CSE 207C: Lattices in Cryptology Winter 2002

Problem Set 2

Instructor: Daniele Micciancio Mar. 4, 2002

Due: Mar 14, 2002

In this problem you will use lattices (together with some algebraic tools described below)
to solve two cryptanalysis problems. We first recall the algebraic tools required.

The resultant

The resultant is an algebraic tool that can be used to eliminate variables in multivariate
systems of polynomial equations. Here we recall the definition and basic properties.

Let p(x,y) and ¢(z,y) be two polynomials over a field F', and let (a,b) be a common
solution, i.e., p(a,b) = ¢(a,b) = 0. We want to eliminate variable z, and obtain a single
equation z(y) = 0 such that b is a solution.

Think of p, ¢ as polynomials in a single variable z, with coefficients in F[y], e.g., p(z,y) =
>ipiy) - z', and similarly for g. Then polynomials p, g can be represented as vectors with
entries in Fly|: [po(y),p1(y),---,Pdeg, (p)(¥);0,---,0], where deg(p) is the degree of p with
respect to z. Similarly for g. We are going to use vectors with n = deg,(p) + deg,(q)
coordinates. Build a n X n matrix M(y) with entries in F[y] whose rows correspond to
polynomials p(z,%), = - p(x,y),- .., £38D=1 . p(z. ) and q(z,y), z - ¢(z,7),. .., zi@)~1.
q(z,y). The resultant of p and g with respect to z is z(y) = det(M (y)), i.e., the determinant
of matrix M(y).

theorem 1 For any (sufficiently large) field F', and polynomials p,q € F|z,y], if p(a,b) =
q(a,b) =0, then z(b) =0, where z(y) is the resultant of p and q with respect to x.

The relatively simple proof of the theorem above is left as an (optional) excercise. From
the proof it is easy to see that the theorem holds even when F' is not a field, but more
generally, any integral domain (a ring satisfying special properties). In this problem set
we use the resultant to eliminate variables in polynomial equations over ring F = Zy
which is not a field (or even an integral domain) unless N is prime. In the solution to
the problem, you can disregard this technical point, and assume that variable elimination
works. In practice, if some problem arise because Zy is not a field, this will likely expose
the factorization of N, allowing key recovery attack.

So, just assume that the resultant gives a way to perform variable elimination, i.e., given
equations p(z,y) = 0 and ¢(z,y) = 0, the resultant gives a single equation z(y) = 0 such
that all solutions to the original equations are also solutions to the new one. Notice that
the degree of z is usually larger than the degree of the original equations. In particular,

deg, (2) < (deg,(p) deg,(q) + deg,(q) deg, (p)-



The Franklin-Reiter attack

The following is a simple attack to low exponent RSA due to Franklin and Reiter. You
might need this technique to complete the solution to problem 1.

Assume that two related messages m and m' = m + r are encrypted with low exponent
RSA, and the difference r between the messages is known. An observer sees the ciphertexts
c¢=m?mod N and ¢ = (m/)® mod N. Then the message m can be recovered from r,c,c', N
as follows (@ +2 3)

r(c c—r
M= g vy (med )

as easily verified by substitution and simple algebraic manipulation.

Problem 1

Consider a TCP/IP network where security is implemented at the IP layer using low expo-
nent RSA (say, with exponent 3). IP is an inherently unreliable protocol: when you send
an IP packet, there is no guarantee that the packet will reach the destination. We consider
a scenario where a sender pass a message m to the TCP protocol. TCP encapsulate the
message m using an header h (see below), and pass the concatenated packet h;m to the
secure IP protocol. The (secure) IP protocol encrypts the packet and passes (h;m)® mod M
to an underlying (insecure) IP layer. The TCP header h consists of 20 bytes (plus options
if any), containing the following information:

e byte 0: 4-bit version and 4-bit header length,
e byte 1: type of service

e bytes 2-3: 16-bits total length (in bytes)

e bytes 4-5: 16-bit identification

e bytes: 6-7: 3-bits flag, 13-bit fragment offset
e byte 8: time to live

e byte 9: protocol

e bytes 10,11: header checksum

e bytes 12,13: source IP address

e bytes 14,15: destination IP address

e bytes 16, ...: options. We assume that no options are given

The rest of the packet contains the actual data.

Assume that because of a network fault (or a malicious attack by an adversary) the
packet is not received. Then the reliable TCP protocol will send the same message m again.
The header h' used in the second transmission will be identical as in the first transmission,



except for the packet identification number and checksum. The packet identification number
can be either a counter, or randomly chosen at every transmission. Notice that each time
one of the fields is incremented by z, the checksum is decremented by the same amount.

In this problem you should assume that the number of packet sent in between the
transmissions is not known, whether the packet identification number is chosen at random
or incremented at every transmission, the difference between the counters in the first and
second transmission is not known.

Use the resultant, and the lattice based method to solve polynomial equations, to show
that given (h;m)? mod M and (h';m)® mod M, one can efficiently recover the message m,
even without knowning the factorization of the modulus M.

[Hint: Try to find the numerical difference d = (h;m) — (h'; m) between the two packets
before encryption.|

In this problem you are not required to implement the attack. Just give a description
and brief analysis of the attack.

Problem 2

In this problem you are asked to analyze the attack to the truncated linear congruential
generator described in class. The generator is defined by public parameters a, b, m. Given a
seed g, one applies the recurrence ;| = az;+b mod m, and for each i, outputs ¢; = |z;/2F,
where k is the number of truncated lower order bits, e.g., £ = 100.

Notice that by induction on i, it follows that z; = a*zo+b; mod m where b; = b 2i<i a’ mod
m. Build the matrix corresponding to the equations:

a -1 0 0
a 0 -1 0
A=
0
a 0 0 -1
We want to solve Az = b (mod m), where b’ = —[bg,...,b]7. Remember the method

sudied in class. We substitute z = 2¥¢ + y, where 0 < y; < 2¥, and obtain an equivalent
system Ay = b” mod m with small solution y. We then setup a lattice

aml oA

where « is a sufficiently large constant. We run the nearest plane algorithm to find a lattice
point approximately closest (say, within a factor 2"/2) to the target ¢t = [a(b")T07]".

We proved that if lattice L = {z : Az = 0 mod m} does not contain short vectors then
the attack is successful.

In this problem you are asked to analyze the success probability of the attack, as a
function of the parameters k (the number of truncated bits), [ (the stretching factor of the
generator) and logm (the bitsize of the modulus).

You can either run some experiments, and tell for which values of the parameters you
successfully broke the generator, or analyse the success probability of the attack by evalu-
ating the length of the shortest vector in L.



If you decide to perform a theoretical analysis, here is a hint: You want to bound the
number of a such that there exists a t for which |ta’| is small for all 5. Prove that all such
a’s are solutions to a polynomial with small coefficients. This can be done considering all
polynomials p with small coefficients, bounding the value of - p(a) using the bounds on ta’
and the coefficients of p, and finally using the pigeonhole principle. Since there are more
polynomials that output values, two polynomials ¢p(a) and tp'(a) have the same value. It
follows that (p — p’)(a) = 0 and the coefficients of (p — p') are small.



