, EIP-Analytical rep-
resents the performance-oriented version of the Entangling
Instruction Prefetcher (EIP [46]) with a very large entangle-
ment table (>200KB) that consumes 6 times the resources
of the L1-I. FEC-Ideal refers to a system with an EMIS-
SARY L2 cache at L2, but where EMISSARY-marked FEC
lines are always delivered with the fast latency of the L1-I
cache. EMISSARY policy is the EMISSARY cache at L2
with 8 protected ways per set and 2X IL1 is the configuration
with L1-I twice (64KB) the size of the baseline configuration
(32KB). As shown in the figure, EIP-Analytical outperforms
EMISSARY but still falls short of FEC-Ideal. Furthermore,
when EIP and EMISSARY are combined, they can end up
hurting performance if they are not designed to complement
each other. This not only underscores the need for a better
prefetcher, but one that works in conjunction with a FEC
cache replacement policy such as EMISSARY.

Figure 4 shows FEC lines of each benchmarks as a per-
centage of all instruction lines accessed in the retired path
(first bar) and decode starvation cycles caused by FEC lines
compared to total decode starvation cycles (second bar). It
shows that only 10% of lines (the FEC lines) are causing 62%
of decode starvation cycles. FEC lines that cause more than
10 cycles of decode starvation we call high cost FEC lines,
which constitute 5.08% of all lines. Most of those (4.26% of
the total) also result in an issue queue empty signal, which
means the back-end is also stalling. High cost FEC lines con-
tribute to 56.15% of all decode starvation cycles. High Cost
FEC lines with back-end stalling contributes to 46.83% of
decode starvation cycles. This demonstrates we can focus our



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Bhargav, Sankara et al.

cassandra

tom
cat

kafka

xalan

finagle-http

dotty

tpcc
ycsb

tw
itter

voter

sm
allbank

tatp
sibench

noop

verilator

speedom
eter2.0

G
eom

ean

0%

1%

2%

3%

4%

5%

6%

7%

8%

9% 2X IL1 EMISSARY EIP-Analytical EIP+EMISSARY FEC-Ideal

S
p
e
e
d
u
p
 w

r
t
 F

D
IP

9.9 22.9

Figure 3. Performance gain of various prior techniques on all benchmarks

cassandra

tomcat
kafka

xalan
finagle-http

dotty
tpcc ycsb twitter

voter
smallbank

tatp sibench
noop

verilator
speedometer2.0

Average

0.0
20.0
40.0
60.0
80.0

100.0

% Non FEC lines
% FEC lines

% Non FEC line decode starvation cycles
% FEC line decode starvation cycles

Figure 4. First bar shows the dynamic number of FEC lines as percentage of total lines. Second bar shows the decode starvation
cycles caused by FEC w.r.t total decode starvation cycles.

prefetcher on a very small subset of fetched lines, but still
achieve most of the available gain.

4 PDIP
In designing a prefetcher for an FDIP-equipped processor, it is
important to understand that FDIP already represents a highly
effective prefetcher. Thus, any new prefetcher must be care-
fully designed to complement FDIP rather than run indepen-
dently. This section describes PDIP, our Priority Directed In-
struction Prefetcher, which identifies specific instances where
FDIP’s effectiveness at prefetching instructions is impaired,
such as on the recovery path of a mispredicted branch, as
illustrated in Figure 5.

Re-steer 
Cost

a b p q

Mispred

c d

Wrong path
execution

r

L1I Miss

Figure 5. An example showing a sequence of instructions.
Each box shown represents one instruction. Dashed boxes
are the instructions in the wrong path and dashed line shows
wasted cycles due to resteering along with the cost of a miss
in instruction cache

In the case of a mispredicted branch, the front-end pipeline
is flushed, including the FTQ; thus, the latency of cache
misses on the resteer path of a branch is exposed and can’t
be tolerated by FDIP, because they appear in the empty or
near-empty FTQ with insufficient lead time to prefetch them
effectively. PDIP attempts to select both the right prefetch
candidate, e.g., block r in the figure, and identify the appropri-
ate trigger instruction for the prefetch candidate, e.g., block
b in the figure. In this way, PDIP essentially jump-starts the
FTQ, prefetching instruction blocks before their addresses
appear in the FTQ, but only for those blocks whose addresses
will appear in the FTQ too late to prefetch effectively.

4.1 Selecting Prefetch Candidates
Drawing from the insight that the performance criticality of in-
struction cache misses is highly variable, PDIP only considers
prefetch candidates among lines identified as high cost FEC
line which also experienced back-end stalls. This serves two
purposes. First, because most instruction cache lines never
reach FEC status, the number of unique prefetch candidates
to track is in most cases limited, heavily reducing storage
cost requirements compared to prior works [17, 18, 46, 51].
Second, by considering prefetch candidates only among FEC



PDIP: Priority Directed Instruction Prefetching ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

lines, PDIP filters out a significant number of unnecessary
prefetches, improving its effectiveness.

4.2 Selecting a Trigger Instruction
We will use the example in Figure 6 to illustrate how PDIP
finds a trigger and associates it with a prefetch candidate.

a

p

q

c

d

a

b

b

Fetch
Decode IEW Retire

a

b

c

dp

q

p

q

Pr
om

ot
e 

r t
o

FE
Cr

b r

In
se

rt 
(b

,r)
 in

PD
IP

 T
ab

le

Ti
m

e

a

p

q

c

d

r

b

b

a

b

c

dp

q

p

q

r

r

pr
ef

et
ch

 r

a

r
r

Lookup b

r

hi
t

Fetch
Decode IEW Retire

First Instance Second Instance

PDIP Table
Update and Access

Retiring Instruction

Mispredicting Branch

Wrong path Instruction

Cache Miss InstructionPipeline bubble

Action

Figure 6. An example showing sequence of instructions in
the processor pipeline.

As discussed in the previous section, PDIP selects its
prefetch candidate exclusively among FEC lines. Based on the
conditions for promoting a line to FEC status (same as [38]),
the line must have met three conditions. It is exposed to front-
end stalls after missing in the instruction cache, and the line
must have retired at least one instruction (line was not fetched
on the wrong path). In the figure, for example, when the block
labeled r retires the first time (see Retire column in First In-
stance), it has missed in the cache after it has been exposed
to pipeline bubbles. Block r is therefore considered by PDIP
as a prefetch candidate.

Because FDIP-fetched lines should be fully hidden in a
full, large FTQ, and because the FTQ should be full when ex-
ecution is sufficiently removed from a resteer event (a resteer
event is one that resets and redirects the front-end, empty-
ing the FTQ), this implies that a miss that incurs front-end
stalls has been fetched in the wake of a resteer event. In our
example, block r in the figure sits on the resteer path of the
instruction that caused the FTQ to be flushed – block b which
was mispredicted and caused a pipeline flush.

PDIP, therefore, associates the trigger instruction of the
prefetch candidate, i.e., block r in the figure, to the front-end
resteering instruction, i.e., block b. PDIP picks the front-end
resteering instruction according to the type of the front-end
stall event. There are a couple of categories of events that

can expose L1-I misses to front-end stalls. The first are those
that cause a resteer (flush) of the front-end. These include
branch mispredicts (including BTB target mispredicts) and
BTB misses. These each expose the front-end to stalls because
when the FTQ is empty, the interval between prefetch (FTQ
entry) and demand fetch will be too short. The other category
is latencies that exceed the ability of the FTQ to hide. This
includes L1-I misses that miss in both the L1-I and the L2
(and possibly L3 as well). These will also be marked as FEC
because they incur front-end stalls even in the presence of
a full FTQ. It should be noted that we also experimented
with instruction TLB misses as a trackable event that can also
expose the front-end to cache-miss-related stalls, but saw no
performance gain in doing so, so these results are not included.
But it is possible that other workloads would be sensitive to
those.

For front-end stalls due to control flow mispredicts, PDIP
identifies the trigger instruction as the mispredicting branch
instruction, e.g., block b in the figure, or the instruction miss-
ing in the BTB. For front-end stalls in the absence of a resteer
event (i.e., long-latency misses) PDIP identifies the trigger
instruction as the last taken branch instruction that was retired.

The trigger instruction (block b in our running example)
and its prefetch candidate (block r) are tracked by means of
a PDIP table. The table is accessed once per new FTQ entry
since an FTQ entry represents a basic block (see block b under
Fetch column in Second Instance). On a match, a prefetch to
the associated target address is issued, e.g., prefetch r in the
figure, which eliminates the bubble observed previously, as
shown in the figure with block r retiring without encountering
a bubble in the Second Instance.

4.3 Synergy between PDIP and FDIP
FDIP hinges on the ability of the BPU to predict a stream of
instruction addresses that the IFU can then prefetch into the
instruction cache. The control flow prediction structures in
a BPU, namely the BTB and the various history tables, are
therefore critical to FDIP efficiency since they all contribute
in some form to the BPU accuracy. The BTB keeps track
of taken branches and provides a target prediction while the
history tables are used to produce a direction prediction for
these branches. FDIP outperforms other prefetch mechanisms
because the stream of predicted instruction addresses is the
highest quality prediction of future L1-I accesses available.

Data center and cloud workloads put enormous strain on
these control flow prediction structures that are not sufficiently
provisioned to handle their large code footprints. The BTB,
for instance, is not large enough to track all taken branches
and the history tables not big enough to capture enough state
to produce a prediction for each such branch with high con-
fidence. For FDIP, this translates to reduced opportunities
to prefetch down the BPU predicted path since these branch
mispredicts cause a pipeline flush of front-end structures.



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Bhargav, Sankara et al.

Worse, these large-footprint applications also place tremen-
dous pressure on the L1-I. Thus, as FDIP loses effectiveness
due to the increased pressure on the branch predictor, the
problem that FDIP is trying to solve (L1-I misses) is also exac-
erbated. Put another way, with FDIP, the cost of a mispredict
is threefold – the traditional two costs (the cost of squashing
the wrong path and the cost of refilling the pipeline) plus a
new one, the exposure to front-end L1-I misses that FDIP
can no longer tolerate. And as the code footprint continues to
increase, the third cost can begin to dominate.

BPU

ICache

FTQ

PQ

L2

PDIP

PDIP
Table

NIP

Frontend Backend

Decode
IFU

Figure 7. PDIP Pipeline showing new components added in
gray blocks

5 Design Implementation
Figure 7 shows the main PDIP building blocks and how they
integrate into a decoupled front-end processor. The BPU feeds
the PDIP controller with the block address of a branch on a
BTB hit, or the block address of the NIP (Next Instruction
Pointer) on a miss. The PDIP controller uses this address to
index the PDIP Table to retrieve the address of a prefetch
candidate. This address is expanded to a full physical address
and sent to a Prefetch Queue (PQ). PQ enqueues the address
only if there is a free entry and enough MSHR registers to
handle demand requests; otherwise, the address is dropped.
This is done to ensure demand requests are not penalized by
aggressive prefetching. PQ probes the instruction cache with
each entry and only sends a prefetch request to the next level
cache on a probe miss and if there are still enough MSHR
registers available; otherwise the request is also dropped. A
threshold of 2 entries is used to ensure demand accesses are
not penalized. We empirically determined this value works
best for our workloads.

5.1 PDIP Table
The PDIP table associates a prefetch candidate to a front-end
stall-causing instruction, i.e., the trigger instruction. When
the front-end stall-causing event is caused by a control flow
hazard, the trigger is always a branch instruction. In the case
of a long-latency miss, we choose the last taken branch as the
trigger. In practice, however, we associate the prefetch can-
didate to the block address of the trigger instruction instead

of the PC address of the trigger. Table insertion or look up,
therefore, uses block address. This allows the PDIP Table to
still be able to retrieve entries that miss in the BTB.

TAG FEC Line 1

b r

LRU

1

Mask

1 1 0 0

FEC Line 2 Mask

0 0 0 0

Figure 8. A PDIP Table with two targets per entry

Because a block may contain more than one branch, it is
possible that more than one prefetch candidate also maps to
the same entry in the table. Thus each entry in the table con-
tains multiple prefetch targets. Each target can also indicate
any of the following four cache blocks in the address space
for prefetching via a 4-bit mask, when they share the same
trigger. This provides compaction and nicely handles basic
blocks that span multiple cache lines. We show the design
of the PDIP Table in Figure 8. A set associative table design
is used to reduce conflict misses. All configurations of the
PDIP table we evaluate use a fixed 512 sets and we vary the
associativity appropriately. We validated that using a 10-bit
tag reduces aliasing considerably.

The FEC line address field stores the physical address of a
prefetch candidate. Mask bits in the example represents the
3rd and 4th following blocks; thus, when triggered, block r,
r+3*blocksize, and r+4*blocksize would be prefetched.

5.2 Optimizing Table Size
An indirect branch could potentially lead to a different target
each time it executes. Similarly, a return instruction could
jump to a different address each time the same function is
invoked in a different calling context. We choose to ignore
return jumps to reduce pollution in the table but other indirect
branches are inserted.

To improve prefetch accuracy, in addition to the tag we
also experimented with augmenting the table with path in-
formation of the last three branches leading to the trigger. A
prefetch candidate is fed to the PQ only if both the TAG and
path information match. The performance gains obtained (not
reproduced here) were not significant enough to justify the
added complexity of the design.

5.3 Optimizing Table Occupancy
Even focusing the prefetcher only on FEC lines, we still
found some cases with significant cache pollution. Thus, we
examined two mechanisms to reduce pollution with minimal
impact on the most effective prefetches, and both work by
inserting lines more selectively into the PDIP table. First, we
insert only high cost FEC lines that cause back-end stalls
in the table. Second, we insert into the table with a reduced
probability – in this way, a line marked FEC once is less likely
to be inserted, but any line repeatedly marked will be inserted.
We examined probabilities from 1 to .03, and found .25 to
provide the best overall gains.



PDIP: Priority Directed Instruction Prefetching ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

5.4 Hardware Storage Overhead
The Metadata of PDIP involves two components, an aug-
mented cache to track FEC lines and the PDIP table which
stores the triggers and targets. The storage overhead of the
bit to identify FEC lines (included in EMISSARY, but also
used by PDIP), in both the L1-I and L2, would be about 4
KB for our configuration. Our default PDIP table configura-
tion has 512 sets, is 8 way set associativity with 2 physical
address targets and a 4-bit offset mask per entry. Table sizes
are scaled by increasing associativity. Each target requires 34
bits of physical address, each tag is 10 bits and one LRU bit is
used for each way and 4 bits of mask per target, which results
in 356352 bits (43.5KB) of storage for a table with 512 sets
and 8 ways.

6 Simulation Methodology
This section provides a description of the simulation infras-
tructure, the large code footprint workloads, and policies used
to evaluate PDIP.

6.1 Simulation Model
Our baseline CPU configuration is modeled after a Golden
Cove [12] (commercially known as Alder Lake) CPU core
microarchitecture using the gem5 [20] simulator. Table 1
shows some of the key parameters modeled in this study.
Workloads are simulated using an out-of-order, execution-
driven CPU model (O3CPU) in Full system simulation which
models a full operating system (Ubuntu) and are running
multi-threaded JAVA applications. The O3CPU models wrong
path execution.

The workloads are first warmed up for approximately 10
million instructions, during which time the caches, branch
predictor, and other structures are also warmed up. After
this warm-up period, the simulation switches to detail mode
(O3CPU) and runs for a further 100 million instructions.

6.2 Baseline Description
A key contribution and distinguisher of this work is the fact
that we faithfully model a very aggressive processor front-
end, extending gem5’s O3CPU model to implement Fetch
Directed Instruction Prefetching (FDIP), thus supporting a
decoupled front-end. Since performance of FDIP directly cor-
relates with the accuracy of the branch predictor, we made
improvements to the BPU of gem5 by adding an ITTAGE
indirect predictor [44], using a large BTB (8K Entries) and
fixed several bugs. We have added support to the BPU indi-
rect predictor and the BTB to enqueue the predicted cache
lines into the FTQ. The FTQ can directly issue prefetches in
the L1-I. We also model a prefetch queue (PQ) alongside the
FTQ to support various prefetch policies explored in this pa-
per. To ensure we don’t have duplicate prefetches, targets are
checked against the FTQ before issuing a prefetch. Control
flow resteers would flush the FTQ before resuming fetch from

the correct path. As gem5 is execution-driven, the wrong path
effects of such resteers are also accurately modeled. We have
also added an early correction feature in the front-end where
a branch PC is pre-decoded at the time of fetch to identify
bogus branches in the BTB and resteer the FDIP pipeline. Our
updated FDIP model provides a 27.1% improvement over the
standard O3CPU model without FDIP. We use a 24-entry
FTQ in our baseline (each entry represents a basic block),
which strikes a balance between being deep enough to toler-
ate miss latency while preventing the front-end from being
overly aggressive and introducing negative effects. FDIP is
a structural change to the front-end pipeline of the processor
and has been a key feature in the industry for over a decade.
Thus, we believe any front-end CPU microarchitecture work
has little relevance without FDIP and should build upon this
baseline with FDIP. We utilized our FDIP-supported gem5 as
the baseline for all experiments presented in this study – thus
addressing the concerns raised by Ishii et al [28] on the need
for a representative baseline in academia.

Field \ Model Alderlake like
ISA X86
Private L1-I Cache 32kB (8-way, 64B)

2 cycle hit, 16 MSHR
Private L1-D Cache 64kB (16-way, 64B)

2 cycle hit, 16 MSHR
Private L2 Cache 1MB (16-way, 64B)

10 cycle hit, 32 MSHR
Shared L3 Cache 2MB (16-way, 64B)

20 cycle hit, 64 MSHR
Branch Predictor TAGE (64KB)[52]/

ITTAGE(64KB)[50]
BTB size 8K entries (119.01 KB)
FTQ 24 entry [28]
Prefetch Queue 40 cachelines
Decode/Retire 12 wide
ROB Entries 512
Issue/Load/Store 194/ 144 / 112
Queue
Int/Vec Registers 448 / 400

Table 1. Processor configurations

6.3 Benchmarks
We use 16 widely used client-side and server-side multi-
threaded workloads with large code footprints to evaluate
PDIP. Table 2 contains all front-end heavy benchmarks used
from various benchmark suites [4, 16, 21, 22, 44]. Bench-
marks with an L1-I MPKI of over 20 are used in this work.
We validated characteristics of these workloads by Top Down
analysis using Intel’s VTune on a Linux System with Alder-
lake CPU.

6.4 OS and IO bottlenecks : Full System
In a Full System simulation, OS and IO bottlenecks could
impact the overall performance and thus we spent significant
time minimizing noise from OS (scheduler interrupt) and IO
(disk interrupts) to ensure negligible (on average less than
0.2%) divergence in OS effects between runs. E.g., one trick
we deploy is to use “retired instruction counts” rather than



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Bhargav, Sankara et al.

Benchmark Suite Benchmarks
DaCapo [21] cassandra [1], tomcat [3],

kafka [2], xalan
Renaissance [44] finagle-http [10] , dotty [5]
OLTB Bench [22] tpcc [9] , ycsb [13], twitter,
(PostgreSQL [7]) voter, smallbank, tatp,

sibench, noop
Chipyard [16] verilator [11]
Browser Bench [4] speedometer2.0 [8]

Table 2. Benchmarks used to evaluate PDIP.

cycle counts to drive the OS scheduler quantum, thus pro-
ducing far more repeatable runs even when the optimizations
produced different timing characteristics. The OS scheduler
decides which process thread to schedule on available CPUs.
To reduce noise we use a real time scheduling policy for the
benchmarks with 100% of CPU time dedicated to real time
processes. Another cause of divergence is due to IO events. A
process waiting on IO is usually switched out to allow other
processes to use CPU resources. In order to reduce variability
introduced by IO events we used very low latency for disk IO
operations so that a process need not switch out waiting for
disk. Even after using these and a few other tricks, we still
observe negligible divergence caused by pending instructions
in the CPU pipeline from the time an interrupt is received.

6.5 Policies Evaluated
EMISSARY offers two main configuration knobs, namely
the number of FEC ways per set and a random probability
to actually promote lines identified as FEC. We empirically
found promoting FEC-qualified lines at retirement with a
random probability of 1/32 and reserving 8 ways in the L2
provides the best performance across our benchmark suite.
Unless otherwise stated, then, we assume that FEC-qualified
lines are promoted at retirement with a 3.125% probability,
and the L2 cache preserves 8 ways for FEC lines.

We evaluate PDIP alongside two other configurations. The
first one, 2X IL1, is similar to our baseline but with twice the
size of the L1-I. The main idea with 2X IL1 is understanding
tradeoffs between increasing cache size vs. investment in new
approaches. The second configuration is EIP [46], a recent
instruction prefetching mechanism. That work evaluated EIP
using the ChampSim [14] simulator. In this work, we model
2 versions of EIP in gem5, which enables a more faithful
model of FDIP and, unlike ChampSim, accurately models
wrong path execution. EIP-analytical is an analytical model
that relaxes practical considerations. For instance, we assume
accessing the entangling table and prefetching the entire basic
block for each dst_entangled entry is done in one cycle. We
model a history buffer with 40 entries and an unlimited en-
tangling table. A history buffer size of 1024 was considered
but it didn’t provide any improvement over 40 entries, thus
we used a 40-entry history buffer for all configurations of EIP.

Policy Name Description
Baseline Golden Cove like core
EMISSARY Priority Ways{L2(8-ways)}
PDIP(S) PDIP with S KB PDIP Table
EIP-Analytical Analytical model of EIP [46] with

large storage budget for performance
EIP(S) EIP prefetcher with S KB storage
2X IL1 64KB Instruction Cache

Table 3. Policies Table

The entangling table is updated in the commit stage of the
pipeline to avoid wrong path accesses polluting the table. The
history buffer is implemented in the commit stage to contain
only those entries in the correct path. L1-I miss latencies are
captured at fetch but used at commit to compute entangling
distances. To avoid misses in the instruction TLB, full phys-
ical address is stored in the entangling table. Similar to the
PDIP pipeline, if the PQ is full then any new prefetch request
is dropped. We also implement other prefetchers, EIP(S), that
have stricter storage budgets (i.e., S KB).

The different policies evaluated are summarized in Table 3.
We measure performance relative to baseline in Instructions
Per Cycle (IPC), and we use Geometric Mean for the mean
IPC speedup.

7 Evaluation
We evaluated the benchmarks discussed in Section 6.3 on
the policies described in Table 3 using the following metrics:
IPC, prefetch accuracy, prefetch coverage and prefetch rate
per kilo instructions. We examine multiple PDIP Table sizes.

Figure 9 provides data on our benchmark set, showing
absolute MPKI when running on our baseline configuration.
Average MPKI on the instruction cache, L2 instruction-side
and L3 are very high, about 85.9, 12.4 and 3.06, respectively.

7.1 Performance Analysis
Figure 10 shows relative IPC gains across our benchmarks
for the policies in Table 3. A PDIP Table of 512 sets and
8-way associativity is used in PDIP(44). In most benchmarks
PDIP(44) matches or outperforms EIP-Analytical while main-
taining practical implementation considerations and utiliz-
ing 5 times lesser storage. The PDIP(44) shows a geomean
speedup of 3.15% over the FDIP baseline as compared to
1.5% speedup of EIP(46) at similar storage budget.

As shown in Figure 3, EIP suffers when paired with EMIS-
SARY, lacking synergy with the state-of-the-art replacement
algorithm. Conversely, PDIP is carefully designed to com-
plement both FDIP and EMISSARY, and provides additional
gains over each resulting in a geomean speedup of 3.7%. The
combination of PDIP(44)+EMISSARY thus captures 72.5%
of FEC-Ideal, described in Section 3.

Since EMISSARY preserves instructions in L2, one draw-
back is that it causes contention for L2 data accesses. For



PDIP: Priority Directed Instruction Prefetching ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

cassandra

tom
cat

kafka

xalan

finagle-http

dotty

tpcc
ycsb

tw
itter

voter

sm
allbank

tatp
sibench

noop

verilator

speedom
eter2.0

Average

0

50

100

150
L1I L2I L2D L3

M
P
K
I

Figure 9. Misses Per Kilo Instructions (MPKI) at L1-I, L2-I and L2-D (instruction and data misses in the L2 cache, respectively),
and L3 caches of benchmarks presented in this work

cassandra

tomcat
kafka

xalan
finagle-http

dotty
tpcc

ycsb
twitter

voter
smallbank

tatp
sibench

noop
verilator

speedometer2.0

Geomean

−1%

0%

1%

2%

3%

4%

5%

6%

7%
EIP(46) EIP-Analytical EMISSARY PDIP(44) PDIP(44)+EMISSARY

Sp
ee

du
p

w
rt

FD
IP

7.1 9.9 14.5

PDIP(44) Zero cost

Figure 10. Speedup Comparison

example, the dotty, tatp and smallbank benchmarks all show
a considerable increase in L2 data MPKI with EMISSARY
enabled. Thus, FEC lines stored in L2 can reduce the amount
of space available for L2 data, resulting in performance degra-
dation. Therefore, benchmarks with higher L2 data pressure
could cause an increase in L2 data MPKI with EMISSARY
enabled. This results in PDIP+EMISSARY having slightly
lower performance than PDIP only in such scenarios. On the
other hand, for benchmarks like verilator with very low L2
data pressure, they are more complementary.

7.2 Prefetch Timeliness And Accuracy
To understand the timeliness of PDIP prefetches we imple-
ment and compare with a zero cost prefetch policy, where
each prefetch request is served with zero cycle penalty and
placed in L1-I. A no cost prefetch of PDIP(44) shows a ge-
omean 4.11% gain over baseline. PDIP(44) achieves 76.58%
of a zero cost policy at the same hardware budget, which
places a ceiling on lost performance due to partial misses.
PDIP achieves at least 75% of zero cost policy even at larger

table sizes. Further, Figure 11 shows the number of late
prefetches (partial hits) issued by PDIP. On average 12.6% of
prefetches requests issued by PDIP are late, indicating that
the heavy majority of prefetches are timely and contribute to
the performance gain.

csndra
tm
ct

kfka
xln
fngl
dtty
tpcc
ycsb
tw
tr

vtr
sbnk
tatp
sib
np vrltr
spm

2
gm
ean

0%
5%
10%
15%
20% PDIP(44) EIP(46)

%
La
te
Pr
ef
et
ch

Figure 11. % of Late Prefetches per Benchmark in PDIP(44)

Table 4 captures the Mean Prefetch per kilo instructions
(PPKI) of all policies and demonstrates the accuracy of prefetches
of different PDIP configurations in comparison to EIP(46) and



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Bhargav, Sankara et al.

Metric EIP EIP PDIP PDIP
(46) Analytical (11) (44)

PPKI 22 40 21 32
Accuracy 44% 45% 55% 54%

Table 4. Average Prefetch per Kilo Instructions (PPKI) and
Prefetch Accuracy of all prefetch policies

EIP-Analytical. Accuracy is defined as the % of prefetches
that were accessed by a demand fetch before eviction. Thus
the prefetches must be useful and timely for high accuracy.
With large code footprints, too many inaccurate prefetches
may evict useful lines in the L1-I leading to contention. Any
discussion of prefetch effectiveness must also account for the
rate of prefetches issued by the policy.

Across our benchmarks, PDIP prefetches on average show
accuracy of 55%, while the EIP policies shows an accuracy
of 45%. The preferred PDIP policy PDIP(44) has a PPKI of
32 and thus issues 45% more prefetches, yet is more accu-
rate than EIP(46) at similar storage budget. A storage-limited
version, PDIP(11), issues the same number of prefetches as
EIP(46) while being 4 times smaller and still maintaining
higher accuracy. Thus the PDIP configurations store more rel-
evant metadata, more efficiently. EIP-Analytical and EIP(46)
have similar prefetch accuracy but EIP-Analytical issues
nearly 2 times more prefetch requests, putting more pressure
on the L1-I with more inaccurate prefetches.

7.3 Prefetch Effectiveness

c
s
n
d
r
a

t
m

c
t

k
a
fk

a

x
ln

fn
g
l

d
t
t
y

t
p
c
c

y
c
s
b

t
w

t
r

v
t
r

s
b
n
k

t
a
t
p

s
ib

n
p

v
r
lt

r

s
p
m

2

g
m

e
a
n

0%

10%

20%

30%

40%

50%

60%

70%

PDIP(44) EIP(46)

%
 r

e
d
u
c
t
io

n
 F

E
C

 S
t
a
ll
s

Figure 12. % reduction FEC stalls per benchmark in PDIP(44)
and EIP(46)

As discussed in Section 3, L1-I misses have a high variance
in performance criticality, depending on whether or not they
are exposed to the FDIP front-end. It was also found that a
small number of lines contribute to the majority of front-end
stalls. Thus, coverage of critical stalls is a better metric of
comparative prefetch effectiveness than coverage of prefetch
lines. For example, by prioritizing the criticality of lines, PDIP
reduces FEC stalls by an average of 42%, compared to 19%
with EIP for a similar hardware budget. In addition, Figure 12

shows that PDIP reduces FEC stalls by 50% or more in over
9 benchmarks with high FEC line coverage. This translates
to a reduction in total stalls of 16% for PDIP and 8% for EIP.
Benchmarks with lower L1-I pressure and fewer FEC lines
(such as kafka and speedometer2.0 as shown in Figures 9
& 4) show similar reductions in FEC stalls with PDIP and
EIP. However, because PDIP maintains higher performance
by focusing on fewer lines, it generates fewer prefetches
and consequently half as many useless prefetches (prefetches
evicted without hits) as EIP. Thus, PDIP self-adjusts better
in such benchmarks and causes less cache pollution than
other methods. In contrast, in benchmarks with very high
FEC pressure (such as verilator), PDIP aggressively targets
FEC lines, generating over 10 times as many prefetches as
EIP, thus reducing FEC stalls by 12% compared to EIP’s
0.05%. For such benchmarks, complementary techniques like
EMISSARY work in tandem, reducing FEC stalls by 46%
in the PDIP+EMISSARY configuration. Despite the focus
on criticality, Section 7.2 shows that PDIP prefetches are
still sufficiently timely, generating more accurate prefetches
while covering more of the critical stalls as compared to other
prefetchers, while targeting fewer lines. For criticality-based
prefetchers, instead of measuring total prefetch line coverage,
we prefer to define coverage over front-end critical misses
(the ones that actually impact performance) rather than all
misses. Thus, our definition of coverage is the percentage of
all FEC misses that are targeted by PDIP. On average, PDIP
has over 67% coverage of FEC lines.

7.4 PDIP Table Sensitivity Analysis
We study the impact of scaling PDIP Table size on perfor-
mance by varying the number of ways. We model PDIP tables
from 11KB to 87KB by having fixed 512 sets and varying the
associativity from 2 to 16. Figure 13 shows performance gain
with respect to the FDIP baseline. We store up to 2 targets
and 4 consecutive offsets per entry for all PDIP policies, as
empirical analysis showed 95% of targets are stored with 2
targets per entry. PDIP shows strong scaling for the majority
of benchmarks up to 43.5KB but then shows diminishing
returns thereafter.

All benchmarks except verilator shows either improved
or same performance with increase in PDIP Table size. We
used optimized (using Facebook’s BOLT [41]) binary which
has unusually long basic blocks which don’t fit in the PDIP
Table well. In case of verilator increasing mask bits per
entry shows better scaling than increasing total number of
entries.

7.5 Energy and Area Analysis
We modified McPAT [36] to model the PDIP structures to
generate energy and area overheads. Table 5 shows the %
increases in energy consumption and area overhead of the
CPU core. As we can see all the configurations provide suffi-
cient speedups in relation to their energy and area overheads.



PDIP: Priority Directed Instruction Prefetching ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

PDIP(44) provides the right balance of resource usage and
performance.

Metric PDIP(11) PDIP(22) PDIP(44) PDIP(87)
Energy 0.25% 0.55% 0.62% 0.64%
Area 0.31% 0.52% 0.96% 2.84%

Table 5. Percentage increase in CPU core Energy consump-
tion and Area over baseline modeled in McPAT

7.6 BTB Sensitivity Analysis
The performance of the FDIP front-end depends critically on
the accuracy of the BPU. Thus, PDIP should also be compared
with alternative approaches to improve the front-end with
more BPU resources. For large code footprints, BTB budget
is the main bottleneck of performance over BPU table sizes.
Our experiments confirm this trend that the size of the BTB
is a more important factor in scaling than the size of the
BPU tables. When we model a large, highly accurate BPU
that matches industry standards, we observe that scaling to
larger BPU table sizes gives very little variation in results.
In this section, we examine the effect of larger BTBs, both
to (1) show the efficacy of PDIP even in the presence of
future, aggressive BTBs, but also (2) to demonstrate that
PDIP provides speedup in a much more area-efficient manner
than BTB resizing alone. We are examining BTB sizes of <
8k entry, representative of efficiency cores, 8K-32K entries,
representative of current and upcoming high performance
cores, and >32k entries which correspond to future cores
and an extended examination for comprehensive insights.
Figure 14 shows that at lower BTB sizes, FDIP’s poorer
performance allows additional headroom for a prefetcher
and PDIP(44) captures most of this, showing 4.32% speedup
at 4K-entry BTB (59KB) and 3.15% speedup at 8K-entry
BTB (119KB) over FDIP at their respective BTB sizes. For
larger BTB sizes, there is limited headroom available, so
PDIP(11) and PDIP(44) converge. Also, since PDIP uses the
same tracking hardware as EMISSARY, PDIP paired with
EMISSARY provides the most storage efficient solution at
any BTB size, but for brevity, it is omitted from the following
discussion.

Figure 15 compares the storage effectiveness of a prefetcher
as compared to scaling the BTB. It shows one of the PDIP
configurations is always a better use of storage than scaling
the BTB at every stage. Conversely, EIP is always a more in-
efficient use of storage than increasing BTB size. At low BTB
sizes, corresponding to efficiency cores, the smaller PDIP(11)
provides higher scaled performance. For PDIP(11) with 8k-
entry BTB, FDIP would need 16KB additional BTB scaling
as compared to PDIP’s 11KB to match its performance. At
larger BTB sizes, corresponding to high performance cores,
the higher performance of PDIP(44) is apparent. For PDIP(44)
with 32k-entry BTB, FDIP would need 111KB additional
BTB scaling as compared to 44KB of additional storage to

match the same performance as PDIP. Thus PDIP(44) uses
60% lesser additional storage. We see that PDIP (except in
the case of a very small BTB) provides significantly more
efficient use of storage than scaling the BTB and these gains
would improve when paired with EMISSARY. Furthermore,
this also corroborates Ishii et al’s[28] observation that prior
prefetching techniques provide little performance improve-
ment over modern FDIP machines with large BTBs [12, 47]
as evidenced in Figure 14 with EIP. The criticality-aware
nature of PDIP targets scenarios where FDIP fails and thus
shows performance over FDIP regardless of the BTB size,
showing more than 1.0% speedup even with a 64K-entry BTB
(945KB).

7.7 Prefetch Triggers Analysis
A prefetch trigger in PDIP is always associated with a front-
end stall-causing event, such as a branch mispredict or a full
FTQ. In the former case, we use the mispredicted branch as
the prefetch trigger, while in the latter case we use the last
taken branch instead. Here we examine the distribution of the
types of prefetch triggers that lead to a target being prefetched.
Figure 16 shows that, on average, branch mispredictions con-
tribute to 89% of the issued prefetch targets, while last taken
branches contribute to only 11%.

8 Related Work
8.1 Hardware Instruction Prefetchers
EIP [46] proposed entangling, i.e., associating, of a cache
miss causing line of a variable latency L, with an entry that
was accessed L cycles prior. This association should allow
it to prefetch it in a timely manner the next time the same
line is accessed along the same execution path. Latency based
entangling could improve cache miss rate by prefetching
lines long before they are used but may end up evicting cache
lines which are critical for improving performance. Other
results [28] agree with ours, that EIP does not show heavy
improvement over an aggressive FDIP frontend.

FNL+MMA [51] prefetcher combines two techniques –
Footprint Next Line(FNL) and Multiple Miss Ahead(MMA)
prefetcher. FNL predicts the "worth" of the next 5 consecutive
blocks of a block B which missed in a shadow I-Cache. A
shadow I-Cache contains only tags and acts as a proxy for
I-Cache misses. MMA predicts the block that is going to miss
after a fixed number of n misses from the current block. The
observation was that the same block is going to miss again
and similarly a next block will be used in the near future.
This observation is similar to that of PDIP in that the same
prefetch target and its associated branch trigger are going to
cause bubbles in the pipeline again.

Several "Record and Replay" techniques [17, 23, 30, 49]
were proposed to prefetch instruction blocks well ahead of
time using a history buffer which records the sequence of



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Bhargav, Sankara et al.

cassandra

tom
cat

kafka

xalan

finagle-http

dotty

tpcc
ycsb

tw
itter

voter

sm
allbank

tatp
sibench

noop

verilator

speedom
eter2.0

G
eom

ean

0%

1%

2%

3%

4%

5%

6%

PDIP(11) PDIP(22) PDIP(44) PDIP(87)

S
p
e
e
d
u
p
 w

r
t
 F

D
IP

Figure 13. PDIP Policies with various PDIP Table configurations

Number of BTB entries%
 IP

C
 g

ai
n 

at
 r

es
pe

ct
iv

e 
B

T
B

 b
as

el
in

e

-1%

%

1%

2%

3%

4%

5%

4K 8K 16K 32K 64K 128K

EIP(46) PDIP(11) PDIP(44) PDIP(44) + EMISSARY

Figure 14. % IPC speedup of prefetch policies at various
BTB sizes.

cache blocks. MANA [17] and PIF [23] (Proactive Instruc-
tion Fetch) were similar to the data cache prefetching tech-
nique [40]. These techniques take advantage of temporal and
spatial locality of the blocks accessed and store them in a table
which is accessed when a new instruction block is accessed; it
then prefetches targets from the table. MANA proposes tech-
niques to store target addresses in a storage-efficient way us-
ing High-Order-Bits-Patterns’ Table(HOBPT). blocks which
were significant in improving performance. PDIP Table can
be augmented with HOBPT to address out of page entries
efficiently.

Similary SN4L+Dis+BTB [18] combines three techniques.
SN4L handles contiguous blocks, Dis handles non-contiguous
blocks and BTB is an improvised Confluence[31] solution.
Contiguous and non-contiguous blocks can be handled by
FDIP as long as branch instructions found don’t miss in BTB.
Using a large enough BTB ensures that reused entries don’t
miss frequently in BTB which leaves cold branch instructions.
Our observation was that the majority of BTB misses are
due to cold branch instructions. Jukebox [49] is specifically
designed for serverless functions which are short but incur
high cache miss rates due to interleaved invocations. It records
and replays to prefetch instructions to L2 cache.

Temporal instruction fetch streaming (TIFS) [24] also works
based on record and replay technique. TIFS records the streams

0 200 400 600 800 1000
0%

5%

10%

15%

20%

25%

30%

35%

40%

Legend
4K
8K
16K
32K
64K
FDIP
PDIP(11)
PDIP(44)
EIP(46)

Storage Budget of BTB + Prefetch Table in KB

%
 IP

C 
ga

in
 o

ve
r 

FD
IP

 w
ith

 4
k 

En
tr

y 
BT

B

Figure 15. IPC performance gain across different policies
at BTB sizes 4K (59KB), 8K (119KB), 16K (237KB), 32K
(473KB), and 64K (945KB). PDIP(11), PDIP(44) and EIP(46)
needs 10.875KB, 33.5KB and 46KB additional storage re-
spectively.

c
s
n
d
r
a

t
m

c
t

k
a
fk

a

x
ln

fn
g
l

d
t
t
y

t
p
c
c

y
c
s
b

t
w

t
r

v
t
r

s
b
n
k

t
a
t
p

s
ib

n
p

v
r
lt

r

s
p
m

2

g
m

e
a
n

0%

20%

40%

60%

80%

100%

Last Taken Target Triggers

Mispredicted Target Triggers

P
r
e
fe

t
c
h
 T

r
ig

g
e
r
 D

is
t
r
ib

u
t
io

n

Figure 16. Distribution of prefetches based on Prefetch Trig-
ger scenario
of blocks that miss in L1-I and replays it when the first block



PDIP: Priority Directed Instruction Prefetching ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

in the pattern is seen again later. One of the key observa-
tions of TIFS is that streams of blocks causing misses re-
peat. The Temporal Ancestry Prefetcher (TAP) [25] is another
prefetcher which takes advantage of temporal locality. Unlike
TIFS, TAP looks at all accesses instead of misses. A history
of the last 14 PCs is maintained in the history buffer and
when a miss is observed all the entries corresponding to the
history buffer in the ancestry table are updated. Every time
a new block is accessed it is looked up in the ancestry table
and all its corresponding entries are prefetched. The harware
cost of implementing the temporal technique is reduced by
tracking only temporal lines that caused misses rather than all
lines. The overall cost of implementing TAP is still significant
compared to the size of the instruction cache.

Context signature based prefetching techniques [33, 39]
prefetch lines that missed in the same context last time. RDIP [33]
uses return address stack(RAS) as the signature. The key ob-
servation is that the misses seen in a given context repeat next
time and return address stack or calling context is used to
capture the context. D-JOLT [39] is an improved technique
which not only uses RAS as context but also captures the
blocks which are accessed after long range and short range in
a given context so as to send timely prefetch requests. Another
key difference in RDIP and D-JOLT is the way signature is
generated. RDIP uses the whole RAS to compute the hash
whereas D-JOLT uses a FIFO of return addresses which in-
cludes additional function calls and number of returns that
happened in reaching a given point in the execution.

Branch predictor based prefetching techniques [27, 34]
prefetch instruction blocks following a branch using the pre-
dicted target. JIP [27] maintains a hierarchy of tables for di-
rect branch with fewer targets and indirect branch with many
targets. These targets are used to prefetch when a branch PC
in the speculative path matches one of the tables. A confi-
dence value is associated with targets to select only one path
when more than one path is possible. Effectively, JIP mimics
run ahead fetching without making changes to the branch
predictor state.

SHIFT [30] is a storage efficient implementation of his-
tory buffers which exploits spatial locality. It is specifically
designed for applications running multiple threads which ex-
ecute similar code. The storage space required for a large
history buffer is optimized by virtualizing it (i.e., saving it
in LLC). Since the LLC is shared by all cores they take ad-
vantage of the history buffer stored in it and issue prefetch
requests per core separately. Only one core updates the history
buffer in LLC.

Prefetching along the wrong path is proposed in [43]. This
can be effective for many workloads, but prefetching the
wrong path for every conditional branch would be less effec-
tive (lead to unwanted cache pollution) in large code footprint
workloads that put higher pressure on the L1-I.

8.2 Software Instruction Prefetchers
Software prefetching techniques [19, 32, 37] typically re-
quire changes to the Instruction Set Architecure (ISA) such
that instruction lines are prefetched well ahead of their use.
These techniques involve inserting prefetch instructions in
the code. Cooperative Prefetching [37] technique uses the
compiler to automatically identify injection sites using static
analysis. AsmDB [19] uses execution profile information to
insert prefetches to improve accuracy. I-SPY [32] also uses
profile information but encodes context information using a
special instruction which issues prefetches only if the context
matches, thereby reducing unnecessary prefetches when not
required. It also proposes using coalesced prefetches wher-
ever possible to reduce code bloat. Software prefetching tech-
niques can be used to address cold misses which hardware
techniques fail to address. These technqiues could be used
along with PDIP to improve overall performance.

9 Conclusion
Modern high-performance processors incorporate decoupled
front end designs (eg, FDIP), enabling aggressive prefetch of
instruction cache lines driven by the control flow predictions
of the branch predictor. Many of the recent advances in in-
struction prefetchers in the literature are not designed to work
in concert with these front end designs, despite the fact that
they significantly change the access stream and miss stream
of the Instruction Cache.

This work presents PDIP, a prefetcher carefully designed
to complement both a decoupled front-end, but also an In-
struction Cache also designed to complement a decoupled
front end. This allows it to provide additional gains, even
over these aggressive designs, with modest hardware over-
head. PDIP recognizes that most instruction cache lines are
effectively fetched by FDIP in time to completely hide any
front-end stalls. Thus, PDIP only targets the fraction of In-
struction Cache misses that are not hidden by FDIP. Thus, it
provides higher coverage of the performance-critical misses
and higher accuracy than other prefetchers. It functions in
synergy with other SOTA FEC driven policies and achieves
upto 72.5% of FEC-Ideal.

Acknowledgments
We thank members of the Liberty Research Group and Intel
Labs for their support and feedback on this work. We also
thank the anonymous reviewers for the comments and sugges-
tions that made this work stronger. This material is based upon
work supported by Intel, and the National Science Foundation
under Grant CCF-2107257.

References
[1] Apache cassandra. http://cassandra.apache.org/.
[2] Apache kafka. https://kafka.apache.org/.
[3] Apache tomcat. https://tomcat.apache.org/.

http://cassandra.apache.org/
https://kafka.apache.org/
https://tomcat.apache.org/


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Bhargav, Sankara et al.

[4] Browserbench. "https://browserbench.org".
[5] Dotty scala compiler. "https://github.com/lampepfl/dotty".
[6] Intel VTune. https://www.intel.com/content/www/us/en/developer/

tools/oneapi/vtune-profiler.html.
[7] Postgresql. "https://www.postgresql.org/".
[8] Speedometer2.0. "https://browserbench.org/Speedometer2.0/".
[9] TPC-C. http://www.tpc.org/tpcc/.

[10] Twitter finagle. https://twitter.github.io/finagle/.
[11] Verilator. https://www.veripool.org/wiki/verilator.
[12] Wikichip. https://en.wikichip.org/wiki/intel/microarchitectures/

golden_cove.
[13] Ycsb. "https://github.com/brianfrankcooper/YCSB/".
[14] Champsim Simulator. https://github.com/ChampSim/ChampSim,

2020.
[15] Narasimha Adiga, James Bonanno, Adam Collura, Matthias Heizmann,

Brian R. Prasky, and Anthony Saporito. The ibm z15 high frequency
mainframe branch predictor industrial product. In 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA),
pages 27–39, 2020.

[16] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar
Karandikar, Harrison Liew, Albert Magyar, Howard Mao, Albert Ou,
Nathan Pemberton, Paul Rigge, Colin Schmidt, John Wright, Jerry
Zhao, Yakun Sophia Shao, Krste Asanović, and Borivoje Nikolić. Chip-
yard: Integrated design, simulation, and implementation framework for
custom socs. IEEE Micro, 40(4):10–21, 2020.

[17] Ali Ansari, Fatemeh Golshan, Rahil Barati, Pejman Lotfi-Kamran, and
Hamid Sarbazi-Azad. Mana: Microarchitecting a temporal instruction
prefetcher. IEEE Transactions on Computers, 72(3):732–743, 2023.

[18] Ali Ansari, Pejman Lotfi-Kamran, and Hamid Sarbazi-Azad. Divide
and conquer frontend bottleneck. In 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), pages 65–
78, 2020.

[19] Grant Ayers, Nayana Prasad Nagendra, David I. August, Hyoun Kyu
Cho, Svilen Kanev, Christos Kozyrakis, Trivikram Krishnamurthy,
Heiner Litz, Tipp Moseley, and Parthasarathy Ranganathan. Asmdb:
Understanding and mitigating front-end stalls in warehouse-scale com-
puters. In International Symposium on Computer Architecture (ISCA),
2019.

[20] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower,
Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell,
Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood.
The gem5 simulator. SIGARCH Comput. Archit. News, 2011.

[21] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M.
Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel
Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony
Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar,
Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben
Wiedermann. The dacapo benchmarks: Java benchmarking develop-
ment and analysis. In Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and
Applications, OOPSLA ’06, page 169–190, New York, NY, USA, 2006.
Association for Computing Machinery.

[22] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe
Cudre-Mauroux. Oltp-bench: An extensible testbed for benchmarking
relational databases. Proc. VLDB Endow., 7(4):277–288, dec 2013.

[23] Michael Ferdman, Cansu Kaynak, and Babak Falsafi. Proactive instruc-
tion fetch. In 2011 44th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 152–162, 2011.

[24] Michael Ferdman, Thomas F. Wenisch, Anastasia Ailamaki, Babak
Falsafi, and Andreas Moshovos. Temporal instruction fetch streaming.
In Proceedings of the 41st Annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO 41, page 1–10, USA, 2008. IEEE
Computer Society.

[25] Nathan Gober, Gino Chacon, Daniel A. Jiménez, and Paul V. Gratz.
The temporal ancestry prefetcher. 2020.

[26] Brian Grayson, Jeff Rupley, Gerald Zuraski Zuraski, Eric Quinnell,
Daniel A. Jiménez, Tarun Nakra, Paul Kitchin, Ryan Hensley, Edward
Brekelbaum, Vikas Sinha, and Ankit Ghiya. Evolution of the samsung
exynos cpu microarchitecture. In 2020 ACM/IEEE 47th Annual Inter-
national Symposium on Computer Architecture (ISCA), pages 40–51,
2020.

[27] Vishal Gupta, Neelu Shivprakash Kalani, and Biswabandan Panda.
Runjump-run: Bouquet of instruction pointer jumpers for high per-
formance instruction prefetching. The First Instruction Prefetching
Championship, 2020.

[28] Yasuo Ishii, Jaekyu Lee, Krishnendra Nathella, and Dam Sunwoo.
Rebasing instruction prefetching: An industry perspective. IEEE Com-
puter Architecture Letters, 19(2):147–150, 2020.

[29] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ran-
ganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. Profiling a
warehouse-scale computer. In 2015 ACM/IEEE 42nd Annual Interna-
tional Symposium on Computer Architecture (ISCA), pages 158–169,
2015.

[30] Cansu Kaynak, Boris Grot, and Babak Falsafi. Shift: Shared history
instruction fetch for lean-core server processors. In 2013 46th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 272–283, 2013.

[31] Cansu Kaynak, Boris Grot, and Babak Falsafi. Confluence: Unified
instruction supply for scale-out servers. In Microarchitecture (MICRO),
2015.

[32] Tanvir Ahmed Khan, Akshitha Sriraman, Joseph Devietti, Gilles Pokam,
Heiner Litz, and Baris Kasikci. I-spy: Context-driven conditional in-
struction prefetching with coalescing. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 146–
159, 2020.

[33] Aasheesh Kolli, Ali Saidi, and Thomas F Wenisch. RDIP: Return-
address-stack directed instruction prefetching. In Microarchitecture
(MICRO), 2013.

[34] Rakesh Kumar, Boris Grot, and Vijay Nagarajan. Blasting through
the front-end bottleneck with shotgun. In Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2018.

[35] Rakesh Kumar, Cheng-Chieh Huang, Boris Grot, and Vijay Nagarajan.
Boomerang: A metadata-free architecture for control flow delivery. In
High Performance Computer Architecture (HPCA), 2017.

[36] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi. Mcpat: An integrated power, area, and timing modeling frame-
work for multicore and manycore architectures. In 2009 42nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 469–480, 2009.

[37] Chi-Keung Luk and Todd C Mowry. Cooperative prefetching: Compiler
and hardware support for effective instruction prefetching in modern
processors. In Microarchitecture (MICRO), 1998.

[38] Nayana Prasad Nagendra, Bhargav Reddy Godala, Ishita Chaturvedi,
Atmn Patel, Svilen Kanev, Tipp Moseley, Jared Stark, Gilles A. Pokam,
Simone Campanoni, and David I. August. EMISSARY: Enhanced
Miss Awareness Replacement Policy for L2 Instruction Caching. In
Proceedings of the 50th Annual International Symposium on Computer
Architecture (ISCA ’23), June 17–21, 2023, Orlando, FL, USA. ACM,
2023.

[39] Tomoki Nakamura, Toru Koizumi, Yuya Degawa, Hidetsugu Irie,
Shuichi Sakai, and Ryota Shioya. D-jolt: Distant jolt prefetcher. The
1st Instruction Prefetching Championship (IPC1), 2020.

[40] K.J. Nesbit and J.E. Smith. Data cache prefetching using a global
history buffer. In 10th International Symposium on High Performance
Computer Architecture (HPCA’04), pages 96–96, 2004.

[41] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni.
Bolt: A practical binary optimizer for data centers and beyond. In

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
http://www.tpc.org/tpcc/
https://twitter.github.io/finagle/
https://www.veripool.org/wiki/verilator
https://en.wikichip.org/wiki/intel/microarchitectures/golden_cove
https://en.wikichip.org/wiki/intel/microarchitectures/golden_cove
https://github.com/ChampSim/ChampSim


PDIP: Priority Directed Instruction Prefetching ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Proceedings of the 2019 IEEE/ACM International Symposium on Code
Generation and Optimization, CGO 2019, page 2–14. IEEE Press,
2019.

[42] Andrea Pellegrini, Nigel Stephens, Magnus Bruce, Yasuo Ishii, Joseph
Pusdesris, Abhishek Raja, Chris Abernathy, Jinson Koppanalil, Tushar
Ringe, Ashok Tummala, Jamshed Jalal, Mark Werkheiser, and Anitha
Kona. The arm neoverse n1 platform: Building blocks for the next-gen
cloud-to-edge infrastructure soc. IEEE Micro, 40(2):53–62, 2020.

[43] Jim Pierce and Trevor Mudge. Wrong-path instruction prefetching. In
Microarchitecture (MICRO), 1996.

[44] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Du-
boscq, Petr Tůma, Martin Studener, Lubomír Bulej, Yudi Zheng, Alex
Villazón, Doug Simon, Thomas Würthinger, and Walter Binder. Re-
naissance: Benchmarking suite for parallel applications on the jvm. In
Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, page 31–47, New
York, NY, USA, 2019. Association for Computing Machinery.

[45] G. Reinman, B. Calder, and T. Austin. Fetch directed instruction
prefetching. In MICRO-32. Proceedings of the 32nd Annual ACM/IEEE
International Symposium on Microarchitecture, pages 16–27, 1999.

[46] Alberto Ros and Alexandra Jimborean. A cost-effective entangling
prefetcher for instructions. In 2021 ACM/IEEE 48th Annual Interna-
tional Symposium on Computer Architecture (ISCA), pages 99–111,
2021.

[47] J Rupley. Samsung exynos m3 processor. IEEE Hot Chips, 30, 2018.
[48] Jeff Rupley, Brad Burgess, Brian Grayson, and Gerald D Zuraski. Sam-

sung m3 processor. IEEE Micro, 39(2):37–44, 2019.
[49] David Schall, Artemiy Margaritov, Dmitrii Ustiugov, Andreas Sand-

berg, and Boris Grot. Lukewarm serverless functions: Characterization
and optimization. In Proceedings of the 49th Annual International
Symposium on Computer Architecture, ISCA ’22, page 757–770, New
York, NY, USA, 2022. Association for Computing Machinery.

[50] André Seznec. A 64-kbytes ittage indirect branch predictor. In JWAC-2:
Championship Branch Prediction, 2011.

[51] André Seznec. The fnl+mma instruction cache prefetcher. 2020.
[52] André Seznec and Pierre Michaud. A case for (partially) tagged geo-

metric history length branch prediction. Journal of Instruction-level
Parallelism - JILP, 8, 02 2006.

[53] Ahmad Yasin. A top-down method for performance analysis and
counters architecture. In 2014 IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS), pages 35–44,
2014.

A Artifact Appendix
A.1 Abstract
This artifact submission corresponds to the Priority Directed
Instruction Prefetching (PDIP) technique presented in the pa-
per. PDIP is a novel instruction prefetching approach designed
to complement Fetch Directed Instruction Prefetching (FDIP)
in modern processors. The primary goal of PDIP is to address
front-end bottlenecks caused by instruction cache capacity
misses, particularly in scenarios where FDIP struggles. The
artifact presents the installation instructions, experiment work-
flow and reproduction of results of PDIP. It includes gem5
checkpoints for all benchmarks utilized in the experiments,
along with the gem5 binary. To facilitate easy execution, a
Docker image is provided to setup the environment. The ar-
tifact’s evaluation metric focuses on IPC speedup over the
baseline configuration, calculated from gem5 stats. The re-
sults are reported in a provided CSV file, demonstrating the

effectiveness of PDIP in achieving a geomean speedup of
3.2% IPC speedup across critical workloads.

A.2 Artifact check-list (meta-information)
• Program: Included gem5 checkpoints of all benchmarks

utilized. Details of benchmarks in Table 2
• Binary: Included gem5 binary and benchmark checkpoints
• Run-time environment: Docker image provided to run on

Linux. Root access required
• Hardware: Machine with > 20 GB RAM.
• Metrics: IPC speedup over baseline configuration calculated

from gem5 stats is the main metric of comparison reported.
Further Gem5 output files (stats.txt, config.json ...) generated
for each run

• Output: Speedup over Baseline config provided as a csv.
• Experiments: Bash script provided to run all benchmarks

on each configuration and report speedup over baseline
• How much disk space required (approximately)?: 100

GB
• How much time is needed to prepare workflow (approxi-

mately)?: 15 mins
• How much time is needed to complete experiments (ap-

proximately)?: 12 hrs
• Publicly available?: Yes
• Archived (provide DOI)?: 10.5281/zenodo.10553297

A.3 Description
A.3.1 How to access.

• Download Artifact from Zenodo :
– https://doi.org/10.5281/zenodo.10553297

• Download Size : 40 GB
• Will require approximately 100GB of disk space when

extracted

A.3.2 Hardware dependencies.
• A machine with > 20GB memory required.
• A machine with > 100GB disk space required.

A.3.3 Software dependencies.
Linux Operating system with Docker support is required.
A docker container is provided with necessary environment
setup.

A.4 Installation
Prerequisites. Before you begin, ensure that you have the
necessary permissions to use Docker, as it may require sudo
access.

Extract Artifact to preferred Directory .
tar -xf PDIP-AE.tar.gz -C <project_dir>

Setting Up the Environment with Docker.
Navigate to the project’s root directory.

cd <project_dir>/PDIP-AE/

Build Docker

https://doi.org/10.5281/zenodo.10553297


ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Bhargav, Sankara et al.

sudo bash build_docker.sh

Run Docker

sudo bash run_docker.sh

This will initiate the Docker container setup and config-
ure the environment. PDIP-AE directory will be mounted at
/qpoints within the docker environment.

Basic test.
A basic test has been provided that will invoke the gem5 bi-
nary and run one benchmark for 1000 instruction to ascertain
if the environment is setup correctly.

cd scripts

bash run_test.sh

The test will run gem5 and end with the following message

Exiting @ tick <any_value> because a thread
reached the max instruction count

A.5 Experiment workflow
All the necessary steps to run experiments and reproduce the
results are contained in a single script. This script automates
the execution of all 16 benchmarks on gem5, using both the
baseline and PDIP(46) configurations.

sudo bash run_docker.sh

cd /qpoints/scripts

bash run_all_bmk_base_pdip.sh

A.6 Evaluation and expected results
The aforementioned script generates all the detailed stats in
PDIP-AE/ae-runs directory and the key result of speedup of
PDIP(46) over baseline (Fig 10) is computed from the results
and stored in PDIP-AE/ae-result.csv.

Thus a single script runs all experiments and extracts the
key results for evaluation. The expected reference results are
provided in PDIP-AE/ae-result-expected.csv

A.7 Experiment customization
Other Configurations. The base script only runs PDIP(46)
but PDIP-AE/scripts/run_all_cfgs.sh will run all the
configurations mentioned in the paper. This script can be
modified to run specific configurations alone. Variables like
PDIP_SETS, PDIP_WAYS etc can be modified to run differ-
ent table sizes or control specific policies of the algorithm.

Other Statistics. As mentioned previously PDIP-AE/ae-runs
contains all the detailed gem5 stats. Other metrics mentioned
in the paper can be inferred from these and new metrics for
comparison can also be computed.

Changing Core parameters. All standard gem5 options can
also be modified to do further experiments like changing
cache sizes, widths and latencies of different stages, choice of
branch predictors/prefetchers and other such core parameters.

The scripts in PDIP-AE/scripts/ can be modified or used as
an reference to conduct such studies

Other benchmarks. The user can provide their own check-
points of other benchmarks to validate the results on other
varied programs.


	Abstract
	1 Introduction
	2 Background
	2.1 Decoupled Front-end
	2.2 Front-end Critical Cache Replacement

	3 Do We Need Another Prefetcher?
	4 PDIP
	4.1 Selecting Prefetch Candidates
	4.2 Selecting a Trigger Instruction
	4.3 Synergy between PDIP and FDIP

	5 Design Implementation
	5.1 PDIP Table
	5.2 Optimizing Table Size
	5.3 Optimizing Table Occupancy
	5.4 Hardware Storage Overhead

	6 Simulation Methodology
	6.1 Simulation Model
	6.2 Baseline Description
	6.3 Benchmarks
	6.4 OS and IO bottlenecks : Full System
	6.5 Policies Evaluated

	7 Evaluation
	7.1 Performance Analysis
	7.2 Prefetch Timeliness And Accuracy
	7.3 Prefetch Effectiveness
	7.4 PDIP Table Sensitivity Analysis
	7.5 Energy and Area Analysis
	7.6 BTB Sensitivity Analysis
	7.7 Prefetch Triggers Analysis

	8 Related Work
	8.1 Hardware Instruction Prefetchers
	8.2 Software Instruction Prefetchers

	9 Conclusion
	Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization


