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Abstract

Software prefetching has been demonstrated as a pow-
erful technique to tolerate long load latencies. However, to
be effective, prefetching must target the most critical (fre-
quently missing) loads, and prefetch them sufficiently far in
advance. This is difficult to do correctly with a static opti-
mizer, because locality characteristics and cache latencies
vary across data inputs and across different machines.

This paper presents a mechanism that dynamically
inserts prefetch instructions into frequently executed hot
traces. Hot traces are dynamically analyzed to identify
delinquent loads and the appropriate prefetch distance for
those loads. Those prefetches are then inserted into the hot
trace. The low overhead of the event-driven dynamic opti-
mization system allows the optimizer to continuously moni-
tor the performance of the software prefetches. This is done
to find an accurate and stable prefetch distance and to adapt
to changes in program behavior using what we call Self-
Repairing prefetching. Relative to the baseline hardware
stride prefetching, we find a total 23% improvement when
we use the self-repairing mechanism to adaptively discover
the best prefetch distance for each load, which is 12% better
performance than dynamic prefetching techniques without
adaptive repairing.

1 Introduction

The performance of modern processors is increasingly dom-
inated by the widening latency gap between processors and
memory subsystems. One way to bridge the latency gap is
by prefetching load values into the cache, which attempts to
overlap the memory stalls with the execution of other useful
instructions in the same program. This decreases the ob-
served latency, increases memory level parallelism, and al-
lows cache-hit dominated performance even when the work-
ing set is larger than the cache. Software based prefetch-
ing [4, 18, 15, 31, 14, 6, 11, 20] has been shown to be a
promising technique to address this issue, and all modern
high-performance instruction set architectures provide sup-
port for software prefetching.

In order for software prefetching to be effective,
prefetches should be accurate (i.e., targeting the loads that
are actually missing the cache) and timely (far enough ahead
of time to fully cover the miss latency). Static compilers do
not always do this well, even with offline profiling, because

which loads are critical, and the average latencies of those
loads, will vary across different data inputs. Additionally,
if the code runs on multiple machines, the correct software
prefetching distance for one machine will be inappropriate
for the other.

In this paper, we extend the event-driven dynamic opti-
mization framework called Trident [33] to dynamically per-
mute the object code by inserting prefetch instructions. Tri-
dent exploits a hardware multithreading processor, using an
otherwise idle hardware thread to concurrently optimize a
thread that is running. Trident also assumes conservative
hardware support to identify performance-critical events to
trigger this dynamic optimization. The concurrent optimiza-
tion and hardware event-driven monitoring provides an ex-
tremely low-overhead dynamic optimization system that can
support very aggressive optimizations.

In the prior work, Trident [33] focused on hot trace gen-
eration and dynamic value specialization. In this paper we
extend our approach to support adaptive software prefetch-
ing. We modified both the hardware support and the dynamic
optimizer used by Trident to create hot traces with software
prefetching. In this approach, basic instruction blocks which
are frequently executed together are collected to form hot
traces, and they are monitored by hardware to detect delin-
quent loads, which frequently miss in the data cache. Upon
detection of such loads, hardware-generated hot events trig-
ger the execution of a software thread to perform optimiza-
tion. The thread inserts prefetch instructions into the origi-
nal hot trace. This approach may cover multiple delinquent
loads per hot trace.

Prefetching a delinquent load too late will prevent the
prefetch from hiding the entire latency. However, prefetch-
ing too far in advance may unnecessarily displace useful
data, increases the likelihood that prefetched data will be
replaced, and also increases the likelihood of prefetching
unneeded data due to unexpected intervening control flow.
Therefore, we want to prefetch a load just in time, so its
value appears in the cache right before it is needed. This
is the goal behind the adaptive (self-repairing) part of our
prefetcher. Our adaptive prefetcher re-evaluates the effec-
tiveness of the inserted prefetches through hardware mon-
itoring, so that its prefetch distance may be adjusted, or it
may be removed altogether, according to the program’s run-
time behavior. Like hardware prefetching, this technique op-
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erates on dynamic information rather than static information
to initiate prefetching, and it works on legacy code without
sacrificing software compatibility with future processors.

The remainder of this paper is organized as follows.
Section 2 discusses the prior research on various software
and hardware prefetching techniques. Section 3 describes
our dynamic software prefetching architecture. Section 4
shows our simulation methodology. Section 5 presents per-
formance results using our prefetching techniques, and we
conclude the paper in section 6.

2 Related Work

This paper is based on a large body of prior research in mem-
ory prefetching. In this section we focus on summarizing
previous software and hardware prefetching techniques.

2.1 Software-based Prefetching
A large amount of research has been done on compiler-
enabled software prefetching [4, 18, 16]. Luk and
Mowry [16] examine pointer chain prefetching for recur-
sive data structures (RDS). They also add jump pointers to
prefetch heap objects farther in advance than one pointer
traversal. Roth and Sohi [22] extend the jump pointer
prefetching technique via a software/hardware scheme to
provide various trade-offs between accuracy and prefetching
overhead. Cahoon and McKinley [3] propose an effective
data-flow analysis to identify RDS traversals in Java to guide
greedy prefetching. Zhang and Torrellas [34] employ user-
added grouping instructions that are used to group together
fields/objects that should be prefetched together. These
groups are stored in a hardware buffer, and any miss in the
group triggers prefetches for all cache blocks in the group.
Yamada, et al. [32] propose a compiler-assisted hardware
technique to combine data relocation and block prefetching
to improve memory performance. Saavedra and Park [24]
propose an adaptive execution scheme in which the compiler
inserts software prefetches and generates a software agent
to control these prefetches at runtime. This scheme uses a
single prefetching distance to control all prefetches within
the whole loop body. In contrast, our technique targets true
cache misses by dynamically generating software prefetches
which are tuned to each individual load.

Static compiler-generated software prefetching cannot
optimize for all data inputs, or for different machines. Our
self-adapting software prefetching extends this prior re-
search by applying some static prefetching techniques dy-
namically. Our technique focuses on enabling effective
prefetching by automatically adapting to the program’s run-
time behavior. In addition, our technique works transpar-
ently on existing binary code.

2.2 Hardware-based Prefetching
Smith and Hsu [28] introduce tagged next-line prefetch-
ing. Jouppi [12] introduces stream buffers as a more effi-
cient next-line prefetching architecture. The stream buffers
allow multiple prefetching streams to run in parallel, and

prefetch distances greater than one iteration. Palacharla and
Kesseler [19] propose a non-unit stride detection scheme to
enhance the effectiveness of stream buffers. This model was
further extended by Farkas, et al. [9] to use a PC-based stride
predictor to predict strides on a per load basis, instead of us-
ing the global miss addresses. Sherwood, et al. [27] extend
the above architecture to use a stride-filtered Markov pre-
dictor to guide the prediction stream. The predictor-directed
stream buffer (PSB) can generate the next prefetch address
without a fixed stride if a Markov transition is found. Timely
prefetches may be achieved by allowing the stream buffers
to run independently ahead of the execution stream.

While our approach maintains much of the runtime
adaptability of these hardware schemes, it can target more
complex memory access behaviors, because it is based on
analysis of the actual code.

2.3 Prefetching via Dynamic Optimization Systems
Inagaki, et al. [11] extend an efficient software profiling al-
gorithm [31] to target both intra- and inter- loop stride loads
in a dynamic optimization system. Their technique mainly
focuses on Java compilers. They proposed a lightweight pro-
filing technique by interpreting the Java object a few times to
identify load access patterns. Compared with our approach,
profiling via interpretation still imposes a high overhead. In
addition, our prefetching works for general purpose and even
legacy programs.

Lu, et al. [14, 5] developed a dynamic optimization sys-
tem, called ADORE, to perform software prefetching on
delinquent loads. ADORE analyzes the code in the hot trace
to identify load access patterns. Loads with more compli-
cated patterns are predicted using Wu’s algorithm [31]. The
prefetching distance is calculated according to the load’s av-
erage miss latency. Our technique builds on that research,
but it has clear distinctions from their work. First, our
prefetching technique adapts the prefetch distance and re-
pairs the hot trace instead of having to re-generate the entire
hot traces. This gives us the ability, for example, to do effi-
cient, adaptive search for the optimal prefetch distance. Sec-
ond, we perform jump-pointer type prefetching and same-
object prefetching.

Chilimbi and Hirzel [6] propose an automated approach
to inject prefetching code into hot data streams based on the
correlation of hot data reference sequences. This scheme
gathers a temporal data reference profile via bursty sampling,
and extracts data reference patterns frequently occurring in
the same order. Prefetching is inserted dynamically at proper
program points to prefetch these references. Compared with
our approach, this scheme has higher runtime overhead due
to software profiling, and requires static binary instrumenta-
tion.

2.4 Prefetching via Pre-execution Threads
Various methods have been proposed to pre-compute load
addresses and issue prefetches early in a separate thread.
Those systems use the extra thread contexts to run prefetch
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code without modifying the original code. In comparison,
we only use the extra thread contexts to compile the hot
traces and to insert prefetch instruction into these hot traces.

Pre-execution code can be constructed statically [8, 15,
13] or dynamically [7, 23]. Pre-computation code typically
runs in a spare hardware context [7, 23] or a dedicated hard-
ware engine [17, 1, 21], in parallel with the main thread.

Collins, et al. [7] present a dynamic speculative pre-
computation (DSP) scheme to dynamically identify a small
number of delinquent loads and backward-slice depen-
dent instructions to construct (in hardware) pre-computation
slices. These slices run in a spare hardware thread to
prefetch these delinquent loads. A chaining prefetcher al-
lows a single thread to loop through multiple prefetches of
the same load, allowing the prefetching thread to get suf-
ficiently ahead of the main thread. While this is a hard-
ware technique, this work did employ some trial-and-error
adaptation to create helper thread prefetchers with differ-
ent assumed control flow, induction unrolling, and run-ahead
count until the helper thread appears to be ”working”. Our
scheme has similar spirit but dynamically patches embed-
ded/inlined prefetching instruction bits in the memory to
specify a prefetch distance. Ganusov and Burtscher [10]
propose a prefetching technique, called Future Execution,
which is similar to DSP except it uses predicted values as ini-
tial live-in values to start prefetching threads a few iterations
ahead. This technique reserves an entire hardware context to
run prefetching code, whereas our technique only uses an-
other hardware context occasionally for concurrent dynamic
optimization.

3 Dynamic Prefetching Architecture

In this section we describe our self-repairing adaptive soft-
ware prefetching approach implemented within Trident [33].

3.1 Overview of Trident Architecture
Trident is an event-driven, multithreaded dynamic optimiza-
tion framework [33]. Trident exploits modern processors’
abundant on-chip parallelism and hardware performance
monitoring mechanisms, to enable low overhead dynamic
optimization. It provides low overhead performance mon-
itoring via hardware event monitoring. It is low because
optimization is done in a separate thread that runs concur-
rently with the main thread. This eliminates the need to
interrupt the main thread, and the interference between the
two threads is minimal. In this work, we find that this low
overhead makes it possible to pursue more aggressive opti-
mizations, and to apply a given optimization much more fre-
quently. This allows continuous incremental improvement
or even allows the system to use trial and error to apply an
optimization most effectively.

An overview of the Trident architecture is shown in Fig-
ure 1. Trident includes a few generic hardware structures and
corresponding software infrastructure for runtime optimiza-
tion. The generic hardware structures monitor the program’s
behavior and generate optimization events. These structures
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Figure 1: Trident dynamic optimization architecture

resemble the performance monitor hardware in modern pro-
cessors. We introduce some minor changes to make them
functionally more suitable for our technique. Runtime opti-
mization is invoked when an interesting monitored hardware
event occurs. Optimization events that were supported in the
prior Trident work [33] focused on efficient generation and
performance of hot traces. A hardware branch history pro-
filer is used to identify hot traces for optimization. A hard-
ware structure called the watch table is also used to monitor
the performance of hot traces that are executing, in order to
identify and back out of hot traces that are under-performing.

When a program is loaded for execution, the runtime
support is invoked to create a generic helper thread environ-
ment to process hardware events. The helper thread is only
invoked to process optimization events that occur, otherwise
it does not run. A registration structure is also created in the
program’s address space. This software structure contains a
pointer to the starting code of the helper thread, as well as the
stack pointer, global data pointer, pointer to the code cache
structure, and thread priority. This structure is used to keep
the data needed to start the execution of the helper thread
for a optimization event. Because we only need a pointer
to the registration structure in order to initialize and start up
the helper thread, it provides a fast mechanism for spawning
an optimization thread, and an efficient mechanism to keep
track of state across context switches and helper thread invo-
cations [33].

3.2 The Prefetching Architecture Overview
The goal of this research is to use dynamic trace optimization
to improve the performance of the memory subsystem for a
thread. We use the Trident framework to generate an opti-
mized hot trace. When the hardware monitoring structure
detects delinquent load events (loads that frequently miss
and have high average miss latency), optimized hot traces
are re-optimized to insert software prefetching instructions.
The following provides a high level overview of how Tri-
dent works and how our prefetching approach works inside
of Trident:

• Trace Formation. Trident uses a generic branch profiler
to detect hot traces. A hot trace is represented as a start-
ing PC followed by a branch direction bitmap. When a
hot trace event is triggered, the helper thread is invoked
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to streamline typically non-contiguous instruction blocks
as indicated by the bitmap to form a trace, and perform on
it several classical compiler optimizations such as redun-
dant branch/load removal, constant propagation, instruc-
tion re-association, and strength reduction. Trident also
performs a couple of specific optimizations to improve
the performance of legacy code. For example, conversion
between a long integer and a floating point number might
be done by a pair of store/load instructions in legacy code.
Trident converts this pair to a simple MOVE instruction
(assumed added to the ISA).

• Linking Trace. Trident inserts the trace into a memory
buffer, called the Code Cache, and patches the original
binary to redirect execution to use the hot trace.

• Monitor Trace Loads. We add a hardware structure
called the Delinquent Load Table (DLT), as shown in the
Table below, to Trident to monitor the performance of
loads that are executed on these hot traces. In Trident,
when an instruction is committed, the hardware knows if
it resides within a hot trace formed by Trident based upon
Trident’s hardware watch table [33]. We therefore update
the DLT with only loads that are in hot traces. Note that
the watch table also monitors a trace’s minimal execution
time, and we will describe its use in Section 3.5.2. The
Table below shows all of the fields in the watch table and
the DLT. The fields in the DLT will be described in more
detail in the rest of this section.

Watch table Trace starting PC
Trace length
Trace minimal execution time
Trace optimization flag

Delinquent Load tag
load table Access counter
(DLT) L1 miss counter

Total miss latency
Stride
Stride confidence bits
Last effective address
Mature flag

• Delinquent Load Event. When a hot trace load misses in
the memory hierarchy, we then look up the DLT and de-
termine if it meets the criteria to be classified as a delin-
quent load. The criteria are that the load’s miss rate is
above a threshold, and the load’s average memory latency
for the last M misses is larger than the half of the L2 miss
latency. If both of these conditions are true, then the DLT
will trigger a Delinquent Load event. When a delinquent
load event is triggered for a hot trace, we set a bit in the
Trident watch table for that hot trace to indicate that the
hot trace is currently being re-optimized. This is to pre-
vent other re-optimization events being triggered for that
hot trace while we are doing our optimization.

• Insertion of Prefetches into Hot Traces. A Delinquent
Load event will start the execution of the helper thread de-
scribed earlier (if a context is available) in Trident to run
our software optimizer to perform the prefetch insertion
algorithms described below.

• Linking in the Re-Optimized Hot Trace. Once the trace
is re-optimized Trident links it into the execution by re-
patching the original binary to jump to the newly formed
trace, and Trident removes the old hot trace from the hard-
ware watch table. A thread’s execution will then automat-
ically start using the new hot trace.

3.3 Delinquent Load Table
In this research, we add to Trident’s hardware event monitor-
ing a Delinquent Load Table (DLT), which is used to moni-
tor loads within a hot trace. When a load commits and it is
part of a hot trace (determined by the Trident watch table as
described earlier), we perform a lookup and update the DLT.

In order to determine if a load is delinquent, we need to
find its miss rate and average miss latency. If the load is con-
sidered delinquent, it triggers a delinquent load event. When
Trident sees this event, it will start a helper thread to pro-
cess the event and perform dynamic optimization to insert
software prefetching. The DLT is used to identify the delin-
quent loads and is treated as an associative cache, tagged by
the load PC, and uses the least recently used replacement
policy.

To determine if a load is delinquent or not, we exam-
ine the miss rate and average miss latency after a load has
been executed N times. This is called the load monitoring
window. After N accesses, these statistics are calculated to
determine if the load is delinquent, and then the counters are
cleared, and the load is re-examined at the end of the next
load monitoring window (after the next N accesses). The
DLT keeps track of the following information for the load:

• Access counter. This counter keeps track of how many
times this load has been accessed during a given monitor-
ing window. At the end of the window (i.e. N accesses),
it resets itself (along with other counters as described be-
low) to start a new round of counting.

• Miss counter and miss latency. The miss counter keeps
track of how many cache misses this load encounters dur-
ing the current window. Together with the access counter,
it provides an approximate miss rate within a monitoring
window.
When a load misses in the cache, the miss counter incre-
ments and its miss latency is added to the sum. At the end
of the window, a load is claimed as delinquent if (1) its
miss counter reaches a threshold (i.e. miss rate is above
the threshold), and (2) its average miss latency is higher
than half of the L2 miss latency. Here, the average miss
latency is calculated as the total miss latency divided by
the total miss count. The delinquent load then triggers a
delinquent load event, which in turn invokes the helper
thread to run. These counters and total miss latency stay
unchanged and will be cleared later by the helper thread
during optimization.
If the access counter reaches its threshold before the miss
counter, the load is not delinquent. At the end of the win-
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dow, the access and miss counters are reset, and the mon-
itoring of the load continues.

• Stride address prediction. Our software prefetching
optimization focuses on taking advantage of stride pre-
dictable loads. Therefore, each DLT entry keeps track of
(a) the load’s last address, and (b) the load’s last address
stride, and (c) a 4-bit address stride confidence counter.
These values are updated every time the load is commit-
ted (not just on misses). The confidence counter starts
with the value of 0 and is incremented by 1 if the cur-
rent stride equals the last stride, and decremented by 7 if
they are different. A load is said to be stride predictable
if the stride confidence counter is 15. Although in many
cases the stride can be identified by analyzing the code
in the hot trace, the hardware support allows us to iden-
tify a large number of pointer loads that turn out to have
stride access patterns, due to the way memory structures
are allocated and used. This allows effective prefetching
of loads that a static software prefetcher will have great
difficulty with.

• Prefetch mature flag. This flag is used to indicate if
a load has been tuned enough times. We want to avoid
generating too many delinquent load events for a load that
our prefetch algorithm can not cover or hide all of the
latency for. If the mature flag is set, then the load will not
generate a delinquent event on a miss.

3.4 Dynamic Prefetch Optimizer
In Trident, the runtime optimizer is triggered to run as a
helper thread on an idle hardware context when a delinquent
load event is detected. If a prefetch instruction has not been
inserted into the hot trace to prefetch this delinquent load,
the prefetch optimizer will generate a new trace and insert a
prefetch instruction to target this load. Otherwise, the opti-
mizer will try to repair the prefetch instruction as described
in Section 3.5. Before the optimizer finishes, it resets the hot
trace’s optimization flag so that it can be re-optimized in the
future.

3.4.1 Delinquent load identification
During prefetch insertion, the dynamic optimizer first identi-
fies all delinquent loads within the trace, and then partitions
these loads into different types so that prefetch instructions
can be inserted accordingly.

Because there are at least a few thousand cycles between
when the delinquent load event is triggered and when the
dynamic prefetch optimizer is ready to start its execution (if
there was no contention for the spare thread), the optimizer
first checks if there are other loads that need to be prefetched
in the same hot trace. To identify all delinquent loads in the
hot trace, we look up each of the loads in the DLT. If they
satisfy the delinquent load classification described in Sec-
tion 3.3, then they are added to the delinquent load list. Note
if a load has not yet completed execution of a full monitor-
ing window, its miss rate and latency are calculated using
current counter values in a partial monitoring window.

After all of the delinquent loads are identified in the
trace, the optimizer then classifies all of these delinquent
loads as Stride, Pointer, or Same Object based upon the fol-
lowing criteria:

• Stride. For a load instruction within a loop, if the re-
currence between instances of the load is a single simple
arithmetic instruction (e.g. LDA, or ADD, SUB) whose
arguments are a constant and the base register, then this
load is classified as a stride load. This simple defini-
tion picks up most strided loads, and is sufficient because
we also mark any load the DLT found stride-predictable
(which picks up more complex recurrences).

• Pointer. If the load is not classified as Stride, then we
check to see if it is a pointer load. If this load’s destina-
tion register is used (before any modification) as the base
register of any other load instruction, then the destination
register contains a pointer value. So this load is classified
as a Pointer load.

• Same Object. For each delinquent load classified as
Stride, the optimizer examines both forward and back-
ward on the hot trace the other loads with the same live
base register. If these loads do exist, then the optimizer
puts them into a group, called Same Object group. The
end result is a set of same object groups, where each set
contains at least one delinquent load that is stride pre-
dictable. Note, a delinquent load can only belong to at
most one group, and a group can contain more than one
delinquent load. The degenerate case is that a group can
consist of only one single load, which is the stride address
delinquent load.
If we have multiple loads using the same base regis-
ter which has been identified as a pointer, we also clas-
sify those loads as same object and prefetch them to-
gether. The same object classification also allows us to
prefetch multiple loads with a single prefetch instruction,
and eliminate redundant prefetches to the same cache
line. When applying our self-repairing optimization, it
allows us to also repair all the object prefetch distances
as a group, rather than one at a time with separate opti-
mization events.

Any load instruction that is not classified as one of the
above types will not be prefetched in our current framework.

3.4.2 Stride-Based Prefetching of Same-Object Loads
We first focus on stride address predictable groups, be-
cause these are the loads for which we can perform timely
prefetching. As long as a same object group has at least
one delinquent load that is Stride predictable, then the whole
group is classified as stride address predictable.

Each stride address predictable same object group is pro-
cessed using the following algorithm:

• Find the minimum load offset from the base register in
the group.
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• Insert a stride prefetch instruction using the group’s base
register and the minimal offset as this format:

prefetch(offset + stride)(base) (1)

• Find the delinquent load with the next smallest offset. If
its offset from the prior prefetch is less than the cache
line block size, simply mark this load as prefetched and
skip it; otherwise, insert another stride-based prefetch
as above with the non-covered delinquent load’s offset.
When a load is skipped, the offset plus the base regis-
ter actually may put that load into the next cache block,
which should have been prefetched. To address this, we
prefetch one additional cache block after a skipped load.
This still allows us to skip several loads, and only prefetch
each block once.

This process repeats until all delinquent loads in the
group are processed.

3.4.3 Prefetching for Pointer Loads
After the stride-based same object prefetching is done, the
only delinquent loads we target for additional prefetching
are pointer loads if they have not yet been processed in the
algorithm above. For example, a pointer chasing load in a
loop looks something like:

ld r1, offset(r1)
and we dereference this pointer twice by inserting the fol-
lowing instructions after the above instruction in the hot
trace:

ld scratch, offset(r1)
prefetch offset(scratch)

These two instructions potentially prefetch the object in the
next two iterations of the loop. Notice that the first instruc-
tion should be a non-faulting load.

Note that if a pointer load belongs to a Same Object
group, the pointer is also dereferenced right after its stride-
based prefetch instruction. We found a significant portion
of pointer loads prefetchable using the stride-based same-
object algorithm described above.

3.5 Prefetch Distance for Stride Address Predictable
Loads

The stride prefetching insertion algorithm described above
only prefetches one iteration ahead in a loop for the object.
What we really want to do is determine how far ahead to
prefetch an object, which is called the prefetch distance.

Prefetching can target loads which miss at different
memory levels. Existing dynamic prefetching systems such
as [14, 5] estimate the prefetch distance (in number of itera-
tions) as:

distance =
average load miss latency

average cycles per iteration
(2)

where, in our case, the average load miss latency for a partic-
ular load and the average number of cycles spent in the trace

are calculated by sampling hardware counters. With this the
stride based prefetch instruction described in statement (1)
becomes:

prefetch(offset + (stride ∗ distance))(base) (3)

In this paper, we provide results for this approach, where
we calculate a fixed prefetch distance for a load by using
average load miss latency and the average cycles per loop
iteration for a trace. Most prior prefetching systems keep the
prefetch distance fixed like this after it is determined either
statically or dynamically, and do not provide a mechanism to
later tune this distance. A primary contribution of our paper
is the ability to adapt this distance (as well as the stride) – not
only allowing us to get it right more often, but also allowing
us to further adapt if the nature of the load changes, which
we describe next.

3.5.1 Adaptive, Self-Repairing Prefetching
The above prefetching distance estimation gives us a good
starting point to initiate prefetching. The problem is that as
you insert prefetches, even for the prefetched load, the recur-
rence time between instances of that load will change; that
is, the iteration time used to calculate the prefetch distance is
no longer correct. This problem is exacerbated by neighbor-
ing loads that are subsequently prefetched. Each successful
optimization may expose other loads that were previously
being prefetched on time.

Due to the heavy interaction between neighboring loads
and the correct prefetch distance for each, we found that
careful estimation of the correct distance was of little use,
and a much simpler scheme provided equivalent perfor-
mance.

Our Adaptive prefetching algorithm works as follows.

• All stride based prefetch instructions for delinquent loads
are inserted in the hot trace as in statement (3) with the
initial distance of 1.

• We continue monitoring the behavior of these loads in the
DLT. If the prefetch is not hiding enough latency, the load
will eventually be marked again as a delinquent load and
cause another delinquent load event.

• If the delinquent load is stride predictable and there ex-
ists a prefetch instruction for it, the optimizer increases or
decrements the distance stored in the instruction as out-
lined in the next section, and we patch the prefetch in-
struction in the trace. The prior distance can be back cal-
culated by using the predicted stride and the known offset,
or using book-keeping information stored along with the
trace.

The above optimization is done by the helper thread.
Note that the repairing is easy and fast, since we do not gen-
erate a new trace or change the layout of an existing trace.
We just update the prefetch instruction bits with the new dis-
tance. This process is repeated until the prefetch distance
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causes the load to stop triggering delinquent load events, or
the load becomes mature, which we describe later.

This approach works very well, especially when there
are potentially multiple delinquent loads in a hot trace. Each
load will have its prefetch distance adjusted until the loads
in the trace are no longer delinquent. As each load is
prefetched more effectively, neighboring loads that then be-
come exposed because the code runs faster will generate an-
other delinquent load event, and be repaired. Stabilization
is achieved quickly because the repair operation is much
quicker than generating a new prefetch-optimized hot trace.

We also modeled a scheme where the initial distance is
set to the estimated distance from the previous section, but
saw no gain because the low overhead of the optimization
system allows it to converge quickly.

3.5.2 Prefetch Maturing
When a load triggers the delinquent load event for the first
time, the optimizer inserts a prefetch instruction to target
this delinquent load. Any subsequent delinquent load events
from this load will cause its prefetch instruction to be re-
paired by the optimizer. Note if a delinquent load cannot
be prefetched, as described in Section 3.4.1, or it cannot be
repaired due to lack of stride patterns, the optimizer sets its
mature flag in the DLT. So it will never cause a delinquent
event, until the mature flag is cleared. For our experiments,
the only way the mature flag was cleared is when a load is
replaced due to capacity constraints in the table. Future work
may want to examine clearing the mature flag when there is
a working set or phase change in the program’s execution to
capture potentially new behavior [26].

For each of the repairable delinquent loads in the trace,
the optimizer re-calculates its maximal prefetch distance.
The maximum is the memory access latency divided by the
trace’s minimal execution time from the watch table. Here,
the minimal execution time of the trace should represent the
best possible scenario where all loads in the trace potentially
hit in the cache. When executing an optimized trace, the
number of cycles from when the trace is first fetched until
it finishes execution represents the time to execute the trace,
and the watch table keeps the minimum number of cycles
seen for each trace currently being used.

When a prefetch instruction is repaired, the optimizer in-
creases the load’s prefetch distance by 1 up to its maximal
distance. Increasing the prefetch distance allows the prefetch
to happen further ahead of the potential use of the data,
which will hopefully reduce the load miss latency. Thus we
expect the average access latency for the load to decrease
when we increase the prefetch distance.

However, as the prefetch distance increases, the possi-
bility of prefetched data being replaced by data from other
loads/prefetches also increases. If this occurs, the load’s av-
erage access latency may instead increase. We therefore cal-
culate the average access latency when repairing a prefetch,
and when it is observed to start to increase the optimizer
decrements the distance by one. To do this calculation, the

average access latency is computed using the load’s access
counter, miss counter, and total miss latency from the DLT
table. In addition, we store in an optimization buffer in pro-
gram’s memory the load’s previous average access latency
seen.

Therefore, our repairing mechanism varies a load’s
prefetch distance from one to its maximal distance, trying
to find an optimal distance. To avoid a load being repaired
too many times, the optimizer sets the load’s mature flag in
the DLT when the number of repairs attempted is twice as
many as its maximal (distance) value. When a load is first
optimized, we set a repair counter for the load to this num-
ber. Each time a load is repaired the counter is decremented.
When the counter is zero, then we no longer try to repair the
load, and the mature flag is set in the DLT.

Note, in order to make the above decisions, the optimizer
always maintains relevant information from all delinquent
loads, such as the number of repairs left, the maximal dis-
tance, and the average access latency history. This is stored
in a memory buffer used by the optimizer. This information
could alternatively be stored in the DLT.

4 Methodology

To evaluate the performance of our self-repairing software
prefetching technique, we wrote a dynamic compiler, which
runs concurrently with the applications to be optimized. The
evaluation is done on a simulated SMT processor with hard-
ware stride prefetching.

4.1 Baseline Processor Architecture
Our baseline architecture is simulated as a 20-staged si-
multaneous multithreading (SMT) processor [30, 29] with
2 hardware contexts. The baseline configuration is shown in
Table 1.

Performance is evaluated using the SMTSIM processor
simulator [30], modified to model the Trident hardware and
runtime infrastructure. The simulator also models memory
timing and bus occupancy among different memory hierar-
chies. It simulates the actual execution of the main thread,
running concurrently with the optimizing helper threads as
they modify the executable, place traces in the code cache,
and patch the main thread to begin using the new traces. Sig-
nificant care is taken to insure that instruction throughput
(IPC) results correspond to only the number of instructions
the original code would have executed.

Since modern processors often include a hardware
prefetching mechanism, we implement a reasonably aggres-
sive hardware stream buffer prefetching [27] in our baseline
architecture. The stream buffers are guided by a stride pre-
dictor, and buffers are allocated using a confidence scheme.
We simulate two stream buffer configurations: (1) 4 stream
buffers and each buffer has 4 entries, (2) 8 stream buffers
and each has 8 entries. As shown in Figure 2, the 4X4 con-
figuration achieves an average 35% speedup relative to no
prefetching, and the 8X8 configuration, 40%. We therefore
choose the hardware stream buffers of the 8X8 configuration
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Pipeline 20-stage, 256-entry ROB, 224 registers
Two hardware contexts

Queue Sizes 64 entries each IQ, FQ, and MQ
Fetch Bandwidth 4 total instructions
Issue Bandwidth 4 instructions per cycle

up to 4 Integer, 2 FP, 2 loads/stores
Branch Predictor 2bcgskew, 64K entry Meta and gshare

16K entry bimodal table
ICache size & latency 64 KB 2-way associative, 3 cycles
L1 size & latency 64 KB 2-way associative, 3 cycles
L2 size & latency 512 KB 8-way associative, 11 cycles
L3 size & latency 4 MB 16-way associative, 35 cycles
Memory Latency 350 cycles

Hardware stream 8 stream buffers; each buffer 8 entries.
buffers History table 1024 entries.

Prefetching is guided by a stride
predictor.

Table 1: The baseline SMT processor configuration.

as our baseline, which is used to evaluate the relative perfor-
mance of software prefetching in the next section.

Note that in our current study, software prefetching
works independently of the underlying hardware prefetching
mechanism. Because it focuses on loads that actually miss, it
will naturally adapt to the loads that the hardware prefetcher
cannot handle. With this system, the compiler need not know
what, if any, hardware prefetcher is active.

4.2 Benchmarks
Performance is evaluated using SPEC 2000 (integer and FP)
benchmarks and a few pointer intensive applications from
prior research. We selected the top 14 benchmarks with the
longest average miss latencies for our study. These include
applu, art, dot, equake, facerec, fma3d, galgel, gap, mcf,
mgrid, parser, swim, vis, and wupwise. All benchmarks are
compiled on the Alpha platform (Digital Unix V4.0F) with
the highest optimization options. Each benchmark is sim-
ulated for 100 million instructions beyond the single simu-
lation points from SimPoint [25] except dot and vis, which
both are fast forwarded 5 billion instructions.

The simulator is warmed up with 5 million instructions
before the true simulation starts. Dynamic optimization and
related structures are not enabled until after warmup is fin-
ished. 100 million instructions are simulated to demonstrate
Trident’s ability to quickly capture and then benefit from
concurrent optimization. We expect even better performance
improvement when simulating more instructions because the
dynamic optimization cost and ramp-up time will be amor-
tized, since we start simulation with no hot traces generated.
However, even within this small optimization window, we
found dynamically inserted prefetches still work well.

Figure 2 shows the base performance of each benchmark
when executed alone on the baseline architecture. The per-
formance from our baseline (the 8X8 hardware prefetching)
is used for future performance comparison.

4.3 Prefetching via Trident Architecture
The goal of this research is to use dynamic code optimiza-
tion to improve the performance of the memory subsystem.
We use the event-driven multithreaded dynamic optimization

0

0.5

1

1.5

applu

art

dot

equake

facerec

fm
a3d

galgel

gap

m
cf

m
grid

parser

sw
im

vis

w
upw

ise

in
st

ru
ct

io
n

s 
p

er
 c

yc
le No prefetching

H/W prefetching (4X4)
H/W prefetching (8X8) -baseline

Figure 2: Performance on the baseline SMT processor

Branch profiler 256-entry, 4-way associative.
Each entry has a 4-bit counter.
Three standalone 16-bit bitmaps

Watch table 256-entry.
Each entry monitors current trace’s
minimal execution time.

Delinquent Load Table 2-way associative; total 1024 entries.
Access counter: 256
Miss counter threshold: 8
Each entry keeps track of the
load’s accesses, misses, miss latency,
last address, and its stride.

Table 2: Trident hardware monitoring structures

framework (Trident) to generate base optimized hot traces.
Upon delinquent load events, base-optimized hot traces are
re-optimized to insert software prefetching instructions to
target frequent cache-missing loads.

The runtime optimization code performs optimizations
on the streamlined instruction traces. Optimizations include
forming hot traces with base optimizations as outlined in
Section 3.2, inserting software prefetching instructions into
hot traces, and repairing prefetching as needed. The run-
time code executed in Trident is written in C and compiled
with gcc -O5 on the Alpha platform. Special care is taken
to make the runtime code thread safe. When the runtime op-
timizer, which runs as a helper thread in a separate proces-
sor hardware context, is triggered, we simulate the startup of
the thread, with a 2000 cycle latency, and we simulate the
optimizations in detail on our SMT simulator. The startup
consists of executing our run-time system to initialize the
helper thread’s registration structure for the optimization to
be performed, which sets the helper thread’s starting PC,
stack pointer, global data pointer, and the priority.

Monitoring Hardware Trident uses a few small hardware
structures to monitor the program’s execution. These hard-
ware structures can generate hot events upon detection of
certain program behaviors, and trigger Trident to perform
dynamic optimization. The configurations of the major hard-
ware structures – the branch profiler, the hot trace watch ta-
ble, and the delinquent load table – are shown in Table 2.
The default DLT table has the access counter threshold of
256 and the miss counter threshold of 8, which approximates
a cache miss threshold of 3% for delinquent loads.
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5 Results

In this section, we evaluate the costs, effectiveness, and per-
formance of our dynamic prefetching technique. Perfor-
mance improvement is relative to the baseline architecture,
whose performance is shown in Figure 2.

5.1 Overhead of the Dynamic Prefetch Optimizer

Our adaptive, event-driven prefetching approach has costs
that neither traditional hardware nor software techniques in-
cur, which is the cost of generating the prefetch code at run-
time. If this cost is high, it can negate the performance gains
of prefetching. However, our approach keeps this cost low,
because we never interrupt the main thread to run the opti-
mizer, we run the optimizer at a lower execution priority on
a spare hardware context, and the optimization thread tends
to have low execution resource demands.

To measure the cost of our dynamic prefetch optimizer
to see how much it affects the performance of the main ex-
ecution thread, we run Trident with our prefetch optimiza-
tion without actually using the optimized traces. That is, the
runtime optimizer is triggered to construct and optimize hot
traces, but it does not alter the original binary to jump to the
optimized trace. The goal of this analysis is to determine the
overhead the optimization code imposes on the system while
it executes concurrently with the main thread.

We observe the total cost to be only 0.6%. This is much
lower than what would be expected in a traditional dynamic
optimization system such as Dynamo [2], which would re-
quire runtime profiling and frequent switches between the
main thread and the optimizer and profiler to enable a simi-
lar optimization.

In our current study, an idle hardware context is assumed
ready for dynamic optimization. However, we don’t have to
reserve an entire hardware context for dynamic optimization.
Helper threads are invoked for optimization subject to the
availability of hardware contexts. Hardware contexts are re-
leased after helper threads finish the optimization. Figure 3
shows the percentage of each benchmark’s total execution
cycles when the optimization thread runs concurrently with
the benchmark. The results show that the helper threads are
active for a small fraction of the main thread’s total execu-
tion time, on average 2.2%. Since the optimization time is
relatively small, our optimization technique should have op-
portunities to run even in a real multithreaded system with
multiple threads running (e.g., even if contexts only become
available during I/O).

Note that the cost of our optimizations will increase with
our adaptive techniques; however, the optimization threads
with self repairing prefetching are typically active at most
25% more than the base case. Therefore, the total cost is
still under 1%. The cost of the interference between the
main thread and the helper threads are fully reflected in sub-
sequent results.
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Figure 3: The execution time of optimization threads relative
to the program’s execution time
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Figure 4: Percentage of load missed covered by hot traces
and the prefetcher

5.2 Load Coverage by Software Prefetching
To gage the potential of our software prefetching, we first
measure the dynamic load miss coverage. Only load instruc-
tions within hot traces can be potentially prefetched by our
current optimization technique. Figure 4 shows the percent
of cache misses which occur within hot traces, and those
that can be potentially software prefetched. The difference
between the height of the bar and 100% represents cache
misses that do not occur while executing hot traces.

The results show that our hot trace scheme covers over
85% of load misses, and nearly 55% of all misses are po-
tentially covered by our prefetcher. Note that dot and parser
have relatively low miss coverage. This is in large part be-
cause of the low dynamic coverage of the hot traces. In con-
trast, gap has low hot trace coverage, but nearly all its hot
trace load misses are prefetched.

5.3 Performance of Software Prefetching
In this section, we want to show the performance im-
provement from basic software prefetching, whole ob-
ject prefetching, and our adaptive self-repairing prefetcher.
The performance improvement over the baseline hardware
prefetching is shown in Figure 5.

The first bar shows the performance improvement
with a configuration similar to prior dynamic prefetching
schemes [14, 5] (basic). This divides the average cache miss
latency by the average trace execution time to estimate the
prefetching distance. We refer to this scheme as the base-
line software prefetching approach (even though it includes
some features unique to our system, such as strided prefetch-
ing of pointer loads). As shown in Figure 5, the average
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Figure 5: Performance improvement of software prefetch-
ing with and without self-repairing relative to hardware
prefetching (8X8)

speedup for the baseline software prefetching technique is
about 11% (over the baseline – hardware prefetching alone).
This means the prefetch distance estimation works reason-
ably well.

The second bar represents the performance improvement
of the stride-based same object prefetching over the base-
line hardware prefetching (whole object). It achieves higher
performance improvement than the baseline scheme on the
pointer intensive applications such as dot and mcf. Perfor-
mance improvement is mainly due to the jump-pointer type
prefetching.

The third bar in the figure shows performance of soft-
ware prefetching with our adaptive self-repair technique. In
this approach, the baseline software prefetcher is initiated
first, with a default prefetch distance of 1. Its prefetch dis-
tance is gradually repaired by the runtime optimizer. As ob-
served in Figure 5, software prefetching with self-repairing
significantly boosts the prefetching performance. This is be-
cause our adaptive prefetching technique can dynamically
correct the prefetch distance as the latency of the hot trace is
dynamically tuned. Note that applu, facerec, and fma3d do
not show any further performance improvement with self-
repairing, because the naive estimates were sufficient – for
example, applu has such a large inner loop (over 1000 in-
structions) that a prefetch distance of 1 is optimal.

As noted previously, we also examine an alternate strat-
egy where the initial prefetch distance is estimated more
carefully and repaired/incremented from there. We found it
achieves performance almost identical to the results shown
here. This demonstrates the efficiency with which the system
adapts, as the initial value becomes irrelevant. The simpler
scheme eliminates certain hardware overheads (also neces-
sary for the non-adaptive results shown) needed to estimate
the prefetch distance.

Overall, self-repairing outperforms the basic software
prefetching by increasing the speedup from 11% to 23% on
average. This comes from a combination of (1) doing a bet-
ter job of getting the prefetch distance right, and (2) adapting
to changes in the hot trace and cache behavior. This demon-
strates that our low-overhead, adaptive prefetch approach en-
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Figure 6: Percentage breakdown of all dynamic loads

ables us to overcome the difficulty in calculating statically,
or even at runtime, the appropriate prefetch distance.

More insight into our software prefetching approach is
provided by Figure 6. Each bar represents the percentage
breakdown of all dynamic loads which hit, partially hit, or
miss in the cache. When a cache block is fetched due to
a prefetch instruction, the first load access to this block is
counted as a Hit-prefetched, but any subsequent accesses are
counted as Hits-none rather than prefetching hits. When a
line is displaced by a prefetch, we record the tag so that we
can identify a Miss due to prefetching if a subsequent miss
matches that tag. Figure 6 shows two key results that indicate
the power of our adaptively repairing prefetcher. Misses due
to prefetching rarely occur, and we have a very low incidence
of partial prefetch hits.

5.4 Software Prefetching Sensitivity
This section shows the sensitivity of our self-repairing
prefetcher to the DLT sizes and our delinquent-load identify-
ing thresholds. We show the results for three load monitoring
window sizes (128, 256, and 512). We also show results for
the miss rate thresholds of 1%, 3%, 6%, and 12%. This is the
miss rate that needs to occur within the load monitoring win-
dow to classify the load as a delinquent load. Figure 7 shows
the average performance improvement of software prefetch-
ing for these different configurations. We found that at least
8 misses during the load’s monitoring window provides an
adequate indication to classify the load as delinquent. If this
number is too small, then it may be overly aggressive with its
prefetching. On the other hand, if this number is too big, it
may miss delinquent loads. Overall, a cache miss rate thresh-
old of 3% (at least 8 misses out of 256 accesses) works best
for the program’s we examined.

Figure 8 shows the performance improvement of soft-
ware prefetching with different delinquent load table (DLT)
sizes. We found for most programs that the performance
only slightly increases when the table size doubles. How-
ever, for benchmarks with large working sets, such as dot
and parser, performance is boosted with a large DLT size.
We anticipate the DLT with 1024 entries should work well
for most programs.
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Figure 8: Average performance improvement of software
prefetching with different DLT sizes

Since our prefetching technique relies on some new
hardware structures, we also want to evaluate how much
these hardware resources would boost performance if we
simply used them to increase the size of the data cache. If all
hardware resources of the DLT table and the watch table are
used to increase the size of the L1 data cache, we observe
merely a 0.8% performance boost over the baseline.

5.5 Comparison with Hardware Prefetching
Finally, we compare the performance of software prefetch-
ing and hardware prefetching alone in Figure 9. Relative to
the baseline without any prefetching, our software prefetch-
ing with self-repairing outperforms hardware prefetching
(the 8X8 configuration) in most of benchmarks, with aver-
age 11% more speedups. We notice that software prefetch-
ing achieves relatively moderate speedups for dot, equake,
and swim. This is due to these two factors: (1) Dynamic
software prefetching can only target delinquent loads within
hot traces. Thus, low coverage of dynamic loads such as in
dot limits software prefetching performance. (2) Software
prefetching has cost usually due to the reduction of effec-
tive instruction issue bandwidth, competition of execution
resources, and cache capacity conflict. Thus, when the pro-
grams such as equake and swim exhibit simple stride pat-
terns with short prefetching distances, hardware prefetch-
ing may be more advantageous. However, when software
prefetching is combined with hardware prefetching, the cost
is minimized since software prefetching now targets delin-
quent loads which cannot be handled efficiently by hardware
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Figure 9: Performance comparison with hardware prefetch-
ing

prefetching.

6 Conclusion

Software prefetching is a promising technique to tolerate
long memory latencies and achieve full performance from
modern processors. Software prefetching has to be accurate
and timely in order to be effective.

In this paper, we extend the event-driven, multithreaded
dynamic optimization framework, Trident, to perform soft-
ware prefetching by dynamically inserting prefetch instruc-
tions into hot traces. The low overhead of the Trident frame-
work allows the runtime optimizer to repeatedly optimize
the same trace to adjust prefetching either because existing
prefetching is not effective or because the program’s behav-
ior changes.

Our prefetching technique also performs stride-based ob-
ject prefetching to not only hide the latency of the first ac-
cess of the object, but all of the fields touched in that ob-
ject. This technique combines the effectiveness of software
prefetching, which can analyze the code to recognize access
patterns, with many of the advantages of hardware prefetch-
ing, which can exploit some patterns static software systems
cannot, and which can adapt to the actual runtime behavior
of individual loads.

With our dynamic self-repairing prefetcher, which finds
the proper prefetch distance by trying multiple distances un-
til the correct one is found, we achieve an average 23%
speedup relative to the baseline which includes a hard-
ware stride based prefetcher. In addition, our self-repairing
prefetching mechanism achieves 12% better performance
than prior dynamic prefetching techniques without repairing.
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