
CSE250A Fall ’12: Rejection Sampling and Likelihood
Weighting

Aditya Menon (akmenon@ucsd.edu)

October 24, 2012

Setting. We are given a Bayesian network comprising N nodes {X1, . . . , XN}. Recall that in a Bayesian
network, for every node Xi, we have a CPT that specifies Pr[Xi|Pa(Xi)], where Pa(X) denotes the parents
of X .

The problem. We would like to know the conditional probability Pr[Xq|Xe] for some indices q 6= e. (This
generalizes to the case of sets of nodes, but we’ll stick to individual nodes here for simplicity.) We’ll think of
Xq as being the query node and Xe being the evidence node.

Exact solutions. If Xe is the sole parent of Xq , we just need to perform a lookup on the CPT of node Xq ,
and we’re done.

But what if this is not the case? The straightforward strategy is to marginalize out all other random variables
in the network, and appeal to conditional independences:

Pr[Xq|Xe] =
∑

{Xii 6={q,e}}

Pr[X1, . . . , XN |Xe] = . . . (some simplification depending on the structure of the network).

This is perfectly reasonable. (Indeed, it’s how we’ve computed conditional probabilities thus far.) However,
it is computationally expensive in general. In the worst case, if each node is binary, we would need to do
O(2N) work to compute this conditional probability.

We’d like to know: can we get an approximate value for this probability with less effort?

Approximate solution I. Here is a simple alternative to exact marginalization.

1. Draw M samples from the joint distribution of the Bayesian network, Pr[X1, . . . , XN]. Call these
{(x(i)1 , . . . , x

(i)
N)}Mi=1. Note that the process of drawing these samples is simple: we use the canonical

decomposition

Pr[X1, . . . , XN] =

N∏
i=1

Pr[Xi|Pa(Xi)],

and then perform CPT lookups to compute each of the individual probabilities.

2. Compute the quantity

θ̂(xq, xe) =

∑M
i=1 1[x

(i)
q = xq] · 1[x(i)e = xe]∑M
i=1 1[x

(i)
e = xe]

,

where (xq, xe) represent any pair of possible outcomes for the variables (Xq, Xe). For example, if all
nodes are binary, then xq, xe ∈ {0, 1}.

The claim is that Pr[Xq = xq|Xe = xe] ≈ θ̂(xq, xe) when M is large. More precisely, it can be shown that

lim
M→∞

θ̂(xq, xe) = Pr[Xq = xq|Xe = xe].

1

Why is this so? First, let’s write θ̂ as

θ̂(xq, xe) =
N(xq, xe)

N(xe)
,

whereN(xq, xe) is the number of samples where theXq variable takes the value xq and theXe variable takes
the value xe, and N(xe) is the number of samples where Xe takes the value xe. This is trivially equivalent to

θ̂(xq, xe) =
N(xq, xe)

M
· M

N(xe)
.

Now remember that Pr[Xq = xq|XE = xe] =
Pr[XQ=xq,XE=xe]

Pr[XE=xe]
. It should be clear intuitively that Pr[XQ =

xq, XE = xe] ≈ N(xq,xe)
M and Pr[Xe = xe] ≈ N(xe)

M when M is large. Thus, Pr[Xq = xq|Xe = xe] ≈
θ̂(xq, xe).

Note that above, if a sample has x(i)e 6= xe, we effectively just throw it away – this is because it doesn’t
contribute to either the numerator or denominator of θ̂. Thus, this method is known as rejection sampling. It
should be clear that if Pr[E = e] ≈ 0, this method will need many samples to get a good approximation.

We quickly explain how rejection sampling would work for the network shown in Figure 1.

X

Y E

Q

Figure 1: Example Bayesian network.

Say we want to estimate Pr[Q = q|E = e]. We do the following.

• Draw M samples from Pr[X,Y,Q,E], using the decomposition

Pr[X,Y,Q,E] = Pr[X] Pr[Y |X] Pr[E|X] Pr[Q|E, Y],

i.e. for a given sample, first draw x ∼ Pr[X], then y ∼ Pr[Y |X = x], and so on. Call the samples
{(x(i), y(i), q(i), e(i))}Mi=1.

• Throw out all samples where e(i) 6= e.

• Compute θ̂(q, e) = N(q,e)
N(e) .

Approximate solution II. Here is an alternative strategy that can converge faster than rejection sampling.
First, to simplify things, we letX−e := X1, . . . , Xe−1, Xe+1, . . . , XN , and similarly x(i)−e = (x

(i)
1 , . . . , x

(i)
e−1, x

(i)
e+1, . . . , x

(i)
N).

1. Draw M samples from the network as follows. For every node Xi 6= Xe, draw Xi based on its CPT,
i.e. based on Pr[Xi|Pa(Xi)]. By this, we mean that if X1 is the “root” of the network, then we first
draw x1 ∼ Pr[X1], then draw x2 ∼ Pr[X2|X1 = x1], and so on. Importantly, for all children of
Xe, the value of Xe when we look up the CPT is clamped to the value xe. Call the resulting samples
{x(i)−e}Mi=1. (We’ll go over an example of this shortly.)

2

2. Compute the quantity

θ̂(xq, xe) =

∑M
i=1 1[x

(i)
q = xq] · Pr[Xe = xe|(Pa(Xe))

(i)]∑M
i=1 Pr[Xe = xe|(Pa(Xe))(i)]

, (1)

where as before (xq, xe) represent any pair of possible outcomes for the variables (Xq, Xe).

We claim that, as before, limM→∞ θ̂qe = Pr[Q = q|E = e]. The proof is non-trivial, so we defer it for the
moment. But just intuitively, we can think of this method as forcing Xe = xe in the network, getting samples
forXq and counting the fraction of times thatXq = xq happens. However, when we count, we must take into
account the fact that the Xq samples are not from the correct distribution, namely, Pr[Xq|Xe = xe]. It turns
out however that applying Pr[Xe = xe|Pa(Xe)] as a weighting factor removes the bias. Thus, the method is
called likelihood weighting.

We sketch how we would apply likelihood weighting for the network of Figure 1.

1. Draw M samples from the network as follows:

• First draw x ∼ Pr[X]

• Next, draw y ∼ Pr[Y |X = x]

• Do not draw a sample from Pr[E|X]. We assume that E = e for all our samples.

• Finally, draw q ∼ Pr[Q|E = e, Y = y]. Note that here, we clamped the value of E.

Call the samples {(x(i), y(i), q(i))}Mi=1.

2. Compute Pr[E = e|X = x(i)] for every sample, since X is the sole parent of E.

3. Compute

θ̂(q, e) =

∑M
i=1 1[q

(i) = q] · Pr[E = e|X = x(i)]∑M
i=1 Pr[E = e|X = x(i)]

.

We note that compared to rejection sampling, we don’t bother sampling E, and instead clamp it down to
always have the value e. Instead, we need to compute Pr[E = e|x(i)], and then use that to weight each of our
counts.

Here’s a sketch of what exactly the method is doing for this network. Consider that

Pr[Q = q, E = e] =
∑
X,Y

Pr[Q = q, E = e,X, Y] by marginalization

=
∑
X,Y

Pr[Q = q|X,Y,E = e] Pr[E = e|X,Y] Pr[X,Y] by the product rule

=
∑
X,Y

Pr[Q = q|Y,E = e] Pr[E = e|X] Pr[X,Y] by d-separation

= Ex,y∼Pr[X,Y] [Pr[Q = q|Y = y,E = e]Pr[E = e|X = x]]

= Ex,y∼Pr[X,Y]

[
Eq′∼Pr[Q|Y=y,E,=e] [1[q

′ = q]Pr[E = e|X = x]]
]
.

In the last two lines, we used the fact that Pr[A = a|B = b] = Ea′∼Pr[A|B=b]1[a
′ = a].

Now observe that we may approximate the expectation by drawing random samples from the appropriate
distributions, and averaging. Given M samples {(x(i), y(i))} from Pr[X,Y] and {q(i)} from Pr[Q|Y =
y(i), E = e], we have that

Pr[Q = q, E = e] ≈ 1

M

M∑
i=1

1[q(i) = q]Pr[E = e|X = x(i)].

3

Similarly, using the fact that

Pr[E = e] =
∑
X

Pr[X] Pr[E = e|X = x] = Ex∼Pr[X] Pr[E = e|X = x],

we may write

Pr[E = e] ≈ 1

M

M∑
i=1

Pr[E = e|X = x(i)].

Now using the definition of conditional probability, we get

Pr[Q = q|E = e] ≈
∑M

i=1 1[q
(i) = q] · Pr[E = e|X = x(i)]∑M
i=1 Pr[E = e|X = x(i)]

.

The idea can be generalized. Suppose WLOG that in the topological sort of the nodes in the Bayesian
network, Xe appears before Xq . Now consider that

Pr[Xq = xq, Xe = xe] =
∑

{xi:1≤i≤q−1,i6=e}

Pr[X1 = x1, . . . , Xq = xq]

=
∑

{xi:1≤i≤q−1,i6=e}

Pr[X1 = x1, . . . , Xe−1 = xe−1] · Pr[Xe = xe|Pa(Xe) = πe]·

Pr[Xe+1 = xe+1, . . . , Xq−1 = xq−1|X1 = x1, . . . , Xe = xe] · Pr[Xq = xq|Pa(Xq) = πq]

= Ex1,...,xq−1,x′q
Pr[Xe = xe|Pa(Xe) = πe] · 1[xq = x′q]

where the expectation is over the appropriate distribution for each variable, i.e.

(x1, . . . , xe−1) ∼ Pr[X1, . . . , Xe−1]

(xe+1, . . . , xq−1) ∼ Pr[Xe+1, . . . , Xq−1|X1, . . . , Xe = xe]

x′q ∼ Pr[Xq|Pa(Xq)].

As before, the expectation may be approximated by taking the average of the inner quantity based on a
number of random samples.

4

