
CSE 250A Assignment 2
This assignment is due at the start of class on Thursday October 18, 2012. In-

structions are the same as for the first assignment. You must work again in partner-
ship with one other student, but you may keep the same partner or change partners,
as you wish. Acknowledgment: These questions are adapted from ones written by
Lawrence Saul.

1. Reasoning with a Bayesian network

Consider the following extended version of a network that we have seen in class
(drawing by Lawrence Saul):

Now consider the following conditional probabilities:

1. p(M = 1)

2. p(M = 1|E = 1)

3. p(M = 1|E = 1, B = 1)

4. p(M = 1|A = 1)

5. p(M = 1|A = 1, B = 1)

6. p(M = 1|A = 1, B = 1, E = 1)

7. p(M = 1|J = 1)

8. p(M = 1|J = 1, A = 1)

9. p(M = 1|J = 1, A = 1, B = 1)
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(a) Which probabilities above, if any, must be equal to each other?
(b) Compute the numerical value of each probability above, exploiting condi-
tional independence relationships as much as possible to simplify your calcula-
tions. Show your work.

2. Logistic regression

Let the binary random variable Y depend on real-valued random variables Xi as

p(Y = 1|X1 = x1, . . . , Xk = xk) = σ(
k∑

i=1

wixi)

where σ(z) = 1/(1 + e−z). The real-valued parameters wi in this CPT are often
called weights.

(a) Revised for clarity. IfXi in the logistic regression equation above is a binary
random variable, that is a special case of it being real-valued, because its outcomes
can be encoded as Xi = 0 and Xi = 1. Suppose that Xi is discrete with three or
more outcomes, say { elephant, donkey, whale }. Does there also exist an encoding
that makes it be a special case of a real-valued random variable?

(b) Sketch the sigmoid function σ(z). Show that σ(−z) + σ(z) = 1 for all z
and that the derivative (d/dz)σ(z) = σ(z)σ(−z).

(c) The function L(p) = log p
1−p is called the log odds function. Show that

L(σ(z)) = z.
(d) Given a training example (x1, . . . , xk, y) with label y ∈ {0, 1}, in order to

learn the weights wi, often we want to maximize log q where q = p(Y = y|X1 =
x1, . . . , Xk = xk). We do the maximization using partial derivatives. Evaluate
(∂/∂wi) log q. The answer should be simple and elegant.

3. Markov blankets

Let X be any node in a Bayesian network. The Markov blanket BX of X consists
of its parents, its children, and its spouses, which are the parents of its children
excluding itself.

(a) Draw a general picture of a node and its Markov blanket. Then, using
the three conditions for d-separation, prove that for any node Y 6= X such that
Y 6∈ BX

p(X,Y |BX) = P (X|BX)P (Y |BX).

(b) Explain the name “Markov blanket.” Why the word “Markov” and why the
word “blanket”?


