Chapter 1

BASICS

This book is about algorithmic problems on point lattices, and their
computational complexity. In this chapter we give some background
about lattices and complexity theory.

1. Lattices

Let R™ be the m-dimensional Euclidean space. A lattice in R™ is the

set
n
ﬁ(bl,...,bn) = {szbzxz GZ} (1.1)
i=1
of all integral combinations of n linearly independent vectors bq,...,b,
in R™ (m > n). The integers n and m are called the rank and dimension
of the lattice, respectively. The sequence of vectors bq,..., b, is called
a lattice basis and it is conveniently represented as a matrix

B =[by,...,b,] € R™" (1.2)

having the basis vectors as columns. Using matrix notation, (1.1) can
be rewritten in a more compact form as

L(B) = {Bx:x € Z"} (1.3)

where Bx is the usual matrix-vector multiplication.

Graphically, a lattice can be described as the set of intersection points
of an infinite, regular (but not necessarily orthogonal) n-dimensional
grid. A 2-dimensional example is shown in Figure 1.1. There, the basis

vectors are
1 1
w2 me [0

2 COMPLEXITY OF LATTICE PROBLEMS

e o e
| ° ° ° °

Figure 1.1. A lattice in R?

and they generate all the intersection points of the grid when combined
with integer coefficients. The same lattice has many different bases. For
example, vectors

2 3
/1:b1—|—b2:|:1:|, /2:2b1—|-b2:|:3:| (15)

are also a basis for lattice £(by,bg2). The grid generated by b/, b} is
shown in Figure 1.2. Notice that although the two grids are different, the
set of intersection points is exactly the same, i.e., {by,bs} and {b},b)}
are two different bases for the same lattice £(b1,bs) = L(b],b)).

Throughout the book, we use the convention that lattice points are
always represented as column vectors. Wherever vectors are more con-
veniently written as rows, we use transpose notation. For example,
the definition of vector by, bg in (1.4) can equivalently be rewritten as
b; = [1,2]7,by = [1,-1]7, where AT denotes the transpose of matrix
A.

A simple example of n-dimensional lattice is given by the set Z™ of
all vectors with integral coordinates. A possible basis is given by the

Basics 3

° ° o g

Figure 1.2. A different basis

standard unit vectors

n
e;=1[0,...,0,1,0,...,0]7.
h‘,—/
(2
In matrix notation Z" = L(I) where I € Z"*" is the n-dimensional

identity matrix, i.e., the n X n square matrix with 1’s on the diagonal
and 0’s everywhere else.

When n = m, i.e., the number of basis vectors equals the number of
coordinates, we say that £(B) is full rank or full dimensional. Equiv-
alently, lattice £(B) C R™ is full rank if and only if the linear span of
the basis vectors

span(B) = {Bx:x € R"} (1.6)

equals the entire space R™. The difference between (1.3) and (1.6) is
that while in (1.6) one can use arbitrary real coefficients to combine the
basis vectors, in (1.3) only integer coefficients are allowed. It is easy
to see that span(B) does not depend on the particular basis B, i.e.,
if B and B’ generate the same lattice then span(B) = span(B’). So,

4 COMPLEXITY OF LATTICE PROBLEMS

for any lattice A = £(B), we can define the linear span of the lattice
span(A), without reference to any specific basis. Notice that B is a
basis of span(B) as a vector space. In particular, the rank of lattice
L(B) equals the dimension of span(B) as a vector space over R and it
is a lattice invariant, i.e., it does not depend on the choice of the basis.

Clearly, any set of n linearly independent lattice vectors B € £(B) is
a basis for span(B) as a vector space. However, B’ is not necessarily a
lattice basis for £(B). See Figure 1.3 for a 2-dimensional example. The
picture shows the lattice £(by, by) generated by basis vectors (1.4) and
the grid associated to lattice vectors

2
b’1:b1+b2:[1], bg:bl—bzz[g]. (1.7)

Vectors b} and b}, are linearly independent. Therefore, they are a basis
for the plane R? = span(by,bs) as a vector space. However, they are
not a basis for £(by, by) because lattice point by cannot be expressed as
an integer linear combination of b} and bf,. There is a simple geometric
characterization for linearly independent lattice vectors that generate
the whole lattice. For any n linearly independent lattice vectors B’ =
[bl,...,b)] (with b, € L(B) C R™ for all i = 1,...,n) define the half
open parallelepiped

PB') = {B'x:0 <z; < 1}. (1.8)

Then, B’ is a basis for lattice £(B) if and only if P(B’) does not contain
any lattice vector other than the origin. Figures 1.1, 1.2 and 1.3 illustrate
the two cases. The lattice in Figures 1.2 and 1.3 is the same as the
one in Figure 1.1. In Figure 1.2, the (half open) parallelepiped P(B’)
does not contain any lattice point other than the origin, and therefore
L(B') = £L(B). In Figure 1.3, parallelepiped P(B’) contains lattice point
by. Therefore £(B') # £(B) and B’ is not a basis for £(B).

Notice that since B is a set of linearly independent vectors, £(B’) is a
lattice and B’ is a basis for £(B'). Clearly, £(B') C £(B), i.e., any point
from lattice £(B’) belongs also to lattice £(B). When L(B’) C L(B),
we say that £(B') is a sublattice of L(B). If L(B’) = L(B) we say that
bases B and B’ are equivalent. If £L(B') C £L(B), but L(B') # L(B),
then bases B and B’ are not equivalent, and £(B') is a proper sublattice
of L(B).

Equivalent bases (i.e., bases that generate the same lattice) can be
algebraically characterized as follows. Two bases B,B’ € R"™*" are
equivalent if and only if there exists a unimodular matrix U € Z"*" (i.e.,
an integral matrix with determinant det(U) = +1) such that B’ = BU.
The simple proof is left to the reader as an exercise.

Basics 5

. ° d ° ®

Figure 1.3. The sublattice generated by b; + b2 and by — b

When studying lattices from a computational point of view, it is cus-
tomary to assume that the basis vectors (and therefore any lattice vector)
have all rational coordinates. It is easy to see that rational lattices can
be converted to integer lattices (i.e., sublattices of Z") by multiplying
all coordinates by an appropriate integer scaling factor. So, without loss
of generality, in the rest of this book we concentrate on integer lattices,
and, unless explicitly stated otherwise, we always assume that lattices
are represented by a basis, i.e., a matrix with integer coordinates such
that the columns are linearly independent.

Lattices can also be characterized without reference to any basis. A
lattice can be defined as a discrete nonempty subset A of R" which is
closed under subtraction, i.e., if x € A and y € A, then also x —y € A.
Here “discrete” means that there exists a positive real A > 0 such that
the distance between any two lattice vectors is at least A. A typical
example is the set A = {x € Z": Ax = 0} of integer solutions of a
system of homogeneous linear equations. Notice that A always contains
the origin 0 = x —x, it is closed under negation (i.e., if x € A then —x =
0 —x € A), and addition (i.e., if x,y € Athenx+y =x— (—y) € A).
In other words, A is a discrete additive subgroup of R™.

6 COMPLEXITY OF LATTICE PROBLEMS

1.1 Determinant

The determinant of a lattice A = L(B), denoted det(A), is the n-
dimensional volume of the fundamental parallelepiped P(B) spanned by
the basis vectors. (See shaded areas in Figures 1.1 and 1.2.) The deter-
minant is a lattice invariant, i.e., it does not depend on the particular
basis used to compute it. This immediately follows from the character-
ization of equivalent bases as matrices B = BU related by a unimod-
ular transformation U. Geometrically, this corresponds to the intuition
that the (n-dimensional) volume of the fundamental parallelepiped P(B)
equals the inverse of the density of the lattice points in span(B). As an
example consider the bases in Figures 1.1 and 1.2. The areas of the fun-
damental regions (i.e., the shaded parallelepipeds in the pictures) are
exactly the same because the two bases generate the same lattice. How-
ever, the shaded parallelepiped in Figure 1.3 has a different area (namely,
twice as much as the original lattice) because vectors (1.7) only generate
a sublattice.

A possible way to compute the determinant is given by the usual
Gram-Schmidt orthogonalization process. For any sequence of vectors
by,..., by, define the corresponding Gram-Schmidt orthogonalized vec-
tors b7,..., b} by

i—1
by = b;— Y pi;b] (1.9a)

j=1
where (x,y) = >, x;y; is the inner product in R™. For every i,
b? is the component of b; orthogonal to by,...,b;_;. In particular,
span(by,...,b;) = span(bj,...,b}) and vectors b} are pairwise orthog-

onal, i.e., (b’, bj> = 0 for all 7 # j. The determinant of the lattice equals
the product of the lengths of the orthogonalized vectors

det(£(B)) = [Ib;] (1.10)
=1

where ||x|| = />, 27 is the usual Euclidean length. We remark that the

definition of the orthogonalized vectors b; depends on the order of the
original basis vectors. Given basis matrix B = [by, ..., b,], we denote by
B* the matrix whose columns are the orthogonalized vectors [by,...,b].
Clearly, B* is a basis of span(B) as a vector space. However, B* is not
usually a lattice basis for £(B). In particular, not every lattice has a
basis consisting of mutually orthogonal vectors.

Basics 7

Notice that if the b;’s are rational vectors (i.e., vectors with rational
coordinates), then also the orthogonalized vectors b} are rationals. If
lattice £(B) is full dimensional (i.e. m = n), then B is a nonsingular
square matrix and det(£(B)) equals the absolute value of the deter-
minant of the basis matrix det(B). For integer lattices, B is a square
integer matrix, and the lattice determinant det(£(B)) = det(B) is an
integer. In general, the reader can easily verify that det(£(B)) equals
the square root of the determinant of the Gram matrix BT B, i.e., the
n X n matrix whose (i, j)th entry is the inner product (b;, b;):

det(£(B)) = 1/det(BTB). (1.11)

This gives an alternative way to compute the determinant of a lattice
(other than computing the Gram-Schmidt orthogonalized vectors), and
shows that if B is an integer matrix, then the determinant of £(B) is
always the square root of a positive integer, even if det(£(B)) is not
necessarily an integer when the lattice is not full rank.

1.2 Successive minima

Let B,,(0,7) = {x € R™ : |[x]| < r} be the m-dimensional open
ball of radius r centered in 0. When the dimension m is clear from the
context, we omit the subscript m and simply write 5(0, r). Fundamental
constants associated to any rank n lattice A are its successive minima
Ay ...y Ap. The ith minimum \;(A) is the radius of the smallest sphere
centered in the origin containing ¢ linearly independent lattice vectors

Ai(A) = inf {r:dim(span(A N B(0,7))) > i}. (1.12)

Successive minima can be defined with respect to any norm. A norm
is a positive definite, homogeneous function that satisfies the triangle
inequality, i.e., a function || - ||: R™ — R such that

® ||x|| > 0 with equality only if x =0
= Jax|| = |af - x|
[+ yll < il + [lyll

for all x,y € R™ and o € R. An important family of norm functions is
given by the £, norms. For any p > 1, the £, norm of a vector x € R" is

n 1/p
x|, = <Z x§> : (1.13a)
=1

8 COMPLEXITY OF LATTICE PROBLEMS

Important special cases are the [;-norm

n

el = i, (1.13b)

i=1

the /5 norm (or Euclidean norm)

Ix|l2 = vV (x,x) = (1.13c)
and the £, norm (or max-norm)
%]l = lim ||x]|, = max |z (1.13d)
p—00 i=1

We remark that when p < 1, function (1.13) is not a norm because it
does not satisfy the triangle inequality. Notice that the value of the
successive minima Ap, ..., A,, and the lattice vectors achieving them,
depend on the norm being used. Consider for example the lattice

A ={v € Z* v +vy =0mod 2} (1.14)

generated by basis vectors

blz[g], bQZH]. (1.15)

Lattice vector by is a shortest (nonzero) vector in £(by, bs) with respect
the ¢; norm and A; = ||by|[; = 2 if the ¢; norm is used. However, by
is not a shortest vector with respect to the £y or £, because in these
norms lattice vector by is strictly shorter than by giving first minimum
A1 = ||ballz2 = V2 and A; = ||ba||se = 1, respectively. In this book we are
primarily concerned with the £ norm, which corresponds to the familiar
Fuclidean distance

dist(x,y) = x — v = (1.16)

and will consider other norms only when it can be done without sub-
stantially complicating the exposition.

In the previous examples, we have seen that lattice (1.14) contains a
vector b such that ||b|| = A;. It turns out that this is true for every
lattice. It easily follows from the characterization of lattices as discrete

Basics 9

subgroups of R™ that there always exist vectors achieving the successive
minima, i.e., there are linearly independent vectors x1,...,x, € A such
that ||x;|| = A; for all ¢ = 1,...,n. So, the infimum in (1.12) is actually
a minimum if B(0,7) is replaced with the closed ball B(0,7) = {x €
R™: ||x|| < r}. In particular, A;(A) is the length of the shortest nonzero
lattice vector and equals the minimum distance between any two distinct
lattice points

A(A) = min fx —yll = min fix]l (1.17)

In the rest of this section we give a proof that any lattice contains

nonzero vectors of minimal length. In doing so, we prove a lower bound

for the first minimum that will be useful later on. The result is easily

generalized to all successive minima to show that there are n linearly

independent vectors vy, ..., v, satisfying ||v;|| = A; for all i = 1,...,n.
Fix some lattice £(B), and consider the first minimum

A = inf{[[v]| : v € £(B)/{0}}.

We want to prove that there exists a lattice vector v € £(B) such that
|lv|| = A1. We first prove that A; is strictly positive.

THEOREM 1.1 Let B be a lattice basis, and let B* be the corresponding
Gram-Schmidt orthogonalization. Then, the first minimum of the lattice
(in the ¢y mnorm) satisfies

A1 > min [[b]| > 0.
J

Proof: Consider a generic nonzero lattice vector Bx (where x € Z" and
x # 0) and let 7 be the biggest index such that z; # 0. We show that
[Bx|| > [[b}[| > min; |[b}]. It follows that the infimum A; = inf | Bx||
also satisfies A\; > min; ||bj[|. From basic linear algebra we know that
|(x,y)| < |Ix||-|ly]l for any two vectors x,y. We prove that |(Bx,b})| >
b ||?, and therefore | Bx||-||b}| > ||b}||?. Since vectors b;’s are linearly
independent, ||b}|| # 0 and ||Bx|| > ||b}|| follows.

So, let us prove that [(Bx,b?)| > ||b}|?>. From the definition of i, we
know that Bx = 2;21 b;z;. Using the definition of the orthogonalized
vectors (1.9a) we get

(Bx,b}) =) (bj,b)z;
j=1
= (b;,b])z;

10 COMPLEXITY OF LATTICE PROBLEMS

= (b; + > pybj, b

Jj<i
= (b},b})x; + > pi; (b}, b})z
i<t
= [Ib*z:.

Since z; is a nonzero integer,

|(Bx, bi)| = b7 |I* - |zs] > 7] O

In particular, the theorem shows that A\; > 0. We now prove that
there exists a nonzero lattice vector of length A;. By definition of Ay,
there exists a sequence of lattice vectors v; € £L(B) such that

lm ||vi|| = A1
11— 00

Since A1 > 0, for all sufficiently large 7 it must be ||v;|| < 2\, i.e., lattice
vector v; belongs to the closed ball

B(0,2)\) = {z: ||z]) < 2\).

But set B(0,2)) is compact, so, we can extract a convergent subsequence
Vi with limit
w = lim Vi

j—00
Clearly, ||w|| = lim; . ||V, || = A\1. We want to prove that w is a lattice
vector. By definition of w we have lim; . [|v;; —w|| = 0. Therefore for

all sufficiently large j, ||[vi; — w|| < A\1/2. By triangle inequality, for a
sufficiently large j and all & > j,

[viy = Vil < llvi; = wil + lw = i, | < A1

But v;; —v;, isa lattice vector, and no nonzero lattice vector can have
length strictly less than A;. This proves that v;, —v;, =0, i.e., v; = v,
for all k£ > j. Therefore, w = limg v;, = v;;, and w is a lattice vector.

The above argument can be easily generalized to prove the following
theorem about all successive minima, of a lattice.

THEOREM 1.2 Let A be a lattice of rank n with successive minima A1,
, An- Then there exist linearly independent lattice vectors vy, ..., vy, €
A such that ||vi|| = A; foralli=1,...,n

Interestingly, the vectors vy, ..., Vv, achieving the minima are not nec-
essarily a basis for A. Examples of lattices for which all bases must con-
tain at least one vector strictly longer than A\, are given in Chapter 7.

Basics 11

1.3 Minkowski’s theorems

In this subsection we prove an important upper bound on the product
of successive minima of any lattice. The bound is based on the following
fundamental theorem.

THEOREM 1.3 (BLICHFELDT THEOREM.) For any lattice A and for any
measurable set S C span(A), if S has volume vol(S) > det(A), then there
exist two distinct points z1,zo € S such that z1 — zo € A.

Proof: Let A = £(B) be a lattice and S be any subset of span(A) such
that vol(S) > det(B). Partition S into a collection of disjoint regions as
follows. For any lattice point x € A define

Sy =S8N (P(B) +x) (1.18)

where P(B) is the half open parallelepiped (1.8). Here and below, for
any set A C R™ and vector x € R", expression A + x denotes the set
{y + xty € A}. Notice that sets P(B) + x (with x € A) partition
span(B). Therefore sets Sx (x € A) form a partition of S, i.e., they are
pairwise disjoint and

S={J S

X€EA
In particular, since A is countable,

vol(S) = Z vol(Sx).
x€EA

Define also translated sets
S =8x—x=(S—x)NP(B)

Notice that for all x € A, set Sy is contained in P(B) and vol(Sx) =
vol(Sy). We claim that sets Sj are not pairwise disjoint. Assume, for
contradiction, they are. Then, we have

Z vol(Sy) = vol <U S;) < vol(P(B)). (1.19)

XEA xEA
We also know from the assumption in the theorem that
> vol(S) = vol(Sy) = vol(S) > det(A). (1.20)
xEA xXEA

Combining (1.19) and (1.20) we get det(A) < vol(P(B)), which is a
contradiction because det(A) = vol(P(B)) by the definition of lattice
determinant.

12 COMPLEXITY OF LATTICE PROBLEMS

This proves that set S;, are not pairwise disjoint, i.e., there exist two
sets Sy, Sy (for x,y € A) such that S, NS}, # (). Let z be any vector in
the (nonempty) intersection Sy NSy, and define

Z1 = Z+X

Zo = Z+Y.

From z € Sy and z € Sy we get z; € Sx C S and zp € Sy C S.
Moreover, z1 # 79 because x # y. Finally, the difference between z;
and z9 satisfies

Z1— 2y =X—Yy €A, (1.21)

completing the proof of the theorem. O

As a corollary to Blichfeldt theorem we immediately get the following
theorem of Minkowski.

THEOREM 1.4 (CONVEX BODY THEOREM) For any lattice A of rank n
and any convex set S C span(A) symmetric about the origin, if vol(S) >
2" det(A), then S contains a nonzero lattice point v.e SN A\ {0}.

Proof: Consider the set S” = {x:2x € S}. The volume of S’ satisfies
vol(S) = 27" vol(S) > det(A). (1.22)

Therefore, by Blichfeldt theorem there exist two distinct points zq,zo €
S” such that z1 —z9 € L(A). From the definition of S/, we get 221,22z, € S
and since S is symmetric about the origin, we also have —2z, € S.
Finally, by convexity, the midpoint of segment [2z;, —2z5] also belongs
to S, i.e.,
2z1 + (—2Z2)
2

This proves that v = z; — z9 is a nonzero lattice point in S. O

=2z —22€S. (1.23)

Minkowski’s convex body theorem can be used to bound the length
of the shortest nonzero vector in an rank n lattice as follows. Let S =
B(0, \/ndet(A)'/™)Nspan(A) be the open ball of radius /n det(A)/™ in
span(A). Notice that S has volume strictly bigger than 2™ det(A) because
it contains an n-dimensional hypercube with edges of length 2 det(A)l/ ",
By Minkowski’s theorem there exists a nonzero lattice vector v € £(B)\
{0} such that v € S, i.e., ||v| < v/ndet(A)/™. This proves that for any
rank n lattice A, the length of the shortest nonzero vector (in the ¢,
norm) satisfies

A1 < v/ndet(A)V™, (1.24)

Basics 13

This result (in a slightly stronger form) is the well known Minkowski’s
first theorem. Minkowski also proved a stronger result involving all suc-
cessive minima, known as the second theorem of Minkowski. Namely,
Vndet(A)/" is an upper bound not only to the first minimum M,
but also to the the geometric mean of all successive minima. While
Minkowski’s first theorem is easily generalized to any norm, the proof
of the second theorem for general norms is relatively complex. Here we
prove the theorem only for the simple case of the Euclidean norm.

THEOREM 1.5 (MINKOWSKI’'S SECOND THEOREM) For any rank n lat-
tice L(B), the successive minima (in the 3 norm) A1, ..., A\, satisfy

n 1/n
(H A,) < vndet(B)/™, (1.25)
=1

Proof: Let x3,...,x, be linearly independent lattice vectors achiev-
ing the successive minima [|x;|| = A; and assume for contradiction that
[Ty A > (V/n)"det(B). Consider the Gram-Schmidt orthogonalized
vectors x; and define the transformation

T <Z cl-xz‘) = Z NiGiX; (1.26)

that expands each coordinate x} by a factor A\;. Let S = B(0,1) N
span(B) be the n-dimensional open unit ball in span(B). If we apply T
to S we get a symmetric convex body T'(S) of volume

vol(T'(S)) = <H>\> vol(S)

> (vn)"det(B)vol(S)
= vol(y/nS)det(B)

V

where \/nS is the ball of radius \/n. The volume of \/nS is bigger than
2" because /nS contains a hypercube with edges of length 2. Therefore,
vol(T'(S)) > 2™ det(B), and by Minkowski’s convex body theorem 7'(.5)
contains a lattice point y different from the origin. Since y € T'(.9), it
must be y = T'(x) for some x € S. From the definition of S we get
Ix|| < 1. Now express x and y in terms of the orthogonalized basis

n
x = E CiXj
i=1
*
y = E AiCGiX .

14 COMPLEXITY OF LATTICE PROBLEMS

Since y is nonzero, some ¢; is not zero. Let k be the largest index such
that ¢; # 0, and k' < k the smallest index such that A\ = \;. No-

tice that y is linearly independent from x1,...,xs/_; because (x;,y) =
)\kckHXZHQ # 0 and xj is orthogonal to x1,...,xs_;. We now show that
Iyl < Ak

2

IylI> = > xex;

i<k
2 20| *]12
= Z)‘ici 15 |
i<k
2 20 %||2
< Z)‘kci [|l
i<k
2
2
= Zcixf
i<k
214 [2 2
= ARlx[T < A%
This proves that x1,...,Xg_1,y are k' linearly independent lattice vec-

tors of length strictly less than A\p = Ap/, contradicting the definition of
the k'th successive minimum \p/. O

2. Computational problems

Minkowski’s first theorem gives a simple way to bound the length Ay
of the shortest nonzero vector in a lattice £(B). Although Minkowski’s
bound is asymptotically tight in the worst case (i.e., there exist lattices
such that A; > ¢y/ndet(B)Y/™ for some absolute constant ¢ indepen-
dent of n), in general \; can be much smaller than \/n det(B)Y/™. For
example, consider the two dimensional lattice generated by orthogonal
vectors b; = ee; and by = (1/€)es. The determinant of the lattice is 1,
giving upper bound \; < v/2. However A\; = € can be arbitrarily small.

Moreover, the proof of Minkowski’s theorem is not constructive, in the
sense that we know from the theorem that a short nonzero vector exists,
but the proof does not give any computational method to efficiently find
vectors of length bounded by /7 det(A)/™, leave alone vectors of length
A1. The problem of finding a lattice vector of length A; is the well known
Shortest Vector Problem.

DEFINITION 1.1 (SHORTEST VECTOR PROBLEM, SVP) Given a basis
B € Z™*", find a nonzero lattice vector Bx (with x € Z™ \ {0}) such
that |Bx|| < ||By|| for any other'y € Z™\ {0}.

Basics 15

The lack of efficient algorithms to solve SVP has led computer sci-
entists to consider approximation versions of the problem. In this book
we study this and other lattice problems from a computational point
of view. Throughout the book, we assume the standard computational
model of deterministic Turing machines. The reader is referred to (van
Emde Boas, 1990; Johnson, 1990) or any undergraduate level textbook
on the subject for an introduction to the basic theory of computability
and computational complexity. In the following subsection we simply
recall some terminology and basic definitions. Then, in Subsection 2.2
we describe SVP and other lattice problems in their exact and approx-
imation versions, and in Subsection 2.3 we give some background about
the computational complexity of approximation problems.

2.1 Complexity Theory

An alphabet is a finite set of symbols X. A string (over X) is a finite
sequence of symbols from . The length of a string y is the number
of symbols in y, and it is denoted |y|. The set of all strings over ¥ is
denoted X*, and the set of all strings of length n is denoted X". A Turing
machine M runs in time ¢(n) if for every input string w of length n (over
some fixed input alphabet), M(n) halts after at most ¢(n) steps. We
identify the notion of efficient computation with Turing machines that
halt in time polynomial in the size of the input, i.e., Turing machines
that run in time ¢(n) = a +n’ for some constants a, b independent of n.
A decision problem is the problem of deciding whether the input string
satisfies or not some specified property. Formally, a decision problem is
specified by a language, i.e., a set of strings L C ¥*, and the problem
is given an input string w € »* decide whether w € L or not. The
class of decision problems that can be solved by a deterministic Turing
machine in polynomial time is called P. The class of decision problem
that can be solved by a nondeterministic Turing machine in polynomial
time is called NP. Equivalently, NP can be characterized as the set of
all languages L for which there exists a relation R C ¥* x ¥* such that
(z,y) € R can be checked in time polynomial in |z|, and = € L if and
only if there exists a string y with (z,y) € R. Such string y is called
NP-witness or NP-certificate of membership of x in L. Clearly, P C NP,
but it is widely believed that P # NP, i.e., there are NP problems that
cannot be solved in deterministic polynomial time.

Let A and B be two decision problems. A (Karp) reduction from A
to B is a polynomial time computable function f : ¥* — ¥* such that
x € Aif and only if f(x) € B. Clearly, if A reduces to B and B can
be solved in polynomial time, then also A can be solved in polynomial
time. A (decision) problem A is NP-hard if any other NP problem B

16 COMPLEXITY OF LATTICE PROBLEMS

reduces to A. If A is also in NP, then A is NP-complete. Clearly, if
a problem A is NP-hard, then A cannot be solved in polynomial time
unless P = NP. The standard technique to prove that a problem A is
NP-hard (and therefore no polynomial time solution for A is likely to
exists) is to reduce some other NP-hard problem B to A. Another notion
of reduction which will be used in this book is that of Cook reduction.
A Cook reduction from A to B is a polynomial time Turing machine
M with access to an oracle that takes instances of problem B as input.
M reduces A to B, if, given an oracle that correctly solves problem B,
M correctly solves problem A. A problem A is NP-hard under Cook
reductions if for any NP problem B there is a Cook reduction from B
to A. If A is in NP, then we say that A is NP-complete under Cook
reductions. NP-hardness under Cook reductions also gives evidence of
the intractability of a problem, because if A can be solved in polynomial
time then P = NP. The reader is referred to (Garey and Johnson,
1979) for an introduction to the theory of NP-completeness and various
NP-complete problems that will be used throughout the book.

In the rest of this book algorithms and reductions between lattice
problems are described using some informal high level language, and
decision problems are described as sets of mathematical objects, like
graphs, matrices, etc. In all cases, the translation to strings, languages
and Turing machines is straightforward.

Occasionally, we will make use of other complexity classes and differ-
ent notions of reductions, e.g., randomized complexity classes or nonuni-
form reductions. When needed, these notions will be briefly recalled, or
references will be given.

Throughout the book, we use the standard asymptotic notation to
describe the order of growth of functions: for any positive real valued
functions f(n) and g(n) we write

m [=(0(g) if there exists two constants a,b such that f(n) < a- f(n)
for all n > b.

f=o(g) if im, . f(n)/g(n) =0

f=9(9) if g =0(f)

[=w(g) if g = o(f)

m f=06(g)if f=0(9) and g = O(f).

C

A function f is negligible if f = o(1/g) for any polynomial g(n) = n°.

Basics 17

2.2 Some lattice problems

To date, we do not know any polynomial time algorithm to solve SVP.
In fact, we do not even know how to find nonzero lattice vectors of length
within the Minkowski’s bound ||Bx|| < v/ det(B)Y™. Another related
problem for which no polynomial time solution is known is the Closest
Vector Problem .

DEFINITION 1.2 (CLOSEST VECTOR PROBLEM, CVP) Given a lattice
basis B € Z™*™ and a target vector t € Z™, find a lattice vector Bx
closest to the target t, i.e., find an integer vector x € Z™ such that
|Bx — t|| < ||By — t|| for any othery € Z™.

Studying the computational complexity of these problems is the main
subject of this book. Both for CVP and SVP one can consider different
algorithmic tasks. These are (in decreasing order of difficulty):

m The Search Problem: Find a (nonzero) lattice vector x € A such that
|lx — t|| (respectively, ||x||) is minimized.

» The Optimization Problem: Find the minimum of ||x — t|| (respec-
tively, ||x||) over x € A (respectively, x € A\ {0}).

m The Decision Problem: Given a rational r» > 0, decide whether there
is a (nonzero) lattice vector x such that ||x — t|| < r (respectively,.
x| < 7).

We remark that to date virtually all known (exponential time) al-
gorithms for SVP and CVP solve the search problem (and therefore
also the associated optimization and decision problems), while all known
hardness results hold for the decision problem (and therefore imply the
hardness of the optimization and search problems as well). This sug-
gests that the hardness of solving SVP and CVP is already captured
by the decisional task of determining whether or not there exists a so-
lution below some given threshold value. We will see in Chapter 3 that
the decision problem associated to CVP is NP-complete, and therefore
no algorithm can solve CVP in deterministic polynomial time, unless
P = NP. A similar result holds (under randomized reductions) for SVP
(see Chapter 4).

The hardness of solving SVP and CVP has led computer scientists
to consider approximation versions of these problems. Approximation
algorithms return solutions that are only guaranteed to be within some
specified factor v from the optimal. Approximation versions for the SVP
and CVP search problems are defined below.

18 COMPLEXITY OF LATTICE PROBLEMS

DEFINITION 1.3 (APPROXIMATE SVP) Given a basis B € Z™*", find
a nonzero lattice vector Bx (x € Z" \ {0}) such that |Bx|| < v - |By]|
for any other'y € Z™ \ {0}.

In the optimization version of approximate SVP, one only needs to
find ||Bx]|, i.e., a value d such that \;(B) < d < v\1(B).

DEFINITION 1.4 (APPROXIMATE CVP) Given a basis B € Z™*™ and
a target vector t € Z™, find a lattice vector Bx (x € Z") such that
|Bx — t|| < ~||By — t|| for any other y € Z™.

In the optimization version of approximate CVP, one only need to find
|IBx — t||, i.e., a value d such that dist(t,£(B)) < d < vy dist(t, £L(B)).
Both in the approximate SVP and CVP, the approximation factor ~
can be a function of any parameter associated to the lattice, typically
its rank n, to capture the fact that the problem gets harder as this pa-
rameter increases. To date, the best known polynomial time (possibly
randomized) approximation algorithms for SVP and CVP achieve worst
case (over the choice of the input) approximation factors v(n) that are
essentially exponential in the rank n. Finding algorithms that achieve
polynomial approximation factors y(n) = n® (for some constant ¢ inde-
pendent of the rank n) is one of the main open problems in this area.

SVP and CVP are the two main problems studied in this book. Chap-
ter 2 describes efficient algorithms to find approximate solutions to these
problems (for large approximation factors). The computational com-
plexity of CVP is studied in Chapter 3. The strongest known hardness
result for SVP is the subject of Chapters 4, 5 and 6. There are many
other lattice problems which are thought to be computationally hard.
Some of them, which come up in the construction of lattice based cryp-
tographic functions, are discussed in Chapter 7. There are also many
computational problems on lattices that can be efficiently solved (in de-
terministic polynomial time). Here we recall just a few of them. Finding
polynomial time solutions to these problems is left to the reader as an
exercise.

1 Membership: Given a basis B and a vector x, decide whether x be-
longs to the lattice £(B). This problem is essentially equivalent to
solving a system of linear equations over the integers. This can be
done in polynomially many arithmetic operations, but some care is
needed to make sure the numbers involved do not get exponentially
large.

2 Kernel: Given an integral matrix A € Z"™*™, compute a basis for the
lattice {x € Z™: Ax = 0}. A similar problem is, given a modulus M

Basics 19

and a matrix A € Z};™, find a basis for the lattice {x € Z™: Ax =0
(mod M)}. Again, this is equivalent to solving a system of (homoge-
neous) linear equations.

3 Basis: Given a set of possibly dependent integer vectors by,..., by,
find a basis of the lattice they generate. This can be done in a
variety of ways, for example using the Hermite Normal Form. (See
Chapter 8.)

4 Union: Given two integer lattices £(B;) and £(B3), compute a basis
for the smallest lattice containing both £(B;) and £(Bg). This im-
mediately reduces to the problem of computing a basis for the lattice
generated by a sequence of possibly dependent vectors.

5 Dual: Given a lattice £(B), compute a basis for the dual of £(B),
i.e., the set of all vectors y in span(B) such that (x,y) is an integer
for every lattice vector x € L£(B). It is easy to see that a basis for
the dual is given by B(BTB)~L.

6 Intersection: Given two integer lattices £(B1) and £(B2), compute
a basis for the intersection £(B1) N L(B2). It is easy to see that
L(B1)NL(B2) is always a lattice. This problem is easily solved using
dual lattices.

7 Equivalence: Given two bases B; and Bs, check if they generate the
same lattice £(B1) = £(Bg2). This can be solved by checking if each
basis vector belongs to the lattice generated by the other matrix,
however, more efficient solutions exist.

8 Cyclic: Given a lattice L(C), check if £(C) is cyclic, i.e., if for every
lattice vector x € L(C), all the vectors obtained by cyclically rotating
the coordinates of x also belong to the lattice. This problem is easily
solved by rotating the coordinates of basis matrix C by one position,
and checking if the resulting basis is equivalent to the original one.

2.3 Hardness of approximation

In studying the computational complexity of approximating lattice
problems, it is convenient to formulate them as promise problems. These
are a generalization of decision problems well suited to study the hard-
ness of approximation. A promise problem is a pair (Ilygs,IIno) of
disjoint languages, i.e., IlIygs, [Ino € X* and IIygs N IIxo = 0. An al-
gorithm solves the promise problem (IIygg, IIno) if on input an instance
I € IIyggUIINo it correctly decides whether I € IIygg or I € IIno. The
behavior of the algorithm when I ¢ IIygs UIlyo (i.e., when I does not

20 COMPLEXITY OF LATTICE PROBLEMS

satisfy the promise) is not specified, i.e., on input an instance outside
the promise, the algorithm is allowed to return any answer.

Decision problems are a special case of promise problems, where the
set IIxo = X%\ IIygg is implicitly specified and the promise I € IlyggU
IIno is vacuously true. We now define the promise problems associated
to the approximate SVP and CVP. These are denoted GAPSVP,, and
GarPCVP,,.

DEFINITION 1.5 The promise problem GAPSVP., where v (the gap
function) is a function of the rank, is defined as follows:

® YES instances are pairs (B,r) where B € Z™*" is a lattice basis and
r € Q a rational number such that |Bz|| < r for some z € Z™ \ {0}.

® NO instances are pairs (B,r) where B € Z™*™ is a lattice basis and
r € Q is a rational such that |Bz| > yr for all z € Z™ \ {0}.

DEFINITION 1.6 The promise problem GAPCVP., where v (the gap
function) is a function of the rank, is defined as follows:

® YES instances are triples (B, t,r) where B € Z™*™ is a lattice basis,
t € Z™ is a vector and r € Q is a rational number such that |Bz —
t|| <r for somez € Z".

® NO instances are triples (B, t,r) where B € Z™*" is a lattice, t € Z™

is a vector and r € Q is a rational number such that |Bz — t|| > ~yr
for allz € 7.

Notice that when the approximation factor equals v = 1, the promise
problems GAPSVP,, and GAPCVP, are equivalent to the decision prob-
lems associated to exact SVP and CVP. Occasionally, with slight abuse
of notation, we consider instances (B, r) (or (B,t,r)) where r is a real
number, e.g., 7 = v/2. This is seldom a problem in practice, because
r can always be replaced by a suitable rational approximation. For
example, in the f5 norm, if B is an integer lattice then r can be substi-
tuted with any rational in the interval [r,v/r% 4+ 1). Promise problems
GAPSVP, and GAPCVP,, capture the computational task of approxi-
mating SVP and CVP within a factor v in the following sense. Assume
algorithm A approximately solves SVP within a factor +, i.e., on input
a lattice A, it finds a vector x € A such that ||x|| < yA1(A). Then A can
be used to solve GAPSVP,, as follows. On input (B, r), run algorithm A
on lattice £(B) to obtain an estimate ' = ||x|| € [A1, vA1] of the shortest
vector length. If 7/ > 7 then A\; > r, i.e., (B,r) is not a YES instance.
Since (B, r) € IIygs U IIno, (B,r) must be a NO instance. Conversely,
if ¥ < 4r then A\; < 4r and from the promise (B,) € IIygs U IINo one

Basics 21

deduces that (B,r) is a YES instance. On the other hand, assume one
has a decision oracle A that solves GAPSVP,. (By definition, when the
input does not satisfy the promise, the oracle can return any answer.)
Let u € Z be an upper bound to A(B)? (for example, let u be the squared
length of any of the basis vectors). Notice that A(B,/u) always returns
YES, while A(B,0) always returns NO. Using binary search find an in-
teger r € {0,...,u} such that A(B,/r) = YES and A(B,/r — 1) = NO.
Then, A;(B) must lie in the interval [/r,y - +/r). A similar argument
holds for the closest vector problem.

The class NP is easily extended to include promise problems. We say
that a promise problem (IIygg,IIno) is in NP if there exists a relation
R C ¥* x ¥* such that (z,y) € R can be decided in time polynomial
in |z|, and for every x € Ilygg there exists a y such that (x,y) € R,
while for every y € IIxo there is no y such that (z,y) € R. If the
input x does not satisfies the promise, then R may or may not contain
a pair (z,y). The complement of a promise problem (ITygg, IIno) is the
promise problem (IIxo,IIygg). For decision problems, this is the same
as taking the set complement of a language in ¥*. The class of decision
problems whose complement is in NP is denoted coNP. Also coNP can
be extended to include the complements of all NP promise problems.

Reductions between promise problems are defined in the obvious way.
A function f:¥* — ¥* is a reduction from (ITygg, Ino) to (Iy g, o)
if it maps YES instances to YES instances and NO instances to NO in-
stances, i.e., f(Ilygg) C Iy g and f(IIxo) C IIyg. Clearly any al-
gorithm A to solve (IIy g, IIyg) can be used to solve (Ilygg, Ino) as
follows: on input I € IIygsUIINo, run A on f(I) and output the result.
Notice that f(I) always satisfy the promise f(I) € I g U Iy, and
f(I) is a YES instance if and only if I is a YES instance. A promise
problem A is NP-hard if any NP language (or, more generally, any NP
promise problem) B can be efficiently reduced to A. As usual, prov-
ing that a promise problem is NP-hard shows that no polynomial time
solution for the problem exists unless P = NP. In the case of Cook
reductions, the oracle Turing machine A to solve problem (IIygs, IIno)
should work given any oracle that solves (II{ g, IINo). In particular, A
should work no matter how queries outside the promise are answered by
the oracle.

3. Notes

For a general introduction to computational models and complexity
classes as used in this book, the reader is referred to (van Emde Boas,
1990) and (Johnson, 1990), or any undergraduate level textbook on the
subject. Classical references about lattices are (Cassels, 1971) and (Gru-

22 COMPLEXITY OF LATTICE PROBLEMS

ber and Lekerkerker, 1987). Another very good reference is (Siegel,
1989). The proof of Minkowski’s second theorem presented in Subsec-
tion 1.3 is an adaption to the Fuclidean norm of the proof given in
(Siegel, 1989) for arbitrary norms. None of the above references address
algorithmic issues related to lattice problems, and lattices are studied
from a purely mathematical point of view. For a brief introduction to
the applications of lattices in various areas of mathematics and science
the reader is referred to (Lagarias, 1995) and (Gritzmann and Wills,
1993), which also touch some complexity and algorithmic issues. A very
good survey of algorithmic application of lattices is (Kannan, 1987a).

