Contents

Preface				
1.	BASICS			
	1	Lattices		1
		1.1 D	Determinant	6
		1.2 S	uccessive minima	7
		1.3 N	Iinkowski's theorems	11
	2	Computational problems		14
		2.1 C	Complexity Theory	15
		2.2 S	ome lattice problems	17
		2.3 H	lardness of approximation	19
	3	Notes		21
2.	APPROXIMATION ALGORITHMS			23
	1	Solving S	SVP in dimension 2	24
		1.1 R	teduced basis	24
		1.2 G	auss' algorithm	27
		1.3 R	tunning time analysis	30
	2	Approximating SVP in dimension n		32
		2.1 R	teduced basis	32
		2.2 T	he LLL basis reduction algorithm	34
		2.3 R	tunning time analysis	36
	3	Approxi	40	
	4	Notes		42
3.	. CLOSEST VECTOR PROBLEM			45
	1	Decision versus Search		
	2	NP-com	pleteness	48

	3	SVP is not harder than CVP	52			
		3.1 Deterministic reduction	53			
		3.2 Randomized Reduction	56			
	4	Inapproximability of CVP	58			
		4.1 Polylogarithmic factor	58			
		4.2 Larger factors	61			
	5	CVP with preprocessing	64			
	6	Notes	67			
4.	SHO	ORTEST VECTOR PROBLEM	69			
	1	Kannan's homogenization technique	70			
	2	The Ajtai-Micciancio embedding	77			
	3	NP-hardness of SVP	83			
		3.1 Hardness under randomized reductions	83			
		3.2 Hardness under nonuniform reductions	85			
		3.3 Hardness under deterministic reductions	86			
	4	Notes	87			
5.	SPI	IERE PACKINGS	91			
	1	Packing Points in Small Spheres	94			
	2	The Exponential Sphere Packing	96			
		2.1 The Schnorr-Adleman prime number lattice	97			
		2.2 Finding clusters	99			
		2.3 Some additional properties	104			
	3	Integer Lattices	105			
	4	Deterministic construction	108			
	5	Notes	110			
6.	LOW-DEGREE HYPERGRAPHS 111					
	1	Sauer's Lemma	112			
	2	Weak probabilistic construction	114			
		2.1 The exponential bound	115			
		2.2 Well spread hypergraphs	118			
		2.3 Proof of the weak theorem	121			
	3	Strong probabilistic construction	122			
	4	Notes	124			
7.	BA	BASIS REDUCTION PROBLEMS 125				
	1	Successive minima and Minkowski's reduction	125			

Contents					
	2	Orthogonality defect and KZ reduction			
	3	Smal	136		
	4	Note	141		
8.	CRYPTOGRAPHIC FUNCTIONS			143	
	1	General techniques		146	
		1.1	Lattices, sublattices and groups	147	
		1.2	Discrepancy	153	
		1.3	Statistical distance	157	
	2	Collis	Collision resistant hash functions		
		2.1	The construction	162	
		2.2	Collision resistance	164	
		2.3	The iterative step	168	
		2.4	Almost perfect lattices	182	
	3	Encr	Encryption Functions		
		3.1	The GGH scheme	185	
		3.2	The HNF technique	187	
		3.3	The Ajtai-Dwork cryptosystem	189	
		3.4	NTRU	191	
	4	Notes	S	194	
9.	INTERACTIVE PROOF SYSTEMS			195	
	1	Closest vector problem		198	
		1.1	Proof of the soundness claim	201	
		1.2	Conclusion	204	
	2	Shortest vector problem		204	
	3	Treating other norms		206	
	4	What does it mean?		208	
	5	Notes	S	210	

Index

219