
Hidden Markov models

Charles Elkan

November 26, 2012

Important: These lecture notes are based on notes written by Lawrence Saul.
Also, these typeset notes lack illustrations. See the classroom lectures for figures
and diagrams.

1 Simple Markov models
Bayesian networks are useful for modeling systems whose state changes over
time. Here, the random variables are indexed by discrete time. That is, time t
is an integer subscript on the names of the random variables, which can be called
S1, S2, S3, and so on. There may be a maximum time T , or there may be a count-
ably infinite number of different states. An implicit assumption is that time t is
discrete, not continuous. As for Bayesian networks in general, each random vari-
able St may have discrete or continuous values. The set of possible state values is
called the state space.

In a Bayesian network for modeling sequences st, the configuration of the
edges (i.e., arrows) represents what simplifying assumptions we make. To make
any progress, assumptions of some sort are needed. The most common assump-
tion is called the Markov assumption, named after Andrey Markov (1856 to 1922).
It is that each state St depends only on the previous state St−1. In other words, the
earlier history S1 to St−2 is irrelevant. The network is S1 → S2 → S3 → · · ·.

Another fundamental assumption that is standard is that one CPT is shared
across time: p(Sv = s′|Sv−1 = s) = p(Su = s′|Su−1 = s) for all times u and
v. This assumption is usually called stationarity. It is a special case of parameters
being tied.

1

2 Hidden Markov models
Simple Markov models have at least two major weaknesses. First, taking into
account dependence on k states in the past, that is making an order k Markov
assumption, requires CPTs with an exponential number O(nk) of entries. Here, n
is the cardinality of the state space, that is the number of alternative discrete states
that the system may be in. Second, the model assumes that the state of the system
can be observed directly. However, in many application domains, the true state is
hidden, but at each time step, an observation Ot = ot is visible.

So, let Ot denote the observed data at time t, and St denote the state of the
system at time t. In a hidden Markov model (HMM), the states St are never ob-
served. They must be inferred from the observationsOt. For example, in robotics,
observationsOt may be noisy sensor readings, while a state St may be the location
and orientation of the robot.

HMMs are the standard approach to speech recognition. Intuitively, an ob-
servation Ot is a short window, maybe 20 milliseconds, of audio. A state St is a
phoneme such as “ba.” Note that the observations are real-valued while the states
are discrete. This is easier to deal with than having real-valued states, but still
allows working with the real-valued real world.

The Bayesian network for an HMM is an infinite polytree (draw the picture).
The first-order Markov assumption makes the graph of the tree simple. The sta-
tionarity assumption makes the number of parameters constant. HMMs are a step
towards overcoming both weaknesses of simple Markov models described above.
Obviously, true states are not assumed to be observed. Less obviously, although
the first order Markov property is true about the states, it is not true about the ob-
servations. That is, St is independent of St−2 given St−1, butOt is not independent
of Ot−2 given Ot−1. Indeed, every observation provides information about every
other observation.

The joint distribution of the HMM is

p(S1, S2, . . . , ST , O1, O2, . . . , OT) = p(S1) · (
T∏
t=2

p(St|St−1)) · (
T∏
t=1

p(Ot|St)).

Let the set of alternative state values be {1, 2, . . . , n}. The parameters of the
model are the initial state distribution p(S1 = i) = πi, the transition matrix p(St =
j|St−1 = i) = aij , and the emission matrix p(Ot = k|St = i) = bik. Note that i
and j are members of the same set, but k is a member of a different set, namely the
set of possible observations. Especially when k may be real-valued, sometimes

2

we will write bi(k) = bik.
There are two key computational questions for HMMs for which efficient al-

gorithms are needed:

1. How to compute the most likely sequence of hidden state values? This
sequence is argmaxs̄ p(S1, S2, . . . , ST |O1, O2, . . . , OT). This computation
is at the core of speech recognition.

2. How to obtain parameter values πi, aij , bik that maximize the likelihood of
observed data p(O1, O2, . . . , OT)?

The first problem above is inference, while the second is learning.
A critical subroutine in both problems is, given parameter values, to compute

the likelihood p(O1, O2, . . . , OT) of a given sequence of observations. We con-
sider this task first.

End of the lecture on Tuesday November 13.

Start by marginalizing over the last state:

p(O1, O2, . . . , OT) =
n∑
j=1

p(O1, O2, . . . , OT , ST = j).

Now, consider evaluating p(O1, O2, . . . , Ot+1, St+1 = j) for any t. By summing
over the possible values of Si, applying the product rule for probabilities, and
using the structure of the Bayesian network, this is

n∑
i=1

p(O1, O2, . . . , Ot, St = i)p(St+1 = j|St = i)p(Ot+1|St+1 = j).

In this sum, the first factor can be computed recursively, and the other two factors
are entries in the CPTs of the HMM. In abbreviated notation,

αit = p(O1, O2, . . . , Ot, St = i)

αj,t+1 =
n∑
i=1

αitaijbj(Ot+1).

Here α is an n by T matrix whose entries are computed recursively, column by
column, by what is called the forward algorithm. Each entry involves summing

3

over the previous column, so the total time complexity is O(n2T). The base case
of the recursion, and the leftmost column of the matrix, is

αi1 = p(O1, S1 = i) = p(S1 = i)p(O1|S1 = i) = πibi(O1).

The likelihood of an entire sequence of observations is

p(O1, O2, . . . , OT) =
n∑
j=1

αjT .

A word of warning: For long sequences, this probability can be less than 10−300,
which means it underflows numerically to zero in standard computer arithmetic.
Instead of multiplying probabilities, it is better to add log probabilities.

Computing the most likely state sequence is a bit more difficult. This is

argmaxs̄ p(S1, S2, . . . , ST |O1, O2, . . . , OT)

= argmaxs̄ p(S1, S2, . . . , ST , O1, O2, . . . , OT)/p(O1, O2, . . . , OT)

= argmaxs̄ log p(S1, S2, . . . , ST , O1, O2, . . . , OT).

Define `it to be the log probability of observationsO1 toOt together with the most
likely sequence of states that ends with state St = i at time t. Formally,

`it = log max
S1,...,St−1

p(S1, . . . , St−1, St = i, O1, . . . , Ot).

We can form a recursion similar to the αit recursion. The base case, for t = 1, is

`i1 = log p(S1 = i, O1) = log[p(S1 = i)p(O1|S1 = i)] = log πi + log bi(O1).

The recursive case goes from time t to time t+ 1 and is

`j,t+1 = max
S1,...,St−1

max
i

[log p(S1, . . . , St−1, St = i, O1, . . . , Ot)

·p(St+1 = j|St = i) · p(Ot+1|St+1 = j)]

where the maximization over i is over values of St. Taking the logarithm of each
factor separately and swapping the order of the maximizations yields

`j,t+1 = max
i

[`it + log aij] + log bj(Ot+1).

Note the similarity to the recursion for computing αij . The reason for the similar-
ity is that a maximization operator has essentially the same algebraic properties as
a summation operator.

4

The log probability of the most likely sequence is maxj `jT . A remaining issue
is how to obtain the most likely state sequence, that is the argmax, from this max-
imum value. Switching in this way from the max to the argmax is a programming
problem, not a mathematical one. Consider the n by T matrix whose entries are
the `it values. The optimal last state, for time T , is whichever i gives the highest
value in the T th column. This is ST = argmaxj `jT . Now, consider finding the
optimal second-to-last state, ST−1. This is the state j that gives the highest value
in the second-to-last column, when added to the log transition probability from j
to ST . Formally,

ST−1 = argmaxj [`j,T−1 + log aj,ST
].

Similar reasoning gives

St−1 = argmaxj [`j,t−1 + log aj,St]

for each time t. In summary, the optimal path can be found from right to left after
finding the log probability of the optimal path. Computing the entries of the log
probability matrix requires O(n2T) time. After this matrix has been computed,
then figuring out the actual optimal state sequence S1 to ST requires O(nT) time.

End of the lecture on Thursday November 15.

The algorithm just described to find the optimal state sequence is called the
Viterbi algorithm, after its inventor.1 It is arguably the most important single
algorithm in machine learning and signal processing. It is a special case of the
general idea called dynamic programming.

3 EM training of HMMs
The goal of training is to estimate the parameters πi, aij , and bik. The training
data are a set of sequences each of the form ō = o1, o2, . . . , oT where the length T
may vary. The principle of maximum likelihood says that the aim is to maximize
the probability of the training examples. For simplicity, we will assume there is
just one training sequence.

1Andrew Viterbi, born 1935, Ph.D. in 1963 from USC, faculty at UCLA from 1963 to 1973,
part-time faculty at UCSD from 1973 to 1994. Invented the Viterbi algorithm in 1967, cofounded
Linkabit with Irwin Jacobs in 1968, also cofounded Qualcomm with Irwin Jacobs in 1985.

5

Because the outcomes of the state random variables are never observed, we
will use expectation-maximization (EM). Using the general form of the M step
for a Bayesian network, the M step updates are as follows:

πi := p(S1 = i|ō)

aij :=

∑
t p(St = i, St+1 = j|ō)∑

t p(St = i|ō)

bik :=

∑
t p(St = i, Ot = k|ō)∑

t p(St = i|ō)
.

The E step is to compute each of the probabilities used above. Simple rules of
probability and a results from above give

p(St = i, Ot = k|ō) = p(St = i|ō)I(ot = k)

p(St = i|ō) =
n∑
j=1

p(St = i, St+1 = j|ō)

p(St = i, St+1 = j|ō) = p(St = i, St+1 = j, ō)/p(ō)

p(ō) =
n∑
i=1

αiT

There is just one difficult probability to compute:

p(St = i, St+1 = j, ō) = p(o1, . . . , ot, St = i)p(St+1 = j|o1, . . . , ot, St = i)

·p(ot+1|St+1 = j, o1, . . . , ot, St = i)

·p(ot+2, . . . , oT |ot+1, St+1 = j, o1, . . . , ot, St = i)

= p(o1, . . . , ot, St = i)p(St+1 = j|St = i)

·p(ot+1|St+1 = j) · p(ot+2, . . . , oT |St+1 = j)

= αit · aij · bj(ot+1) · p(ot+2, . . . , oT |St+1 = j).

By analogy to the definition αit = p(o1, . . . , ot, St = i), make the definition that
βj,t+1 = p(ot+2, . . . , oT |St+1 = j). We shall evaluate this probability recursively:

βit = p(ot+1, . . . , oT |St = i)

=
n∑
j=1

p(ot+1, . . . , oT , St+1 = j|St = i)

6

=
n∑
j=1

p(ot+1, . . . , oT |St+1 = j, St = i)p(St+1 = j|St = i)

=
n∑
j=1

p(ot+1, . . . , oT |St+1 = j)aij

=
n∑
j=1

p(ot+1|St+1 = j)p(ot+2, . . . , oT |St+1 = j, ot+1)aij

=
n∑
j=1

bj(ot+1)p(ot+2, . . . , oT |St+1 = j)aij

=
n∑
j=1

bj(ot+1)βj,t+1aij.

Operationally, the β values are computed by filling in an n by T matrix from right
to left, one column at a time. The value of entry is a sum over the column to the
right. The whole matrix is computed in O(n2T) time, like the α matrix.

Putting the results above together gives all the probabilities needed in the M
step of EM for learning the parameters of the HMM. In particular,

p(St = i, St+1 = j|ō) =
αitaijbj(ot+1)βj,t+1∑

i αiT
.

The dynamic programming approach to compute the β matrix is called the back-
ward algorithm. The EM method to learn the HMM parameters which is called the
Baum-Welch algorithm; was published in 1970. From the beginning, it has been
known that the Baum-Welch algorithm suffers from the problem of local optima.
Remarkably, after 38 years, an algorithm to learn globally optimal HMM param-
eters was published in 2008. This paper is A Spectral Algorithm for Learning
Hidden Markov Models by Daniel Hsu, Sham Kakade, and Tong Zhang. Daniel
Hsu earned his Ph.D. in our department in 2010, advised by Sanjoy Dasgupta.

4 Linear dynamical systems
The word “dynamical” is not used in ordinary English, but is common in science.
A dynamical system is any process with a state that changes as time goes by. A
hidden Markov model, as seen so far, is a discrete dynamical system. However,

7

the same Bayesian network can describe a system where the state values s and
observations x are continuous, and even high-dimensional.

For tractability, assume that for all times t the state distribution is Gaussian,
as is the observation distribution. The way to understand a multivariate Gaussian
N(x̄;µ,Σ) is that X̄ = x̄ is a vector-valued random variable, the vector µ is the
average value of x̄,

µ = E[x̄] =

∫
p(x̄)x̄dx̄

and the αβ entry of Σ is the expected value of a re-centered product:

Σαβ = E[(x̄− µ)α(x̄− µ)β].

Gaussian distributions have a key property that all their marginal and conditional
distributions are Gaussian. Hence, in a Bayesian network where all nodes have
Gaussian distributions, all conditional distributions are Gaussian.

In a linear dynamical system, the means and variances of the Gaussians change
over time. Let st be the state vector at time t. The state transition function is
parameterized by a matrix A as p(st|st−1) ∼ N(Ast−1,Σ

s). This is often written
as st = Ast−1 + w with w ∼ N(0,Σs). Similarly, the emission function is
p(xt|st) ∼ N(Bst,Σ

x).
A posterior distribution is one that is obtained by conditioning on fixed values

for evidence nodes. A particular case of a posterior distribution is the estimated
state at time t conditioned on all observations until this time, p(st|x1, x2, . . . xt).
Computing this distribution is called Kalman filtering. The idea is that, for exam-
ple, x1 to xt are radar measurements of an aircraft and st is its location. Note that,
like in an HMM, p(st|x1, x2, . . . xt) is not the same as p(st|st−1).

The forward, backward, and Baum-Welch algorithms are all applicable to lin-
ear dynamical systems, because their derivation depends only on the conditional
independence properties inherent in the Bayesian network structure of an HMM,
which is the same for a linear dynamical system. For Kalman filtering, the result
is an update rule

E[st|x1, x2, . . . xt] = µt = Aµt−1 +Kt(xt −BAµt−1).

The expression inside parentheses is the error of the actual observation xt seen at
time t compared to the prediction BAµt−1 based on the state µt−1 estimated for
time t − 1. The gain matrix Kt adjusts the estimated state based on this error.
There is a similar, but more complicated, update rule for the estimated variance of
st. The gain matrix depends on this estimated variance, so it changes over time.

8

