Least squares policy iteration (LSPT)

Charles Elkan
elkan@cs.ucsd.edu

December 6, 2012

1 Policy evaluation and policy improvement

Let m be a non-deterministic but stationary policy, so p(a|s;) is the probabil-
ity of action a given state s, according to w. The function Q™ : S x A — R,
which is called the state-action value function of 7, gives the expected total re-
ward achieved by starting in state s, doing action a, and then acting according to
the policy 7 afterwards. “Afterwards” means in every state after s.

The policy iteration method begins with an arbitrary policy 7 and repeats two
steps until convergence:

1. Compute)™ given 7 (policy evaluation).
2. Find a new, better 7’ based on Q™ (policy improvement).

Computing Q™ in Step 1 is formulated and solved as a set of simultaneous linear
equations. Suppose that the state space S is finite, with |S| = n. Similarly,
suppose that |A| = m. For each s and a, the value of Q™ (s, a) is one unknown;
there are nm unknowns in total. There are also nm equations. For a given s and
a, the equation is

Q" (s,a) =r(s,a) + ’yZ[p(s’]s, a) Zp(a'|s’; m)Q™(s',a)]. (1)

This equation is linear in the unknowns, because on the righthand side, the coef-
ficient of Q™ (s', a’) is p(s'|s, a)p(a’|s’; w) which is a known constant. Since there
are nm linear equations in nm unknowns, the solution is well-defined and, in
general, unique.

In Step 2, the improved policy 7’ is defined as
plals; ") = I(a = argmax, Q™ (s,b)). (2)
Note that 7" is deterministic, and the equation above is equivalent to
7'(s) = argmax, Q" (s,).

Policy iteration has the advantage that there is a clear stopping condition: when
the function Q™ does not change after performing Step 1, then the algorithm ter-
minates. The algorithm outputs both an optimal policy and its () function. Either
of these can be obtained easily from the other one. In general, the optimal policy
is deterministic, but not unique. The optimal () function is unique.

2 Restricting the space of policies

When the state space and/or action space is infinite, doing policy evaluation by
solving a system of linear equations, as above, is impossible. One way to make
progress is to consider only a restricted space of value functions. The most com-
mon choice is to consider only linear combinations of a fixed set of basis func-
tions. In this restricted space, every state-action value function is of the form

d
Q(S7 a) = Z wj¢j (87 CL)

where each ¢; : S x A — R is a basis function, each w; is a real-valued coeffi-
cient, and d is the dimensionality of the restricted space. The basis functions are
predefined and fixed, not learned. The final output of the LSPI algorithm is the
coefficients w; of a good value function. The value function of the true optimal
policy is likely not in the restricted space, so in general LSPI can learn a good
policy and () function, but not optimal ones.

The righthand side of Equation (1) can be viewed as an operator 1™ applied to
the function Q7. Given any state-action value function @), 77[Q)] is also a state-
action value function. For s and a,

T7Q)(s,a) = r(s,) + 1> p(/]s,a) 3 p(a'|s's))Q(S,).
The value function Q™ of 7 is the solution of the equation) = T7[Q)].

2

Most) functions are not in the restricted space. Even if a particular @) is
inside this space, the result 77[Q)] of applying the operator is typically outside it.
Therefore, the equation () = T[] cannot be solved inside the restricted space.
Consider solving instead the equation () = II[T™[Q)]]|, where II is a projection
operator. Being a projection operator means that for any function @, I1[Q)] is the
element of the restricted space that is closest to () in the L, (least squares) sense.

Solving the equation () = I1[7""[Q)]] will yield a function that is approximately
the value function of 7, and is within the restricted space of representable value
functions. Solving this equation is an approach to approximate policy evaluation.
We want to solve the equation when the state and action spaces are infinite, but we
start with the situation where they are finite, with cardinalities n and m as above.

We need to write the operator 7™ as a matrix expression. We can view a ()
function as a column vector of length nm containing a value for each state-action
pair. Let ¢ = 1 to ¢ = nm index these pairs, and write (s, a) = i to indicate that s
and a are the state and action corresponding to the index .

e With this notation, R is a column vector with nm entries (i) where i =
(s,a) ranges over S x A.

e Second, define a matrix P with nm rows and n columns. This matrix con-
tains the transition probabilities of the MDP. Let j range over the state space
S and let ¢ range over S x A as before. The ij entry of the matrix P is

P = p(jli).

e Third, define a matrix L™ to represent the nondeterministic policy 7. This
matrix has n rows and nm columns. Let j range over S and let k£ range over
S x A. The jk entry of L™ is

S = p((s,0) = kljy m) = 1(s = j)plalji m)

The matrix L™ is an expanded, redundant, representation of the policy m. Each
column of L™ corresponds to a specific state-action pair k = (s,a). Each row of
L™ corresponds to a state j. L7, = 0 if the states j and s are not the same. If they
are the same, then L7, is the probability of a given s according to 7. Note that if
the policy 7 is deterministic, then the matrix L™ is all zero except for n entries that
equal one. With the definitions above, the operator 7™ is T™[Q)] = R + yPL™ Q.

3 Solving the matrix equation

We want to solve the equation
Q = HT7[Q]] = IR + ~+PL"Q].

Note that R and P do not depend on the given policy 7, but L™ does.

Let () be a value function that is inside the restricted space. We have Q(s,a) =
ijl w;jp;(s,a). Let ® be a matrix with nm rows and d columns where ®;; =
¢;(1), the jth feature value of the ith state-action pair. We assume that the columns
of this matrix are linearly independent, meaning that no basis function is a linear
combination of other basis functions. Then () = ®w where w is the column vector
of coefficients. Thus we want to solve the equation dw = II[R + yP L™ dw].

To make progress, we need an explicit formula for the projection operator II.
Given any (), that is a column vector of length nm, what is the weight vector w
of the optimal projection of () into the restricted space? We want w to minimize
|Q — Pwlls, the Ly norm of the difference between () and ¢w. In other words,
we want the solution with smallest squared error of the system of linear equations
®w = (. This system has nm equations and d unknowns, so it is overdetermined,
and no solution with zero error exists. The solution with smallest L, error is
w = ®T(Q where ®* is the pseudo inverse of ®. The projection itself is the
restricted value function dw = &(P*Q).

So, we want to find w that solves

dw =I[R +yPL"®w] = ®OT[R + yPL" dw).
We can cancel ® on both sides, because we have assumed that the columns of
® are linearly independent, which implies that ®x = 0 if and only if the vector
x = 0. We get
w = ®*[R+~yPL"dw].
The definition of the pseudo inverse is @ = (®7®)~'®T. Putting this in gives
w = (®T®)'®T[R + yP L dw)
(@ ®)w = ®T[R + yPL™du]
T (® — yPL™®)w = &' R
w = [®T(® —yPL™®)]'®TR. (3)
The matrix to be inverted has size d by d where d is the number of basis functions.

The inverse exists unless the determinant is zero. The determinant is a polynomial
in 7, so it is non-zero except for a finite number of values of ~.

4

4 Using training data

Equation (3) can be used to compute w if the matrices ®, P, L™ and the vector
R are known. However, the essence of reinforcement learning is that all that is
known is training tuples. A straightforward idea is to use empirical versions of
these matrices and vector. Suppose that training examples (s, a;, ¢, s;) fort = 1
to t = 1" are available. The empirical version of R is a column vector of length T’
with R; = r;. The empirical version of ® is a 7" by d matrix, with ®;; = ¢;(s¢,).
We do not in fact need empirical versions of P and L™. Instead, we only need
an empirical version of PL™®, which is a matrix of the same shape as ®. Consider
Equation (1) again. Given (s, a) and j, the corresponding entry of PL™® is

[PL™®)(s.0), Zp |5, a) Zp |) (s, a’).

The corresponding entry of the empirical version of the matrix is obtained from
/
(8¢, at, 7, 5,) as

[PL™® Zp "|'s¢, az) Zp "|'sm)g; (s, a’).

This is the average value of the jth feature ¢; where the average is over all states
s" and all actions ', with each s’ weighted according to the probability that it
follows (s, a;), and a’ weighted by its probability according to policy 7. We can
approximate this probability distribution by putting all the mass on the particular
state s; observed to follow (s, a;) in the ith training tuple. Moreover, let the policy
7 be deterministic and write 7(s’) for the unique action specified by the policy for
state s’. This gives the approximation [PL™®];; = ¢;(s;, 7(s})).

With the approximation just made, we can evaluate Equation (3) using training
tuples, without direct knowledge of the MDP. This is called the LSTDQ (least
squares temporal differences () function) algorithm. What this algorithm does is
find the weights w of a restricted function ®w that approximates the state-action
value function ()™ of the policy 7. The algorithm has two remarkable advantages.

1. Empirical versions of R, ®, and PL™® can be computed from training tu-
ples even when states and/or actions are continuous and multidimensional.
Given these empirical versions, Equation (3) is applicable. The matrix to be
inverted is d by d, where d is the number of basis functions, regardless of
the number of training tuples, and regardless of the true dimensionality of
the state space or of the action space.

5

2. Remember that the policy being evaluated is 7. Given a fixed set of tuples
(¢, ag, e, Sy), the empirical vector R and matrix ¢ are the same, regardless
of m. The empirical version of PL™® is computed using s; and 7 only.
Since the a; actions are not used in this computation, it does not matter
what policy was used to produce them. Therefore, the same training set can
be used to evaluate different policies 7.

An algorithm with the second property just described is called an “off policy”
learning algorithm. Such an algorithm can learn the value of a new policy based
on data collected while using an old policy.

5 From LSTDQ to LSPI

Consider doing policy iteration with LSTDQ for the policy evaluation step. Find-
ing the improved 7’ given Q™ is straightforward, using Equation (2) with no
change. Concretely, the LSPI algorithm is as follows.

1. Obtain training tuples (s;, a;, 4, s;) for t = 1to t = T using any policy to
select each a; action.

2. Initialize the weight vector w € R? randomly.

3. Policy improvement: Let 7 be the policy that is implicit in the () function
defined by w:
7(s) = argmax, w - ¢(s, a).

4. Policy evaluation: Use LSTDQ to compute a new vector w defining the
approximate () function of the policy 7.

5. Repeat from Step 3, until convergence of w.

Step 4 involves solving the equation ' (® —yPL™®)w = ®T R where each train-
ing example yields one entry in the vector i and one row in each of the matrices
® and PL™®. As explained above, R and ® are fixed and can be computed just
once, after Step 1, while [PL™®|;; = ¢;(s}, b) where

b=n(s;) = argmax, w - ¢(s;, a).

A different way of describing the LSPI algorithm is as follows:

5.

Obtain 7’ training tuples (s;, at, 7, s;) generated using any policy. Set R, =
Tt and q)tj = ¢j(5t> at).

Initialize the weight vector w randomly.

r_ d /
. For each ¢, compute a; = argmax,, >, w;d;(s;, a).

For all ¢ and k, compute [PL™®|;. = ¢x(s;, a;). Find the solution w of the
system of d linear equations [®T(® — yPL™®)|w = ®TR.

Repeat from Step 3, until w converges.

As stated before, Step 4 is policy evaluation. Policy improvement is implicit in
Step 3.

