
A Hidden Herbrand Theorem:

Combining the Object and Logic Paradigms

Joseph Goguen

Dept. Computer Science & Engineering

University of California, San Diego

Grant Malcolm

Department of Computer Science

University of Liverpool

Tom Kemp

Oxford

Abstract: The bene�ts of the object, logic (or relational), functional, and constraint paradigms
can be obtained from our previous combination of the object and functional paradigms in hidden
algebra, by combining it with existential queries over the states and attributes of objects, and
then lifting to hidden Horn clause logic with equality, using an extension of a result due to
Diaconescu. We call this novel programming paradigm active constraint object programming,
suggest some applications for it, and show that it is computationally feasible by reducing it to
familiar problems over term algebras (i.e., Herbrand universes). Our main result is a version
of Herbrand's Theorem, lifted from hidden algebra by the extended result of Diaconescu. This
paper also contains new results on the existence of initial and �nal models, and on the consistency
of hidden theories.

1 Introduction

The object paradigm has many practical advantages (e.g., see [51]), including its support for code reuse
through inheritance, its intuitive appeal, and its a�nity for data abstraction and concurrency. However, it
has not been integrated with the complementary advantages of the logic (or more accurately, relational),
functional, and constraint paradigms. The advantages of these paradigms include clean declarative semantics,
and (for the relational case) natural integration with database query languages. Logic programming and
functional programming over user-de�nable abstract data types were combined in [34] by combining their
underlying logics (Horn clause logic and equational logic, respectively), to obtain Horn clause logic with
equality, which in addition provides an elegant semantics for contraint logic programming. Following the
suggestion in [34] that the best way to combine paradigms is to combine their underlying logics, we here
extend the combination of relational and functional paradigms, by extending Horn clause logic with equality
(as in [34, 35]) to hidden Horn clause logic with equality, building on prior work on hidden algebra as a
foundation for the object paradigm [19, 24, 31]. Hidden algebra is a natural extension of the initial algebra
approach to abstract data types (ADTs) [39] that handles states in a more natural way, and also supports
behavioral correctness and re�nement proofs for systems with objects, inheritance, nondeterminism and
concurrency, in addition to functional programming [15, 38, 57, 58, 25]. The main result of this paper is a
Herbrand theorem for hidden Horn clause logic, allowing solutions of queries to be constructed in a term
algebra; it is obtained by applying the extended lifting result of Diaconescu [10] to the Hidden equational
case.

All this provides a semantic foundation for a novel programming paradigm, in which posing a query can
activate methods that change the world so that a solution actually comes to exist [36, 20, 27]. For example,
consider a query about a holiday package, where a customer has provided constraints on destination, cost,

ight times, seat assignments, hotels, expected weather, etc.; a solution to this query would be an actual
travel package, with actual tickets, reservations, visas, etc., satisfying the constraints (of course, subject to
customer approval before commitment). Another example might be a query about an operating system, with
constraints on processor speed, hard drive size, core memory, external connections, etc.; the solution would
then be an actual properly con�gured operating system, assembled using generic components from a software
library, satis�ng all the constraints and ready to run. Other examples come from
exible manufacturing,
where queries could create customized cars, rugs, furniture, and even clothing. One can easily imagine

1

many other applications, where answering queries over some domain-speci�c objectbase actually creates new
objects that satisfy the given constraints. We call this new paradigm active constraint object programming; it
seems particularly well suited to new applications arising in connection with the world wide web and mobile
computing.

Whereas classical initial algebra semantics for ADTs [39] requires modelling states in an explicit functional
(i.e., visible) style, hidden algebra allows states to be left implicit (i.e., hidden), as in most real programming,
including of course imperative languages, but also object oriented languages, for which it is a particularly
good match. Hidden algebra di�ers from classical algebraic approaches in declaring some sorts to be hidden,
for modeling states, while others model data in the classical way [39]; states cannot be observed directly, but
only indirectly through the visible results of experiments, which consist of applying a sequence of methods
and then examining an attribute. Hidden algebra originated in [19], extending earlier work of Goguen and
Meseguer on (what they then called) abstract machines [33, 50], mainly through using behavioral satisfaction
for equations, an idea introduced by Reichel [54] in the context of partial algebras. Reichel [55] later
introduced behavioral equivalence for states, which is also used in hidden algebra.

Goguen [19] showed that hidden algebra with some intuitive restrictions on signature maps forms an
institution (in the sense of [22], i.e., a logical system) and used this to model objects; combined with results
in this paper, this implies that parameterized programming [17, 18, 47], with its powerful generic module
facilities, is available for our new paradigm. Two restrictions are that operations should have at most
one argument of hidden sort, and that a �xed visible sorted algebra should be part of every model (as
discussed in Section 3); however, later work has relaxed these restrictions, while still yielding an institution
[15, 58, 38, 57, 25]. Algebraic approaches have the advantage of relatively easy reasoning, because of the
many well developed computational techniques available, e.g., term rewriting, uni�cation, and narrowing.

Section 2 is a condensed review of overloaded many sorted algebra, mainly to �x notation and terminol-
ogy, but also to introduce some lemmas about substitution. Section 3 introduces hidden algebra, including
the behavioral satisfaction of conditional equations. This section also characterizes behavioral equivalence
in a way that serves as a basis for coinduction, a powerful behavioral proof technique, as in work of Goguen
and Malcolm [26, 48, 31] and Goguen and Ro�su [58, 38, 57, 25]. Section 3 also contains new results on the
consistency of hidden theories. Section 4 presents basic results for reasoning about hidden algebraic speci-
�cations, showing that ordinary equational deduction is sound, that behavioral satisfaction of an equation
reduces to satisfaction by an initial algebra for certain classes of reachable models, and that the restriction
to reachable models is not required for ground equations.

Section 5 treats existential behavioral equational queries, which have the form (9X) t1 = t01; : : : ; tm = t0m
where the equalities serve as constraints on the possible values for logical variables in the set X . A solution to
such a query in an algebra A consists of values in A for each variable (some of which may range over states)
such that each equation is behaviorally satis�ed. The classical Herbrand Theorem [41] says that for the
models of a set of Horn clauses, existential queries can be answered by examining a particular term model,
called the Herbrand universe (see [44, 1] for overviews of logic programming). This result was generalized
to Horn clause logic with equality by Goguen and Meseguer [34, 35], showing that it su�ces to examine a
term model, and moreover, that this model is initial. The advantage of a term model is the well-established
techniques for equational computation that are available for it. Our hidden Herbrand Theorem states that
if a query is behaviorally satis�ed by a certain term algebra, then it is behaviorally satis�ed by all hidden
algebras, which means any correct implementation of the underlying database and functionality. Section 6
generalizes a result of Diaconescu [10] which allows us to lift the result from hidden algebra to hidden Horn
clause logic with equality.

Acknowledgements

The research reported in this paper was largely conducted between 1994 and 1996, with partial support from
the UK Science and Engineering Research Council, the European Union under ESPRIT-2 BRA Working
Groups 6071, IS-CORE (Information Systems COrrectness and REusability) and 6112, COMPASS (COM-
Prehensive Algebraic Approach to System Speci�cation and development), Fujitsu Laboratories Limited,
and a contract under management of the Information Technology Promotion Agency (IPA) of Japan, as part

2

of the Industrial Science and Technology Frontier Program `New Models for Software Architectures.' We
thank members of the Declarative Group at Oxford University, particularly R�azvan Diaconescu, for valuable
comments, and Frances Page for work on the original �le. The paper was edited at UCSD mostly in May
and June 2000, with partial support from National Science Foundation grant CCR-9901002; the main non-
cosmetic change is a signi�cant improvement by Grigore Ro�su to results on consistency in Section 3.3.1; we
greatly thank him for this, as well as for other comments, which have helped to improve the paper.

2 Prerequisites, Notation and Preliminaries

We assume familiarity with many sorted algebra, but to establish notation, we will brie
y review some main
concepts and results. For compatible expositions with more detail, see [28] or [50]; this approach, based on
indexed sets, originated in lectures by Joseph Goguen at the University of Chicago in 1968. Some of the
examples in Sections 4.2 and 5 assume basic knowledge of term rewriting, such as con
uence and termination.
Introductions to term rewriting may be found in [9, 21], among other places. Occasionally it is convenient
to express a result or construction in the vocabulary of category theory, but we use only very basic notions
like category, functor, and initial object. Readers unfamiliar with these need not worry, because none of our
constructions or proofs employ any category theory. We use boldface to denote categories, e.g., C. Given
morphisms f : A ! B and g : B ! C, we let g � f denote their composition, a morphism A ! C, and we
let 1A denote the identity morphism at an object A. See [2, 43] for introductions to category theory.

An S-indexed (or sorted) set A is a family fAs j s 2 Sg of sets indexed by the elements of S. An
S-indexed (or sorted) function f : A ! B is a family ffs : As ! Bs j s 2 Sg; similarly, an S-sorted
relation R � A�B is a family fRs � As�Bs j s 2 Sg. All operations on sets extend to operations on
S-sorted sets, for example A � B means that As � Bs for each s 2 S.

Given a set S, we let S� denote the set of all �nite sequences of elements from S, and we let [] denote the
empty sequence of elements from S. Given an S-indexed set A and w = s1:::sn 2 S

�, let Aw = As1�� � � �Asn ;
in particular, let A[] = f?g, some singleton set.

A signature (S;�) is an S��S-indexed set � = f�w;s j w 2 S
�; s 2 Sg; we often write just � instead

of (S;�). Notice that this de�nition permits overloading, in that the sets �w;s need not be disjoint; this
can be useful for application to dynamic binding in the object paradigm. A signature morphism ' from
a signature (S;�) to a signature (S0;�0) is a pair (f; g) consisting of a map f : S ! S0 of sorts and an
S��S-indexed family of maps gw;s : �w;s ! �0f�(w);f(s) on operation symbols, where f� : S� ! S0� is the
extension of f to strings de�ned by f�([]) = [] and f�(ws) = f�(w)f(s), for w in S� and s in S. We write
'(s) for f(s), '(w) for f�(w), and '(�) for gw;s(�) when � 2 �w;s.

A �-algebra A consists of an S-indexed set A and a function A� : Aw ! As for each � 2 �w;s; the
set As is called the carrier of A of sort s. A �-homomorphism from a �-algebra A to another B is an
S-indexed function f : A! B such that

fs(A�(a1; :::; an)) = B�(fs1(a1); :::; fsn(an))

for each � 2 �w;s with w = s1 : : : sn and ai 2 Asi for i = 1; : : : ; n. (When n = 0, i.e., when w = [],
the condition is simply that f(A�) = B� .) Let Alg� denote the category with �-algebras as objects and
�-homomorphisms as morphisms.

Given a subsignature 	 � �, there is a reduct functor, j�	 : Alg� ! Alg	, traditionally written using
post�x notation, that sends a �-algebra A to Aj�	, which is A viewed as a 	-algebra by forgetting about
any sorts and operations in � that are not in 	; similarly, if f : A ! B is a �-homomorphism, then
f j�	 : Aj�	 ! Bj�	 is the 	-homomorphism obtained by restricting f to the sorts in 	.

Given a many sorted signature � and an S-indexed set (of variable symbols) X (where the sets Xs are
disjoint), we let T�(X) denote the (S-indexed) term algebra with operation symbols from � and variable
symbols from X ; it is the free �-algebra generated by X , in the sense that if � : X ! A is an assignment,
i.e., a (many sorted) function to a �-algebra A, then there is a unique extension of � to a �-homomorphism
�� : T�(X)! A. (Strictly speaking, the usual term algebra is not free unless each term has a unique parse;
however, even if this is not the case, the closely related term algebra with constants annotated by their

3

sort, is free.) Also, we let T� denote the initial term �-algebra, T�(;), recalling that there is a unique
�-homomorphism !A : T� ! A for any �-algebra A (this homomorphism simply interprets any ground term
as an element of A). Call t 2 T� a ground �-term. Given a ground �-term t, let tA denote the element
!A(t) in A. Call A reachable i� !A is surjective, i.e., i� each element of A is `named' by at least one ground
term.

A special case of free extension is substitution, where the target algebra A is a term algebra, often
T�(X) itself. We will often use the following property of free extensions:

Lemma 1: Given an assignment � : X ! A and a �-homomorphism f : A! B, then

(f � �)� = f � �� : T�(X)! B :

Proof: By freeness, there is only one �-homomorphism from T�(X) to B that extends f � �. 2

A conditional �-equation consists of a variable set X , terms t; t0 2 T�(X)s for some sort s, and terms
tj ; t

0
j 2 T�(X)sj for j = 1; :::;m, by convention written in the form

(8X) t = t0 if t1 = t01; :::; tm = t0m :

The special case where m = 0 is called an (unconditional) equation, written (8X) t = t0. A ground

equation has X = ;.
A �-algebra A satis�es a conditional equation, written

A j=� (8X) t = t0 if t1 = t01; :::; tm = t0m ;

i� for all � : X ! A, we have ��(t) = ��(t0) whenever ��(tj) = ��(t0j) for j = 1; :::;m. Given a set E
of (possibly conditional) �-equations, let Alg�;E denote the full subcategory of Alg� with objects the
�-algebras that satisfy E; we call these (�; E)-algebras.

A �-congruence on a �-algebra A is an S-sorted family of relations, �s on As, each of which is an
equivalence relation and that also satisfy the congruence property, that given � 2 �s1:::sn;s, and given
ai; a

0
i 2 Asi for i = 1; :::; n, then

A�(a1; :::; an) �s A�(a
0
1; :::; a

0
n) whenever asi �si a

0
si
for i = 1; :::; n :

The quotient of A by a �-congruence �, denoted A=�, has

(A=�)s = As=�s

and inherits a �-algebra structure by de�ning

(A=�)�([a1]; : : : ; [an]) = [A�(a1; : : : ; an)] ;

where � 2 �s1:::sn;s and ai 2 Asi , and where [a] denotes the �-equivalence class of a. We can de�ne a
quotienting homomorphism q : A! A=� by qs(a) = [a] for each element a 2 As for s 2 S, which is clearly
surjective.

Lemma 2: Let A be a �-algebra with � a �-congruence on A. For (8X) t = t0 an unconditional �-equation,
we have

A j=� (8X) t = t0 implies A=� j=� (8X) t = t0 .

Proof: Let q be the quotienting homomorphism A ! A=�. For any assignment � : X ! A=�, because q
is surjective, for every s 2 S and each x 2 Xs, we can choose an element ax 2 As such that qs(ax) = �(x).
This de�nes an assignment �q : X ! A by �q(x) = ax, with the property that q � �q = �.

If A j=� (8X) t = t0, then using Lemma 1, we have

��(t) = (q � �q)
�(t) = q(��q (t)) = q(��q (t

0)) = (q � �q)
�(t0) = ��(t0) :

Because � is arbitrary, this shows A=� j=� (8X) t = t0 as desired. 2

4

We now consider the logic of many sorted algebra, that is, rules that can be used to deduce new equations
from old equations.

De�nition 3: Given a set E of (possibly conditional) �-equations, we de�ne the (unconditional) �-
equations that are derivable from E recursively, by the following rules of deduction for many sorted
equational logic:

(0) Base: Each unconditional equation in E is derivable.

(1) Re
exivity: Each equation (8X) t = t is derivable.

(2) Symmetry: If (8X) t = t0 is derivable, then so is (8X) t0 = t.

(3) Transitivity: If (8X) t = t0 and (8X) t0 = t00 are derivable, then so is (8X) t = t00.

(4) Congruence: If (8X) ti = t0i is derivable, where ti; t
0
i 2 T�(X)si for i = 1; :::; n, then for any � 2 �s1:::sn;s,

the equation (8X)�(t1; : : : ; tn) = �(t01; : : : ; t
0
n) is also derivable.

(5) Modus Ponens: Given (8X) t = t0 if t1 = t01; : : : ; tm = t0m in E and given a substitution � : X ! T�(Y)
such that (8Y) ��(tj) = ��(t0j) is derivable for j = 1; :::;m, then (8Y) ��(t) = ��(t0) is also derivable.

Given a set E of �-equations, let E2 denote the set of all unconditional �-equations derivable from E using
the above rules, and call it the deductive closure of E. Also, let E
 be the S-sorted set of pairs (t; t0) of
ground �-terms such that (8;) t = t0 is derivable from E. Note that E
 is a �-congruence by rules (1){(4).

2

The following completeness result for conditional many-sorted algebra was �rst proved by Goguen and
Meseguer [33], though the unconditional one-sorted case is well known, going back to Birkho� [3] in 1935:

Theorem 4: Given a set E of (possibly conditional) �-equations, an unconditional �-equation is satis�ed
by every (�; E)-algebra i� it is derivable from E using the rules (0){(5). 2

We use the standard notation E j=� e to indicate that all (�; E)-algebras satisfy the equation e. Goguen
and Meseguer [33] use the theorem above to prove the following basic result:

Theorem 5: The quotient algebra T�=E
 is initial in Alg�;E . 2

Of course, there are many other initial (�; E)-algebras, but they are all �-isomorphic to this one; this fact
expresses the abstractness of abstract data types as initial (�; E)-algebras [39]. Mathematical expositions
usually emphasize the more general existence of free algebras, but this follows easily from Theorem 5. Many
interesting results about conditional equations and their algebras appear in the literature for the one sorted
case, e.g. [7, 45, 59, 49], but as far as we know, few of these have been considered carefully for the many
sorted case.

3 Hidden Algebra

Well-designed software often fails to strictly satisfy its speci�cations, but instead satis�es them only behav-
iorally, in the sense that they appear to be true under all possible experiments. Hidden algebra extends prior
work on abstract data types and algebraic speci�cation to behavioral satisfaction in a surprisingly simple way
that also handles internal states, objects, inheritance, concurrency, nondeterminism, and more. The most
important results in this theory are powerful coinduction proof rules, which support behavioral correctness
and re�nement proofs that are considerably simpler than proofs done with more classical methods. For more
details, see [15, 38, 57, 58, 25].

Hidden algebra captures the fundamental distinction between basic data types used as values for attributes
(integers, Booleans, characters, etc.) and internal states by modeling the former with visible sorts and the

5

latter with hidden sorts. The various components of a complex system must share the same representations
for basic data, or else they will not be able to communicate; therefore it makes sense to work with a �xed
collection of data values, which can be bundled together to form a �xed algebra. Our assumptions and
notation for these data values are given in the following:

De�nition 6: Let D be a �xed algebra, let 	 be its signature, let V be its sort set, and assume that
Dv � 	[];v for each v 2 V . We may call (V;	; D) the visible data universe and D the data algebra. 2

The assumption Dv � 	[];v just means that we have a distinct name for each ground data value; this is
reasonable, and is needed in our construction of a �nal algebra. It is possible to strengthen the assumption
to Dv = 	[];v, but the added generality of De�nition 6 does no harm. The �xed data universe (V;	; D)
is thought of as containing the basic data types where V contains the names of their sorts, 	 contains the
(names of) operations for these sorts, and D provides an appropriate (it need not necessarily be initial)
interpretation for these sorts and operations. The examples in this paper assume a data algebra containing
at least the natural numbers and Booleans. Signatures for hidden algebra are de�ned with respect to a given
visible data universe:

De�nition 7: A hidden signature (over (V;	; D)) is a pair (H;�) such that (V [H;�) is a many sorted
signature with 	 � � and H\V = ;, and such that the following two conditions hold:

(S1) if w 2 V � and v 2 V , then �w;v = 	w;v;

(S2) for each � 2 �w;s, at most one element of w is in H .

We often abbreviate (H;�) to �, and write S for V [H .
The elements of V are referred to as visible sorts, and elements of H as hidden sorts. If w 2 S�

contains a hidden sort, then � 2 �w;s is called a method if s 2 H , and an attribute if s 2 V . If w 2 V �

and s 2 H , then � 2 �w;s is called a (generalized) hidden constant. 2

Condition (S1) expresses data encapsulation, in the sense that if 	 � � is a module inclusion, then new
operations on old data are disallowed. Condition (S2) says that methods and attributes act on single states,
corresponding to the natural locality of states in object oriented programming; it is needed for some results
in Section 3.1, as well as for �nal models to exist [5]; however, many other results of hidden algebra generalize
to multiple hidden arguments [15, 58, 38, 57, 25].

De�nition 8: Given hidden signatures � and �0, a hidden signature morphism � : � ! �0 is a
signature morphism � = (f; g) : �! �0 such that:

(M1) f(v) = v for v 2 V ;

(M2) f(H) � H 0 (where H 0 is the hidden sort set of �0);

(M3) g() = for 2 	; and

(M4) if �0 2 �0w0;s0 and some sort in w0 lies in f(H), then �0 = g(�) for some � 2 �.

2

The �rst three conditions say that hidden signature morphisms preserve both visibility and hiddenness for
both sorts and operations, while the fourth expresses the encapsulation of classes, in the sense that no new
methods or attributes can be de�ned on an imported class. It is not di�cult to check that hidden signatures
and their morphisms form a category [19].

De�nition 9: A hidden �-algebra is a �-algebra A such that Aj�	 = D. A hidden �-homomorphism

f : A ! A0 is a �-homomorphism such that f j�	 = 1D. Let HAlg� denote the category of all hidden
�-algebras and their hidden �-homomorphisms. 2

6

Hidden satisfaction can be quite di�erent from satisfaction in many sorted algebra; intuitively, an equation
is satis�ed in hidden algebra if its left and right sides are indistinguishable by any experiment which produces
a visible sorted result. This notion of experiment is made precise by the following notion of context:

De�nition 10: Given a hidden signature (H;�) and a sort s 2 S, a �-ground context of sort s is a
visible sorted �-term having a single occurrence of a new variable symbol z of sort s. A general context

is a term in T�(X [fzg)v for some set X of variable symbols and v a visible sort. For simplicity, we often
use just the word context to refer to a ground context. A general context is appropriate for a term t i�
the sort of t matches the sort of z; we write c[t] for the result of substituting t for z in the context c. We let
T�[z] denote the V -indexed set of contexts using the variable z, and sometimes we may write a context c as
c[zs] to indicate that the sort of the variable z is s. 2

De�nition 11: A hidden �-algebra A behaviorally satis�es a �-equation (8X) t = t0 i� for all appro-
priate ground contexts c 2 T�[z], we have

A j=� (8X) c[t] = c[t0] :

In this case we write A j�� (8X) t = t0, and we often omit � from j��. Note that this is equivalent to

��(c[t]) = ��(c[t0])

for all interpretations � : X ! A and all appropriate ground contexts c.
Similarly, A behaviorally satis�es a conditional equation e of the form

(8X) t = t0 if t1 = t01; :::; tm = t0m ;

also written A j�� e, i� for every interpretation � : X ! A, we have

��(c[t]) = ��(c[t0])

for all appropriate ground contexts c whenever

��(cj [tj]) = ��(cj [t
0
j])

for j = 1; :::;m, and for all appropriate ground contexts cj .
A hidden (or behavioral) theory (or speci�cation) is a triple (H;�; E), where (H;�) is a hidden

signature and E is a set of �-equations; we may write (�; E) for short. A model of a hidden theory
P = (H;�; E) is a hidden �-algebra A that behaviorally satis�es each equation in E. Such a model is also
called a hidden (�; E)-algebra, or a hidden P -algebra, and in this case we may write A j� P or A j�� E.
Given any set E of �-equations, HAlg�;E denotes the full subcategory of HAlg� with objects hidden
(�; E)-algebras. Let E j�� e mean that A j�� E implies A j�� e for all hidden �-algebras A, where e is a
�-equation. We will call the relation j�� behavioral satisfaction, or sometimes hidden satisfaction. 2

Notice that we cannot de�ne the behavioral satisfaction of conditional equations in the same simple style used
in the �rst de�nition for unconditional equations above, because the same interpretation must be used for
the conclusion and each condition, whereas the contexts must be allowed to be di�erent for each condition.

A hidden (�; E)-algebra A can be seen as a way of implementing objects in the class de�ned by the spec-
i�cation (�; E); elements of hidden sort in A are the possible states of such objects in this implementation.
The collection of all (�; E)-algebras gives all the possible implementations for this class, and is our intended
denotation for the speci�cation (�; E). This is usually referred to as loose semantics, though more precisely,
it is loose semantics over a �xed (or \protected") data universe. This semantics is used throughout this
paper, but other approaches are possible, as for example in [38].

Example 12: We specify a simple
ag object, where intuitively a
ag is either up or down, and there are
methods to put it up, to put it down, and to reverse its state. We use the notation of OBJ3 (see [40, 30],
although here equality for hidden sorts has a very di�erent meaning than in standard OBJ):

7

th FLAG is sort Flag .

pr DATA .

ops (up_) (dn_) (rev_) : Flag -> Flag .

op up?_ : Flag -> Bool .

var F : Flag .

eq up? up F = true .

eq up? dn F = false .

eq up? rev F = not up? F .

endth

Here FLAG is the name of the module and Flag is the name of the class of
ag objects. The line pr DATA

indicates the \protecting" importation of a speci�cation for the visible data universe, providing a signature
(V;) which contains at least the sort Bool with operations true and false, for which we have implicitly
chosen some �xed interpretation D, so that we have a �xed data universe (V;	; D). The operations up, dn
and rev are methods which change the state of
ag objects, and up? is an attribute that tells whether or
not the
ag is up. The three methods and one attribute all have pre�x syntax (the underscore `_' indicates
where arguments are placed).

Note that each equation speci�es the value of the up? attribute after application of some method. This
idiom is especially useful in hidden algebra because it speci�es the value of the attribute for any state of the
form m(F), where m is any method; an alternative approach such as specifying rev with the equations

eq rev up F = dn F .

eq rev dn F = up F .

would only determine values for up? rev F when F has the form up F' or dn F'. 2

If � is the signature of FLAG, then a model of FLAG is a �-algebra whose restriction to 	 is D, that provides
functions for all the methods and attributes in �, and that behaves as if it satis�es the given equations.
Elements of such models are possible states for Flag objects.

Example 13: The stack example is ubiquitous, and therefore provides a particularly good benchmark for
comparing speci�cation formalisms. We assume that the data universe speci�ed in DATA contains at least
the natural numbers with sort Nat.

th STACK is sort Stack .

pr DATA .

op push : Nat Stack -> Stack .

op top_ : Stack -> Nat .

op pop_ : Stack -> Stack .

op empty : -> Stack .

var S : Stack .

var N : Nat .

eq pop push(N,S) = S .

eq top push(N,S) = N .

eq pop empty = empty .

eq top empty = 0 .

endth

The �rst line gives the name STACK to this speci�cation, and declares the hidden sort Stack. After that,
the data speci�cation DATA is imported, and then the next four lines declare operation symbols for pushing
values onto the stack, looking at the value on the top of the stack, popping the top value from the stack,
plus a constant for the empty stack. The behaviou of these operations is described by the equations.

The algebras for STACK need only appear to satisfy its equations when observed through contexts, which
necessarily have top as their head operation. In particular, the common implementation of a stack by a
pointer and an array does not actually satisfy the equation

pop push(N; S) = S ;

8

but it does satisfy it behaviorally, and is therefore a STACK-algebra. A detailed mechanical correctness proof
for this implementation of stack can be found at

http://www.cse.ucsd.edu/groups/tatami/kumo/exs/stack/

It is similar to the hand proof sketched in [29]. 2

See [31, 29] for a more general and comprehensive introduction to hidden algebra; the �rst paper on this
subject [19] showed that equations as sentences, hidden algebras as models, and behavioral satisfaction, give
an institution (in the sense of [22]), and in particular, that the Satisfaction Condition holds, which intuitively
means that truth is invariant under change of notation; an alternative institution is given in [38]; although
the present paper makes no use of institutions, the advantage of making this observation is that all of the
machinery of parameterized programming [17, 18] becomes available, including its powerful generic module
mechanism based on views.

3.1 Using More Restricted Contexts

This section shows that hidden satisfaction can be de�ned using smaller classes of contexts, i.e., using more
restricted experiments to distinguish states. In fact, De�nition 11 above for hidden satisfaction already uses
fewer contexts than the original de�nition in [19], which de�ned satisfaction using general contexts. We will
show that both of these de�nitions are equivalent to de�nitions of behavioral satisfaction that use certain
even more restricted contexts:

De�nition 14: A �(X)-term is local i� every proper visible subterm is a 	(X)-term. A �-context is local
i� every proper visible subterm is in D. We write L�(X) for the S-indexed set of local �(X)-terms, L� for
L�(;), and L�[z] for the V -indexed set of local �-contexts. An equation is local i� its left and right sides
are local terms, and its conditions (if any) are visible sorted and use only 	-operations; a set of equations is
local i� each one is local. 2

Note that every 	(X)-term is local. The reason for placing a stronger restriction on contexts, that proper
visible subterms are in D, is that that we want to make this set of local contexts as small as possible (cf.
Proposition 19 below). Here are some examples over the stack signature:

top push(top empty, empty), 1 + top empty

are not local terms, whereas

top push(0, empty), top push(1 + x, empty)

are local terms, and

top push(1, z), 1 + top z

are a local and non-local context, respectively. Before showing the equivalence of de�nitions of behavioral
satisfaction for (conditional) equations using various kinds of context, we need one more de�nition and two
lemmas.

De�nition 15: Given a �-algebra A and an assignment � : X ! A, any general context c gives rise to a
function ��c : A ! A de�ned by interpreting in A each operation that occurs in the context c; that is, for
each element a of A, we have (��c)(a) = ��a(c), where �a : X[fzg ! A extends � by �a(z) = a. When c is a
ground context, we write Ac for (!A)

�c, where !A is the unique S-sorted mapping ; ! A. 2

Lemma 16: Given a �-algebra A, a �(X)-term t, an appropriate general context c, and an assignment
� : X ! A, then ��(c[t]) = (��c)(��(t)). In particular, if c is ground, then ��(c[t]) = Ac(�

�(t)). Moreover, if
A = T� and c is ground, then ��(c[t]) = c[��(t)].

Proof: The �rst assertion is by induction on the structure of contexts c, the second by de�nition of Ac,
and the third because Ac(z) = c[z] in this case, since ��c = c. 2

9

Lemma 17: For any general context c, hidden algebra A, and assignment � : X ! A, there exists a local
ground context l such that for every a; a0 2 A, if Al(a) = Al(a

0) then (��c)(a) = (��c)(a0).

Proof: Let c 2 T�(X)[z] be a general context, and let c0 be the smallest subterm of c that has visible
sort and contains z. Clearly, if (��c0)(a) = (��c0)(a

0) then (��c)(a) = (��c)(a0). If z is of visible sort, then
c0 = z is local, and we can take l to be c0. Otherwise, if z is of hidden sort, it follows from condition (S2)
in De�nition 7 that every hidden sorted variable from X that occurs in c0 occurs within a visible sorted
subterm of c0 that does not contain z. Let l be the result of replacing every visible sorted subterm of c0
that does not contain z with its image under ��; then l is a ground local context and ��c0 = Al, so that if
Al(a) = Al(a

0) then (��c0)(a) = (��c0)(a
0), and therefore (��c)(a) = (��c)(a0). 2

Now we show that de�ning behavioral satisfaction with general contexts is equivalent to our earlier
de�nitions with just ground contexts:

Proposition 18: A conditional equation (8X) t = t0 if t1 = t01; : : : ; tm = t0m is behaviorally satis�ed by
a hidden algebra A i� for all � : X ! A, whenever ��(cj [tj]) = ��(cj [t

0
j]) for j = 1; : : : ;m and for all

appropriate general contexts cj , then �
�(c[t]) = ��(c[t0]) for all appropriate general contexts c.

Proof: Suppose A behaviorally satis�es the conditional equation above, and let � : X ! A be such that
��(cj [tj]) = ��(cj [t

0
j]) for j = 1; : : : ;m and all appropriate general contexts cj . Then because every ground

context is a general context, we have ��(cj [tj]) = ��(cj [t
0
j]) for j = 1; : : : ;m and all appropriate ground

contexts cj , so it follows from our assumption that ��(c[t]) = ��(c[t0]) for all ground contexts c. Let c be
any general context; by Lemma 17 we have a ground context l such that ��(c[t]) = ��(c[t0]) follows from
��(l[t]) = ��(l[t0]); this latter follows from the fact that l is a ground context. This shows the `only if'
direction of the proposition; the proof of the other direction is similar. 2

Similar reasoning shows that behavioral satisfaction de�ned over just local contexts is also equivalent; one
key point is that the above proof only requires the context l given by Lemma 17 to be ground, whereas the
lemma states that l is ground and local. We leave the (straightforward) details to the reader:

Proposition 19: A conditional equation (8X) t = t0 if t1 = t01; : : : ; tm = t0m is behaviorally satis�ed
by a hidden algebra A i� for all � : X ! A, whenever ��(cj [tj]) = ��(cj [t

0
j]) for j = 1; : : : ;m and for all

appropriate local contexts cj , then ��(c[t]) = ��(c[t0]) for all appropriate local contexts c. Moreover, the
same holds if only local ground contexts are used. 2

It is useful to consider when two elements of an algebra behave the same under all experiments, which is a
semantic notion of behavioral equivalence. We give a general de�nition that will allow us to prove behavioral
satisfaction of equations by considering only contexts built from a given subsignature:

De�nition 20: Given a hidden signature � with hidden subsignature � � �, and given a hidden �-algebra
A, then two elements a; a0 2 As are behaviorally �-equivalent i� Ac(a) = Ac(a

0) for all appropriate local
contexts c 2 L�[z] built from operations in �; in this case, we write a ��;s a

0, or just a �� a0 if s is clear.
We may call behavioral �-equivalence just behavioral equivalence. When we want to emphasize that
behavioral equivalence is de�ned on a particular algebra A, we write �A instead of ��. 2

Fact 21: Given � � � and a hidden �-algebra A, then:

(1) for a; a0 2 Av with v visible, a �� a0 i� a = a0;

(2) �� is a �-congruence on A.

Proof: For (1), if a = a0, then Ac(a) = Ac(a
0) for all contexts c. Conversely, if a �� a0, then we can choose

the `empty' context z for sort v to get Az(a) = Az(a
0), that is, a = a0.

For (2), �� is clearly an equivalence relation, so we need only show the congruence property, that for
each operation � 2 �, whenever ai �� a0i for i = 1; : : : ; n we have

A�(a1; :::; an) �� A�(a
0
1; :::; a

0
n) :

10

If all of the ai are visible, then this simply says that applying � to equal arguments gives equal results,
which is obvious. Otherwise, exactly one of the ai is of hidden sort; for simplicity, let us assume it is a1.
Then for i = 2; : : : ; n we have ai = a0i, and for any local �-context c, we can de�ne the local context
c0 = c[�(z; a2; : : : ; an)]. Because a1 �� a01, we have

Ac(A�(a1; :::; an)) = Ac0(a1) = Ac0(a
0
1) = Ac(A�(a

0
1; :::; a

0
n)) ;

as desired. 2

We will soon show how to use �� in proving the behavioral satisfaction of equations, but �rst we state a
property needed in later sections.

Lemma 22: Given � � � and a hidden �-homomorphism f : A! B, then for any a; a0 in A, a �� a0 in
A i� f(a) �� f(a0) in B.

Proof: By de�nition, a �� a0 is equivalent to Ac(a) = Ac(a
0) for all c 2 L�[z], which is equivalent to

f(Ac(a)) = f(Ac(a
0)) for all c 2 L�[z], because f is the identity on visible sorts. Now because f is a

homomorphism, this in turn is equivalent to Bc(f(a)) = Bc(f(a
0)) for all c 2 L�[z], which is by de�nition

f(a) �� f(a0). 2

Our statement of a fundamental result justifying several key techniques for proving behavioral satisfaction
[26, 48, 31] uses the following:

De�nition 23: Given � � �, a behavioral �-congruence on a hidden �-algebra A is a �-congruence
� which is equality on visible sorts, i.e., for v 2 V and a; a0 2 Av = Dv, we have a �v a

0 i� a = a0. 2

The naturalness of this de�nition is brought out by reformulating the statement that � is equality on visible
sorts as �j�	 = 1D, in analogy with the de�nition of hidden homomorphism. Now the result:

Theorem 24: (Principle of Coinduction) Behavioral �-equivalence is the greatest behavioral �-congruence1.

Proof: Fact 21 says that �� is a behavioral �-congruence. Suppose that R is a behavioral �-congruence
and that a Rs a

0. Then because R is a �-congruence, we have Ac(a) Rv Ac(a
0) for any �-context c of

appropriate sort; because R is equality on visible sorts, this implies that Ac(a) = Ac(a
0) for any �-context

c, i.e., that a �� a0 as desired. 2

This implies that two states can be shown �-equivalent by �nding any �-congruence that relates them.
In [29] we call this proof technique hidden coinduction. Many speci�cations have a natural distinction
between their `generators' (or `constructors') and `destructors' (or `selectors'), that can be exploited in coin-
duction proofs; in the jargon of the object paradigm, these are called `methods' and `attributes,' respectively.
An example is given below; but �rst, we spell out how to use subsignatures in coinduction proofs. Note
that � � � implies that �� � �� for any hidden �-algebra A; moreover, if �� is preserved by the other
operations in the signature, then �� = ��.

Proposition 25: Given � = �[� and a hidden �-algebra A, if �� is a �-congruence on A, then �� = ��
on A.

Proof: We have already noted that �� � ��, so it su�ces to show �� � ��. Since �� is a �-congruence,
if it is also a �-congruence, then it is a �-congruence because � = � [�. Since Theorem 24 says that ��
is the greatest behavioral �-congruence, we have �� � �� as desired. 2

This result can greatly simplify proofs of behavioral equivalence: instead of checking equality in all �-
contexts, we need only check equality for all �-contexts. This latter proof obligation can be shown by
induction on the structure of �-contexts; because � is a subsignature of �, there will be fewer cases to
consider in the induction steps. But because this kind of \context induction" can be very tedious [16], it is
fortunate that it is unnecessary, as illustrated in the following:

1This beautiful formulation arose in a conversation between Grant Malcolm and Rolf Hennicker in 1996, for the special case

where � = �.

11

Example 26: Given the FLAG theory in Example 12, de�ne f ' f 0 i� up? f =up? f 0 for
ags f; f 0, and
de�ne d ' d0 i� d = d0 for data values d; d0. Then it is easy to check that f ' f 0 implies up f ' up f 0 and
dn f ' dn f 0 and rev f ' rev f 0, and of course up? f ' up? f 0. So ' is a behavioral congruence.

Therefore to show that every FLAG-algebra satis�es the equation (8F : Flag) rev rev F = F, we can just
show that up? rev rev F = up? F, which follows by simple equational reasoning, since up? rev rev F =
not(not(up? F)).

It is easy to do this mechanically using OBJ3. We �rst set up the proof by opening FLAG and adding the
necessary assumptions; here R represents the relation ' (we omit its de�nition on visible sorts, because this
is not used in the proof):

openr FLAG .

op _R_ : Flag Flag -> Bool .

var F1 F2 : Flag .

eq F1 R F2 = (up? F1 == up? F2) .

ops f1 f2 : -> Flag .

close

Here are the reductions showing that R is a behavioral congruence:

open .

eq up? f1 = up? f2 .

red (up f1) R (up f2) . ***> should be: true

red (dn f1) R (dn f2) . ***> should be: true

red (rev f1) R (rev f2) . ***> should be: true

close

Finally, we show that all FLAG-algebras behaviorally satisfy the equation

(8 F : Flag) rev rev F = F

with the following:

red (rev rev f1) R f1 . ***> should be: true

All the above code runs in OBJ3, and gives true for each reduction, provided the following lemma about
the Booleans is added somewhere:

eq not not B = B .

where B is a Boolean variable. 2

3.2 More Satisfaction

This short section contains some results about behavioral satisfaction that are needed later.

Lemma 27: A hidden algebra A behaviorally satis�es (8X) t = t0 if t1 = t01; : : : ; tm = t0m i� for every
assignment � : X ! A, whenever ��(tj) �A �

�(t0j) for j = 1; :::;m, then ��(t) �A �
�(t0).

Proof: A behaviorally satis�es the equation i� for every � : X ! A, whenever ��(c[tj]) = ��(c[t0j]) for all
appropriate c and for j = 1; : : : ;m, then also ��(c[t]) = ��(c[t0]) for all appropriate contexts c. Therefore
by Lemma 16, A behaviorally satis�es the equation i� for all � : X ! A, we have ��(t) �A ��(t0) whenever
��(tj) �A �

�(t0j) for all j = 1; : : : ;m. 2

Corollary 28: Given a hidden �-algebra A and a conditional �-equation all of whose terms have visible
sort, then A satis�es the equation i� it behaviorally satis�es the equation.

Proof: This follows from Lemma 27 and (1) of Fact 21. 2

12

Corollary 29: If a hidden �-algebra A satis�es a conditional �-equation all of whose conditions have
visible sort, then it behaviorally satis�es that equation.

Proof: Suppose A satis�es an equation (8X) t = t0 if t1 = t01; : : : ; tm = t0m, where each ti and t
0
i is of

visible sort. If � : X ! A is such that ��(ti) �A �
�(t0i) for i = 1; : : : ;m, then because behavioral equivalence

is equality on visible sorts, we have ��(ti) = ��(t0i), so �
�(t) = ��(t0) and therefore ��(t) �A ��(t0), which

shows that A behaviorally satis�es the equation. 2

The following shows that Corollary 29 fails for conditional equations with hidden sorted conditions:

Example 30: Let � be the hidden signature with: hidden sort h and visible sort v; four constants a; b; c; d
of sort h; and a function symbol f : h! v. Also, let Dv be f0; 1g; and let A be the �-algebra with hidden
carrier containing distinct constants Aa; Ab; Ac; Ad satisfying the equations

eq f(a) = 0 .

eq f(b) = 1 .

eq f(c) = f(d) .

Then A vacuously satis�es the conditional equation

(8;) a = b if c = d ;

because Ac 6= Ad. However, A does not behaviorally satisfy this equation, because c �A d but a 6�A b. 2

3.3 Existence of Models

Unlike classical algebraic speci�cation for abstract data values, where any speci�cation has models (both
initial and �nal), it is very easy to write behavioral theories that have no models. This is because adding
equations reduces the class of models, and if the equations confuse data items, then there are no models; in
this sense, the �xed data algebra D acts as a constraint on the possible models. Example 30 showed that
not all hidden speci�cations have models, because if the conditional equation is added to the speci�cation,
then any model must behaviorally satisfy a = b, which implies 0 = 1, a contradiction, since 0; 1 are distinct
elements of D. This section gives su�cient conditions for a theory to have at least one model, and also gives
conditions for the existence of initial and �nal models.

3.3.1 Consistency

We �rst consider some examples that bring out the di�culties of showing consistency of hidden theories,
after which we introduce some further de�nitions, give a necessary condition for consistency, and then some
su�cient conditions. We seek conditions that are as syntactic as possible, so as to facilitate automatic
veri�cation of consistency. We thank Grigore Ro�su for help with debugging and improving results in [32] for
this section; however, he is not responsible for the current proof of Theorem 40, nor for any errors there or
elsewhere.

Example 31: Consider a hidden theory having only one hidden sort h and one equation (8;) 0 = 1, where
the data algebra consists of the two element set f0; 1g with no operations. This hidden theory clearly has no
models. But notice that if the equation is replaced by (8x : h) 0 = 1 where x is a variable of hidden sort h,
then because there are no hidden constants of sort h, it would admit exactly one model, namely that with
the carrier of sort h empty. 2

A lesson of the above example is that to avoid inconsistency, one must avoid data con
icts. Since hidden
models with empty carriers have no practical value, we exclude them in the following:

De�nition 32: A hidden theory is consistent i� it has a model with all carriers non-empty. 2

Sometimes inconsistency can involve properties of D, not just direct data con
icts. One simple example
is the equation (8;) 0 + 0 = 1. This motivates the following:

13

De�nition 33: Let D? denote the set of all ground 	-equations of the form (8;) t = d that are satis�ed
by D with d 2 D. Then a set of �-equations E is D-safe i� for any d; d0 2 D, if E [D? j=� (8;) d = d0

then d = d0. 2

Fact 34: If e is a 	-equation, then D? j=	 e i� D j=	 e.

Proof: Since D j= D?, the forward direction is clear. For the converse, it su�ces to establish the result for
ground equations, where it is true by the de�nition of D?. 2

For the rest of this section suppose that P = (�; E) is a hidden theory over a data algebra D with no
empty carriers. The following gives a natural necessary condition for consistency:

Proposition 35: If P is consistent then E is D-safe.

Proof: Let M be a model of P with all carriers non-empty. For the sake of contradiction, suppose
there are distinct d; d0 2 D such that E [D? j=� (8X) d = d0. Because ordinary equational deduction is
sound for behavioral satisfaction (by Proposition 58 below), we get E [D? j�� (8X) d = d0, and because
M j�� E [D?, we then get M j�� (8X) d = d0, which is a contradiction because d 6= d0 and no carriers of
M are empty. 2

However D-safety is not a su�cient condition for consistency, because con
icts more subtle than in Example
31 can arise:

Example 36: Consider the hidden theory with D the natural numbers with addition, with one hidden sort
h, one hidden constant c, one attribute a : h ! v, and just one equation in E, (8;) 1 + a(c) = a(c). This
theory is inconsistent because there is no natural number n for the value of a(c) such that 1+n = n. However,
E is D-safe because there are no distinct natural numbers n;m 2 D such that E [D? j=� (8;) n = m. To
show this, it su�ces to �nd a �-modelM (which need not protect D) which satis�es E and D? but does not
satisfy (8;) n = m for any distinct n;m. We let M have the natural numbers plus a new element 1 as its
carrier of sort v, with n+1 =1 for any n and 1+1 =1, and with a one-element set f�g as its carrier
of sort h, with c interpreted as � and a(c) as 1. 2

The above example shows that using operations in 	 (such as addition) on top of attributes in equations
is dangerous, because it can induce con
icts on data. The following example shows that data con
icts can
appear even when the equations are D-safe and involve no operations in 	.

Example 37: Consider a hidden theory over the data algebra having carrier f0; 1g of sort v with no
operations, having one hidden sort h and one hidden constant x of sort h, two attributes a : h ! v and
b : h v ! v, and having three equations in E, (8;) b(x; a(x)) = 0, (8;) b(x; 0) = 1, and (8;) b(x; 1) = 1.
This theory is inconsistent because if a hidden model existed, then because a(x) must be either 0 or 1, the
�rst equation and either the second or the third, would imply that the equation (8;) 0 = 1 is satis�ed by
that model. Notice also that it is not the case that E [D? j=� (8;) 0 = 1 because as in Example 36, there
are models satisfying E [D? where 0 6= 1. 2

Examples 36 and 37 suggest that it may be di�cult to state consistency criteria for equations with non-local
terms even if they are D-safe, as in the previous two examples. We will soon see (Theorem 40) that D-
safety plus locality of equations is su�cient for consistency when the equations are non-conditional; in fact,
Theorem 40 covers even conditional equations whose conditions contain only 	-terms. But �rst, we brie
y
consider some di�culties that can arise with conditional equations.

Example 38: Consider the hidden theory with one visible sort v, one hidden sort h, D the set f0; 1g, one
attribute a : h ! v, four hidden constants x; x0; y; y0, and the equations (8;) a(x) = 0, (8;) a(x0) = 1,
(8;) a(y) = a(y0), and (8;) x = x0 if y = y0. This theory is inconsistent, because if it had a model A
then Ay � Ay0 (since there is only one experiment, a(z)), therefore the condition is satis�ed, and so Ax is
behaviorally equivalent to Ax0 ; but this would imply that Ax; Ax0 give the same value under the experiment
a(z), so that 0 = 1. It is easy to check that these equations are D-safe and involve only local terms. 2

14

One may suspect that the inconsistency above occurred because of the hidden condition of the equation.
The next example shows that inconsistencies can appear even if the conditions are visible and the terms in
equations are local.

Example 39: Consider a hidden theory with one visible sort v and one hidden sort h, D = f0; 1g, one
hidden constant x, one attribute a : h ! v, and two conditional equations, (8;) a(x) = 0 if a(x) = 1 and
(8;) a(x) = 1 if a(x) = 0. Because one of the two conditions must be satis�ed in any model, it follows that
0 = 1, so that this theory is inconsistent. It can also be shown that the equations are D-safe; we encourage
the reader to �nd an appropriate model for this purpose. 2

Examples 38 and 39 indicate di�culties with conditional equations where the conditions contain operations
not in 	, and the last four examples together motivate the following, recalling that locality implies that all
the conditions in equations are visible:

Theorem 40: A hidden speci�cation P = (H;�; E) is consistent if E is D-safe and local.

Proof: We demonstrate the consistency of P by exhibiting a modelM for P . Without loss of generality, we
may assume that � contains a constant of each hidden sort, because if it didn't, we could add such constants
to obtain a larger signature over which E is still D-safe and local, so that a model of it also yields a (reduct)
model of the original � with all carriers non-empty, as is required for consistency.

Letting dv be some arbitrary but �xed element in Dv for each visible sort v, we de�ne M as follows:

� M j�	 = D;

� for each hidden sort h, let Mh = L�;h, the local ground terms of sort h;

� for each method � : h w ! h0, de�ne M� : Mh�Dw ! Mh0 by M�(l; d) = �(l; d) for l 2 Mh and
d 2 Dw (noting that M�(l; d) is local if l is); and

� for each attribute � : h w ! v, de�ne M� : Mh�Dw ! Dv for l 2Mh and d 2 Dw by

M�(l; d) =

�
d0 when there is some d0 2 D such that E [D? j=� (8;) �(l; d) = d0

dv otherwise .

Since E is D-safe, if any d0 as above exists, then it is unique. Thus M is a well-de�ned hidden �-algebra.

We �rst show that for any local terms l and l0 of visible sort v,

Ml =Ml0 if E [D?
j= (8;) l = l0 : (1)

We prove this by the following case analysis, assuming E [D? j= (8;) l = l0 :

� If l and l0 are both 	-terms, then Ml = Dl = Dl0 =Ml0 .

� If l is not a 	-term, then l = �(t; d) for some � : hw ! v, with t a local term of hidden sort h
and d 2 Dw (actually, d may consist of 	-terms, but since we are concerned with equality under the
equations in D?, we may safely consider 	-terms to be equal to their values in D). If l0 is a 	-term, then
there is d0 2 Dv with D

? j= (8;) l0 = d0 (i.e., d0 = Dl0 =Ml0). It follows that E[D
? j= (8;) �(t; d) = d0,

so by the de�nition of M we have Ml =M�(t; d) = d0 =Ml0 .

� If neither l nor l0 are 	-terms, then we have l = �(t; d) and l0 = �0(t0; d0) for some �; �0, etc. For any
d00 2 Dv we have E [D? j= (8;) �(t; d) = d00 i� E [D? j= (8;) �0(t0; d0) = d00. It now follows from
the de�nition of M that if there is some such d00, then Ml =M�(t; d) = d00 =M�0(t

0; d0) =Ml0 , and if
there is no such d00, then Ml = dv =Ml0 .

15

T�(X)

M

T�

��

'�

�
�

�

�

�

�
�*

H

H

H

H

H
Hj

?

To show that M behaviorally satis�es all equations in E, consider e 2 E of the form (8X) t = t0 if t1 =
t01; : : : ; tm = t0m and let � : X ! M be such that ��(ti) = ��(t0i) for i = 1; : : : ;m (the hypothesis in
De�nition 11 reduces to this because all the ti; t

0
i are 	(X)-terms). We will show M j� e by showing that

��(c[t]) = ��(c[t0]) for any appropriate local ground context c (see Proposition 19).
Let � be the unique �-morphism T� !M , noting that it maps t 2 T� toMt (i.e., �(t) =Mt for t 2 T�),

and in particular, maps t 2 T	 to Dt. Then � is surjective because Ml = l if l 2 M (as can be shown by
induction on the structure of local ground terms). Hence there exists ' : X ! T� such that � = � � '; in
fact, we can actually choose '(x) = �(x), since M � T�. Therefore �

� = � � '�, and in fact, ��(t) = '�(t),
from which it follows that '�(t) is always local, and that M'�(t) = ��(t) if t is local. Now

D j=� (8;) '�(ti) = '�(t0i)

for i = 1; : : : ;m, because ��(ti) = ��(t0i) by assumption. Therefore by Fact 34,

D?
j=� (8;) '�(ti) = '�(t0i)

for i = 1; : : : ;m, so that also

E [D?
j=� (8;) '�(ti) = '�(t0i)

and therefore

E [D?
j=� (8;) '�(t) = '�(t0) ;

by applying e 2 E. Hence, for any appropriate local ground context c,

E [D?
j=� (8;) c['�(t)] = c['�(t0)] ;

so that by Lemma 16,

E [D?
j=� (8;) '�(c[t]) = '�(c[t0]) ;

which by condition (1) implies M'�(c[t]) =M'�(c[t0]), which gives ��(c[t]) = ��(c[t0]), as desired. 2

Although all the examples in this paper satisfy the hypotheses of Theorem 40 for consistency, unfortunately
this is not machine checkable because D-safety is a semantic condition. Therefore we would like to have
good machine checkable su�cient conditions for D-safety. One such is given in Proposition 42 below, but
�rst we need the following:

De�nition 41: A �-term rewriting system R is D-con
uent i� R[RD? is con
uent, where RD? = ft!
d j D j=	 (8;) t = dg is the 	-rewriting system associated to D?. 2

So a �-term rewriting system is D-con
uent i� it is con
uent modulo evaluations of ground 	-terms in D.
D-con
uence seems very natural for reasoning over a �xed data universe, and we believe that con
uence
criteria like orthogonality can be adapted to it.

Proposition 42: If E can be oriented as a D-con
uent �-term rewriting system with no rule having some
d 2 D as its left side, then E is D-safe.

Proof: For the sake of contradiction, suppose E is not D-safe, i.e. that there are distinct d; d0 2 D such
that E [D? j=� (8X) d = d0. Since E can be oriented as a D-con
uent �-term rewriting system, say RE ,
completeness of equational reasoning implies d (! [)� d0, where ! is the rewriting relation induced
by the �-term rewriting system RE [RD? and is its converse. Since RE [RD? is con
uent, we get
d (!�; �) d0, a contradiction since there is no rule having d or d0 as left side in RE , and the only rules in
RD? having d or d0 as their left sides are d! d and d0 ! d0. 2

16

3.3.2 Initial and Final Models

We turn now to necessary and su�cient conditions for the existence of initial and �nal models for hidden
theories. We give the constructions here, while subsequent sections examine their logical properties.

De�nition 43: Given a hidden theory P = (H;�; E), a ground �-term t is de�ned i� for every context
c (of appropriate sort), there is some d 2 D such that E j� c[t] = d; otherwise, we say t is unde�ned. P is
lexic i� all ground �-terms are de�ned. 2

We note that L� is \almost" a hidden �-algebra, in that L�;v = Dv for v 2 V , and that any 	-homo-
morphism f : T�j�V ! D gives rise to a hidden algebra that we denote Lf , with Lf;h = L�;h for h 2 H ,
having methods interpreted the obvious way as term building operations, and having attributes � 2 �w;v

interpreted by

Lf;�(x) = f(�(x))

for arguments x 2 Lf;w. In particular, every hidden �-algebra A gives rise to a �-homomorphism T� ! A

interpreting visible terms as data values, which in turn produces an f as above by restricting to V . Very
similar considerations apply to LA in the following:

De�nition 44: For any hidden �-algebra A, write LA for the hidden �-algebra Lf induced by the homo-
morphism f : T� ! A, and lA for the hidden �-homomorphism LA ! A de�ned by lA(t) = f(t). 2

Because lA is the �-homomorphism f restricted to local terms, we have

Fact 45: lA is the unique hidden homomorphism LA ! A. 2

For lexic theories, all the models LA are identical, which is a key step in proving the following:

Theorem 46: (Hidden Initiality) A hidden theory P has an initial model IP i� P is consistent and lexic.

Proof: If a hidden theory (�; E) is consistent and lexic, then for every visible ground term t there is
a unique dt in D with E j� (8;) t = dt. Moreover, for any hidden model A of E, the homomorphism
f : T� ! A necessarily agrees with the mapping t 7! dt, and since it is this mapping that de�nes LA, it
follows that LA = LB for any two models A and B. Because E is consistent, there is at least one model, say
A, so we have LA and a unique hidden homomorphism lA : LA ! A. By Lemma 50 below, LA behaviorally
satis�es all the equations that A does, so that LA j� E. Moreover, for any model B, there is a unique hidden
homomorphism lB : LA = LB ! B. Therefore we can take IP = LA as the initial hidden algebra.

Conversely, if there is an initial model, then E is consistent. For every visible term t, there is a data
value f(t) given by the homomorphism f from T� to the initial model. Moreover, for any other model A
with homomorphism g : T� ! A, it follows that g(t) = h(f(t)) = f(t), where h is the unique hidden �-
homomorphism from the initial model to A, which shows that A j� (8;) t = f(t), and since A is an arbitrary
model, we conclude that every ground term t is de�ned by a data value f(t) with E j� (8;) t = f(t). 2

Initial models are less important for the hidden paradigm than they are for initial algebra semantics [39]
or the more general initial model semantics [34]. Final algebras come closer to that role, in that they capture
many abstract properties of the state space. We will show that �nal models exist exactly when initial models
do, provided each equation contains at most one hidden variable; however, �nal models are less common
in the recent more general hidden framework where operations may have more than one hidden argument,
which has motivated ways to obtain similar results without using �nal models [38, 58, 25].

De�nition 47: Let �� denote the signature obtained from � by forgetting all generalized constants in �;
i.e., ��w;s = ; if w 2 V

� and s 2 H , and ��w;s = �w;s otherwise. For a hidden �-algebra A, we will write A�

for the reduct Aj��� . Now let F�� be the hidden ��-algebra de�ned by the following \magical formula"

F��;h =
Y
v2V

[L�[zh]v ! Dv]

17

for hidden sorts h 2 H . As with all hidden signatures in this paper, the methods and attributes of �� have
only one argument of hidden sort; for simplicity, we assume that this is always the �rst argument. F��

interprets the operations of �� as follows:

� For methods � 2 �hw;h0 , p 2 F��;h, d 2 Dw, and c 2 L�[zh0]v, let (F��)�(p; d)(c) = pv(c[�(zh0 ; d)]).

� For attributes � 2 �hw;v, p 2 F��;h, d 2 Dw, let (F��)�(p; d) = pv(�(zh; d)).

2

Proposition 48: F�� is a �nal hidden ��-algebra.

Proof: Given a hidden ��-algebra A, the unique hidden homomorphism A� ! F� takes a 2 Ah to the
family (over v 2 V) of mappings L�[zh]v ! Dv sending c 2 L�[zh]v to Ac(a). 2

The unique homomorphism A� ! F� taking a hidden state to all its observable behaviors can be thought of
as evaluating all attributes for all states that can be reached from the given state. It can also be shown that
two elements of a hidden algebra are behaviorally equivalent i� their images in the �nal algebra are equal
[46]. This prepares us for

Theorem 49: If the equations in a hidden theory P = (H;�; E) have at most one variable of hidden sort,
then P has a �nal model, denoted FP , i� it is consistent and lexic.

Proof: Suppose P is consistent and lexic, and for any P -algebra A let ' : A� ! F�� be the unique hidden
��-homomorphism to the �nal algebra F�� , made a hidden �-algebra by interpreting generalized constants
� 2 �w;h by (F��)�(d) = '(A�(d)) for all d 2 Dw; note that ' is a hidden �-homomorphism. Let FA be
the image of ', i.e., factor ' as the composition of surjective '0 : A

� ! FA and inclusive '1 : FA ,! F�� .
Because '0 is surjective, Lemma 54 below implies that FA j� E. Now let FP be the greatest subalgebra of
F�� that behaviorally satis�es E; in fact, FP is the union of all the images FA for each hidden P -algebra A.
For any equation in E with variables X , because at most one variable in X is of hidden sort, any assignment
� : X ! FP is an assignment � : X ! FA for some A, and so FP j� E. For any P -algebra A, we have
already noted that FA is a subalgebra of F�� that behaviorally satis�es E; therefore it is contained in FP ,
which shows that the domain of ' lies in FP , which is therefore �nal. This concludes the `if' direction of the
proof. The converse is like that of Theorem 46. 2

4 Hidden Algebras and Hidden Proofs

This section gives some basic results in hidden model theory, including the soundness of equational reasoning
for proving behavioral satisfaction, as well as some more sophisticated proof techniques. We start with a
very basic property of hidden homomorphisms:

Lemma 50: Given a hidden homomorphism f : A! B and an equation e, then B j� e implies A j� e.

Proof: Let e be of the form (8X) t = t0 if t1 = t01; : : : ; tm = t0m and let � : X ! A be such that
��(tj) �A ��(t0j) for j = 1; : : : ;m. Then by Lemmas 1 and 22, we have (f � �)�(tj) �B (f � �)�(t0j), so if
B j� e then (f � �)�(t) �B (f � �)�(t0). Again by Lemmas 1 and 22, this implies that ��(t) �A �

�(t0), which
proves that A j� e if B j� e. 2

Proposition 51: For any hidden theory P :

(1) an initial P -algebra behaviorally satis�es an equation i� some P -algebra behaviorally satis�es it;

(2) a �nal P -algebra behaviorally satis�es an equation i� all P -algebras behaviorally satisfy it.

Proof: Immediate from Lemma 50. 2

18

Lemma 50 states that satisfaction of equations propagates backwards along hidden homomorphisms;
we now show that satisfaction also propagates forwards for ground equations, as well as along surjective
homomorphisms.

Lemma 52: Given a hidden homomorphism f : A! B and a ground equation e, if A j� e then B j� e.

Proof: Suppose e has the form (8;) t = t0 if t1 = t01; : : : ; tm = t0m and that A j� e, i.e., if g(tj) �A g(t
0
j) for

j = 1; : : : ;m, then g(t) �A g(t0), where g is the unique homomorphism from T� to A. If h(tj) �B h(t0j) for
j = 1; : : : ;m, where h is the unique homomorphism T� ! B, then f(g(tj)) �B f(g(t0j)), because h = f � g;
by Lemma 22 this implies g(tj) �A g(t

0
j) for j = 1; : : : ;m, and because A j� e we get g(t) �A g(t

0). Now by
Lemma 22 again, f(g(t)) �B f(g(t0)), i.e., h(t) �B h(t0), which shows that B j� e. 2

Corollary 53: If P = (�; E) is a hidden theory with initial hidden algebra IP , and if e is a ground
�-equation, then IP j� e i� all P -algebras behaviorally satisfy e. 2

Lemma 54: Given a surjective hidden homomorphism f : A! B and an equation e, if A j� e then B j� e.

Proof: Let e be (8X) t = t0 if t1 = t01; : : : ; tm = t0m and let � : X ! B be such that ��(tj) �B ��(t0j)
for j = 1; : : : ;m. Because f is surjective, there is some � : X ! A such that � = f � �; then f(��(tj)) �B
f(��(t0j)) and so by Lemma 22, ��(tj) �A �

�(t0j) for j = 1; : : : ;m. Since A j� e, this implies ��(t) �A �
�(t0),

and so by Lemma 22 f(��(t)) �B f(��(t0)), i.e., ��(t) �B ��(t0), so that B j� e. 2

Corollary 55: If P = (�; E) is a hidden theory with initial hidden algebra IP and e is a �-equation, then
IP j� e i� all reachable hidden P -algebras behaviorally satisfy e.

Proof: A P -algebra A is reachable i� the unique homomorphism h : T� ! A is surjective; such an h factors
through the unique hidden homomorphism IP ! A, which is therefore also surjective, and now the `only if'
implication follows from Lemma 54. The `if' direction follows from the fact that IP is reachable. 2

An immediate corollary to this and Proposition 51 is that for consistent, lexic hidden theories, the behavior
of all reachable algebras is the same:

Corollary 56: If P = (�; E) is a consistent, lexic hidden theory, and if e is a �-equation behaviorally
satis�ed by some P -algebra, then all reachable hidden P -algebras behaviorally satisfy e. 2

4.1 Proving Behavioral Satisfaction

This section presents some techniques for proving behavioral satisfaction, particularly hidden coinduction.
The next section gives a sample coinduction proof, but we begin by showing soundness of perhaps the most
elementary technique for proving behavioral satisfaction, which is ordinary equational reasoning. But �rst:

Lemma 57: Given a hidden �-algebra A and a (possibly conditional) �-equation e, then A=�� j= e i�
A j� e.

Proof: This is immediate from Lemma 27. 2

Proposition 58: If an unconditional �-equation e is derivable with ordinary equational reasoning from a
set of equations E, then all hidden (�; E)-algebras behaviorally satisfy e. 2

This follows from the more general result below, because if (8X) t = t0 is derivable from E, then so are all
the equations (8X) c[t] = c[t0] for appropriate contexts c, by the congruence rule of equational deduction.

Proposition 59: If for every appropriate context c, the �-equation (8X) c[t] = c[t0] is derivable by ordinary
equational deduction from a set of equations E, then every hidden (�; E)-algebra behaviorally satis�es
(8X) t = t0.

Proof: If (8X) c[t] = c[t0] is derivable from E for all c, then E j= (8X) c[t] = c[t0] for all c, so that
for any hidden (�; E)-algebra A, if A=�� j= E then A=�� j= (8X) c[t] = c[t0] for each c, which means
that A j� (8X) c[t] = c[t0], i.e., that A j= (8X) c[t] = c[t0] for all c, since c is visible, which implies that
A j� (8X) t = t0. 2

19

However, ordinary equational reasoning is not complete for behavioral satisfaction: there are many hidden
theories where many equations not derivable by equational deduction are behaviorally satis�ed by all models
(e.g., see Example 26). Proposition 59 justi�es using induction over the structure of contexts to prove
behavioral satisfaction; however this can be very complex, as illustrated by experiences reported in [16]. In
fact, there cannot be any complete �nite inference rule set for hidden satisfaction [5]. Results in Section 3.1
show that it is possible to restrict attention to contexts built from certain subsignatures � � �. The proof in
Example 26 can be thought of as a trivial induction on contexts: there is only one possible context, namely
up? z. However, it is also an example of hidden coinduction [31], which involves showing that two elements are
behaviorally equivalent by �nding some behavioral congruence that relates them. This technique is justi�ed
by Theorem 24. Hidden coinduction proofs have three steps: �rst, a \candidate relation" is proposed; second,
this relation is shown to be a behavioral congruence; and third, it is shown that the relation relates the two
elements to be shown behaviorally equivalent. Example 26 actually illustrates a more general form of hidden
coinduction proof, since the declarations

op _R_ : Flag Flag -> Bool .

var F1 F2 : Flag .

eq F1 R F2 = (up? F1 == up? F2) .

de�ne a candidate relation for all FLAG-models. The reductions in the example use rewriting to show that
this candidate relation is a behavioral congruence. Since Proposition 58 shows that equational deduction is
sound, it follows that the candidate really is a behavioral congruence for all FLAG-models. Thus, one useful
technique for �nding candidate relations for coinductive proofs is to use behavioral �-equivalence for some
subsignature �; another technique is given in Proposition 61 below. But �rst we introduce:

Notation 60: Suppose � = � [� where � contains no visible operations (i.e., no attributes), and let
R � A�A be a relation on a �-algebra A such that R is the equality relation on visible sorts. Then let R�

denote the least behavioral �-congruence extending both R and ��. 2

This assumes that the least behavioral �-congruence extending R exists; in fact, we can take R� to be
the least �-congruence extending R, because since � contains no visible operations, the least �-congruence
extending R and �� cannot relate any new data items, and therefore must be the equality relation on visible
sorts. This means that the least �-congruence extending R is in fact a behavioral �-congruence.

Coinduction proofs can be considered to generalize the bisimilarity proofs used in process algebra [46]:
since bisimilarity is the greatest bisimulation [52, 53], one can prove that two states are bisimilar by exhibiting
any bisimulation that relates them. Similarly, behavioral equivalence of two states can be shown by exhibiting
any behavioral congruence that relates them. A common technique for bisimilarity proofs is to extend some
relation that relates the two states to a bisimulation. A similar technique works for the more general method
of coinduction, and the next subsection uses Proposition 61 below for this purpose.

Proposition 61: Let � = � [� and R � A�A be as in Notation 60 above. If

(1) (A�(a; d); A�(a
0; d)) 2 R�

s for every � 2 �hw;s, (a; a
0) 2 Rh and d 2 Dw, and if

(2) (A�(A
(a; e); d); A�(A
(a
0; e); d)) 2 R�

s for every � 2 �hw;s,
 2 �h0w0;h, (a; a
0) 2 R�

h0 , d 2 Dw and
e 2 Dw0 ,

then R� � ��.

Proof: Let �R� be the following relation,

f(a; a0) 2 R�
j (A�(a; d); A�(a

0; d)) 2 R�
s for every � 2 �hw;s and d 2 Dwg :

It is straightforward to show that �R� is an equivalence relation. It extends ��, because if a �� a0, then
A�(a; d) �� A�(a

0; d), so (A�(a; d); A�(a
0; d)) 2 R� and therefore (a; a0) 2 �R�. Moreover, (1) says that

�R� extends R, and (2) implies it is a �-congruence. Since R� is the least �-congruence extending R and
��, we have R� � �R�, and therefore R� = �R�. This means that R� is a �-congruence, because by
de�nition of �R�, if (a; a0) 2 R�

h then (A�(a; d); A�(a
0; d)) 2 R�

s for each � in �. Therefore R
� is a behavioral

�-congruence, and so R� � �� follows by Theorem 24. 2

20

4.2 An Example

This section uses the above results to prove behavioral properties of the following hidden speci�cation:

th STACK2 is sort Stack .

pr DATA .

op push : Nat Stack -> Stack .

op empty : -> Stack .

op empty' : -> Stack .

op pop_ : Stack -> Stack .

op top_ : Stack -> Nat .

var S : Stack . var N : Nat .

eq pop push(N,S) = S .

eq top push(N,S) = N .

eq pop empty = empty .

eq pop empty' = empty' .

eq top empty = 0 .

eq top empty' = 0 .

endth

This is the same as the STACK speci�cation in Example 13, except that there is a new hidden constant empty'
with two new equations. The signature 	 of data values is the signature of DATA, which we assume speci�es
at least the natural numbers, with a constant for each natural number, and we also assume that the �xed
	-algebra contains at least the usual algebra of natural numbers with the usual operations.

Proposition 62: STACK2 is consistent and lexic.

Proof: Since the equations of STACK2 are local, Theorem 40 says we need only check the conditions of
Proposition 42, plus lexicality. We give only a sketch; standard techniques can be used to show D-con
uence.
For lexicality, a straightforward inductive argument shows that every term of sort Stack has a normal form
which is a local term built from push, empty, empty', and terms of sort Nat, and we suppose that the
equations of NAT are such as to guarantee that these have data values as normal forms. Therefore applying
top to a term of sort Stack always yields a data value. 2

Now suppose we want to know if the equation

pop push(N,pop S) = pop pop push(N,S)

is behaviorally satis�ed by all STACK2-algebras. This equation is derivable from the equations in STACK2 and
the rules of inference in De�nition 3 as follows:

pop push(N,S) = S is derivable by rule (0), so
pop pop push(N,S) = pop S is derivable by rule (4) and
pop S = pop pop push(N,S) is derivable by rule (2);
pop S = pop S is derivable by rule (1), and
pop push(N,pop S) = pop S is derivable by rule (5) so
pop push(N,pop S) = pop pop push(N,S) by rule (3).

Therefore Proposition 58 tells us that all STACK2-algebras behaviorally satisfy the equation. An easier way
to show satisfaction of this equation is to use term rewriting, which shows that the normal forms of both
sides of this equation are the same, namely pop S, as follows (using OBJ3)

red pop push(N,pop S) == pop pop push(N,S) .

so that, again by Proposition 58, the equation is behaviorally satis�ed by all reachable STACK2-algebras.
In contrast, the following equation is less easy to prove behaviorally satis�ed,

21

(8;) empty = empty' ;

because empty and empty' are already in normal form, and are unequal, so that we cannot use equational
deduction. We could use Proposition 59 and induction on contexts to show satisfaction in all models, by
proving the family of equations c[empty] = c[empty0], where c is a context built from operator symbols in
the signature of STACK2. But Proposition 61 gives a much more elegant proof. Essentially, we take the
equation to be proved as coinduction hypothesis, i.e., we let R be the relation relating empty and empty',
and show that the least behavioral �-congruence extending this relation and �� satis�es the conditions of
Proposition 61, where � contains just push, empty and empty', and � contains top and pop, as in Section 3.1.
In fact, we show that any such �-congruence satis�es the conditions of Proposition 61. Here is how the proof
would look in OBJ3. First we declare R� to be a �-congruence that extends the relation R, where R relates
only empty and empty':

th PROOF is pr STACK2 .

op _R�_ : Stack Stack -> Bool [comm] .

var S S' S'' : Stack .

var N : Nat .

eq S R� S = true .

cq S R� S'' = true if S R� S' and S' R� S'' .

cq push(N,S) R� push(N,S') = true if S R� S' .

eq empty R� empty' = true .

endth

Note that we do not explicitly assume that R� extends ��, since behavioral equivalence is denoted by
equality in the speci�cation STACK2. This means that a proof using equational deduction will be sound only
when R� extends ��, which is why that requirement is included in the conditions to Proposition 61. For
example, we can show that condition (1) of Proposition 61 is met with the following reductions:

red pop empty R� pop empty' .

red top empty == top empty' .

The �rst reduction uses the equation pop empty = empty, which need be only behaviorally satis�ed by a
STACK2-model; the assumption that R� extends behavioral �-equivalence means that these reductions really
do prove that condition (1) is satis�ed. To complete the proof, we show condition (2) of Proposition 61:

open PROOF .

ops s s' : -> Stack .

op n : -> Nat .

eq s R� s' = true .

red pop push(n,s) R� pop push(n,s') .

red top push(n,s) == top push(n,s') .

close

The theory PROOF says that R� is some �-congruence that extends R. But the reductions are valid for any
model of PROOF, so they are valid for all models that interpret R� as the least such congruence, which is
what we need. We use equational logic not to prove properties of all hidden STACK2-models, but rather
to prove properties of congruences R�. In this case, we have shown that all models satisfy the conditions
of Proposition 61; the details of these proofs are `hidden' by the use of OBJ reductions, but are very
straightforward and can easily be reconstructed by the interested reader, or printed with OBJ3's trace
facility. Note that the use of hidden constants to eliminate universal quanti�ers over hidden variables relies
on a \Theorem of Hidden Constants," as proved in [58].

5 Hidden Queries

Suppose we want to know if every object of some class (regardless of how that class is implemented) can be
put into a state that satis�es certain constraints; for example, we might ask \can the elements of a certain

22

stack be put in increasing order?" In general, such queries could involve several objects. Our approach to
the semantics of the object paradigm suggests that we formalize this situation by regarding the constraints
as behavioral equations (more generally, Section 6 shows how to use �rst order predicates in constraints),
and grouping them together in an existential query with an explicit declaration of the logical variables for
which we seek values. A solution to the query will consist of values for the logical variables such that the
equations are behaviorally satis�ed by every hidden P -algebra.

To make this computationally feasible, we would like to �nd a term algebra that is \representative" for
all other P -algebras, in the sense that a solution to a query in this algebra systematically translates to a
solution in any other. Our \hidden Herbrand Theorem" says that this is possible in many interesting cases;
in fact, we can use the initial P -algebra, just as in the ordinary Horn clause case [35]. By Theorem 46, this
requires a consistent, lexic theory. However, we also show that even without these restrictions, equational
deduction, and therefore techniques such as narrowing and paramodulation, are sound for arbitrary hidden
theories. (Please recall that we start with hidden equational theories, but later extend to theories over hidden
Horn clause logic with equality.)

De�nition 63: Given a hidden signature �, an (existential) �-query is a sentence q of the form

(9X) t1 = t01; : : : ; tm = t0m

where tj ; t
0
j 2 T�(X)sj for j = 1; :::;m. A hidden �-algebra A behaviorally satis�es q, written A j�� q,

i� there is an assignment � : X ! A such that ��(cj [tj]) = ��(cj [t
0
j]) for all appropriate contexts cj , for

j = 1; :::;m. Call such an assignment a solution (or witness) for the query. 2

Note that X can contain both visible and hidden variables. From the de�nition of behavioral equivalence
we have the following:

Fact 64: Given an existential query q of the form (9X) t1 = t01; : : : ; tm = t0m and a �-algebra A, then A
behaviorally satis�es q with solution � : X ! A i� ��(tj) �� �

�(t0j) for j = 1; :::;m. 2

Lemma 65: Given a �-query and a �-algebra A, if A satis�es the query, then A behaviorally satis�es it.

Proof: If A satis�es the query (9X) t1 = t01; : : : ; tm = t0m, then there is some � : X ! A such that
��(tj) = ��(t0j) for j = 1; :::;m. This implies that ��(tj) �A ��(t0j), so that � also behaviorally solves the
query, by Fact 64. 2

Example 66: In the setting of Example 13, the behavioral query

(9S; S0) push(3; S) = pop(S0)

asks whether there are two stacks that are related in the indicated way, for any possible way of implementing
STACK. One solution to this query is

S = empty

S0 = push(0; push(3; empty))

and of course there are also many others. 2

The solution for this example can be found in the initial term algebra using narrowing, as in the language
Eqlog [34, 11]. Then the unique homomorphism from it to any other algebra which satis�es STACK gives
corresponding values in each of these algebras. However, it is not obvious that this technique can guarantee
the behavioral satisfaction of the query in all algebras which behaviorally satisfy STACK. The results given
below show that techniques such as term rewriting, narrowing and coinduction can indeed solve queries over
all (�; E)-algebras.

Lemma 67: Given a hidden homomorphism h : A! B and a query q, if A j� q then B j� q.

Proof: Suppose q is of the form (9X) t1 = t01; : : : ; tm = t0m, and A j� q with solution � : X ! A. Then by
Lemma 22, h � � : X ! B is a solution in B. 2

23

Theorem 68: Given a hidden theory P :

(1) an initial P -algebra behaviorally satis�es a query i� all P -algebras behaviorally satisfy it; and

(2) a �nal P -algebra behaviorally satis�es a query i� some P -algebra behaviorally satis�es it.

Proof: Immediate from Lemma 67. 2

Goguen and Meseguer [35, 34] gave a Herbrand theorem for Horn clause logic with equality, which states
that an existential query is satis�ed by the initial model of a speci�cation i� it is satis�ed by all models of
that speci�cation. Theorems 69 and 72 below give a Herbrand Theorem for hidden algebra, and a proof that
techniques based on equational deduction are sound for arbitrary hidden theories. Section 6 generalizes this
to hidden Horn clause logic with equality.

Theorem 69: (Hidden Herbrand Theorem) Given a consistent, lexic hidden theory P and a �-query q, then
IP j� q i� every P -algebra behaviorally satis�es q.

Proof: IP exists by Theorem 46, and the result now follows directly from Theorem 68. 2

A weaker, but still useful corollary is

Proposition 70: Given a consistent, lexic hidden theory P and a query q, if IP satis�es q then all P -
algebras behaviorally satisfy q.

Proof: If IP satis�es q then it behaviorally satis�es q by Lemma 65, so all P -algebras behaviorally satisfy
q by Theorem 69. 2

Corresponding to Proposition 59 we have the following, which justi�es equational techniques in �nding
solutions to queries:

Theorem 71: Let q be a �-query of the form (9X) t1 = t01; : : : ; tm = t0m. For a set E of �-equations, and
an assignment � : X ! T�, if E j= (8;) ��(c[ti]) = ��(c[t0i]) for all appropriate c and for i = 1; : : : ;m, then q
is behaviorally satis�ed by every hidden (�; E)-algebra.

Proof: If A is a hidden (�; E)-algebra, then A=�� j= E, so A=�� j= (8;) ��(c[ti]) = ��(c[t0i]) for each i and
appropriate c, which means that !A(�

�(ti)) ��!A(�
�(t0i)), and so A j� (8;) ��(ti) = ��(t0i) as desired. 2

There is also a weaker form without contexts, corresponding to Proposition 58:

Theorem 72: Let q be a �-query of the form (9X) t1 = t01; : : : ; tm = t0m. For a set E of �-equations, and
an assignment � : X ! T�, if E j= (8;) ��(ti) = ��(t0i) for i = 1; : : : ;m, then q is behaviorally satis�ed by
every hidden (�; E)-algebra. 2

The following illustrates the use of narrowing (e.g., see [9]) to solve queries. Narrowing can help discover
if a query is satis�ed by a term algebra, but it does not directly tell about behavioral satisfaction.

Example 73: We again use the STACK2 speci�cation in Section 4.2. Consider the query

(9 S : Stack) top S = 3.

Using Theorem 72, we can obtain a solution by narrowing each side of the equation until we reach an
equation t = t0 such that t uni�es with t0; composing all the substitutions needed during this process gives us
a solution. Thus, top S uni�es with the left hand side of the equation top push(N,S') = N (with variables
suitably renamed) with the substitution S 7! push(N,S'), so that top S narrows to N which cannot be
narrowed further. We then unify N with 3, and to obtain a ground solution, we unify S' with empty. In this
way obtain the solution

S = push(3,empty) .

24

(There are many other solutions.) This solution behaviorally satis�es the query for all STACK2-algebras.
Moreover, from the proof of Theorem 72, it is clear that the expression given above provides a solution in
any model.

Now consider the query:

(9 S : Stack) pop S = empty, pop S = empty'.

Again, using narrowing we can try to �nd a solution for the �rst equation then apply the substitutions thus
obtained to the second equation. Next, we look for a solution to this instance of the second equation. If this
latter step fails then we must �nd another solution for the �rst equation and repeat the process.

We note that pop S uni�es with the left hand side of the equation pop empty = empty, and so narrows
to empty. This immediately gives us a solution S = empty to the �rst equation. Applying this substitution
to pop S = empty' yields the equation pop empty = empty'. Reducing the left hand side, we end up with
the goal empty = empty' which, as shown in Section 4.2, can be proved by coinduction. Therefore, we get
the ground solution S = empty. Note that for this query, we rely on Theorem 71 to show that this is a
solution for all hidden STACK2-algebras. 2

6 Hidden Horn Clause Logic

The queries considered so far have all used equations as constraints. In relational programming languages
such as Prolog and Eqlog [34], the sentences are Horn clauses with predicate symbols, which are interpreted
as relations in models. This section shows that by generalizing a theorem of Diaconescu [10], we can lift our
previous results to hidden Horn clause logic with equality.

Recall (e.g., from [22]) that a (many sorted) �rst order signature (with equality) is a triple (S;�;�)
such that (S;�) is a many sorted signature and � is an S+-indexed family of sets of predicate or relation
symbols. We shall often write (�;�) for (S;�;�), leaving the sort set implicit. For every sort s 2 S, there
is a distinguished equality symbol = 2 �s s. A morphism (f; g; k) : (S;�;�) ! (S0;�0;�0) between two
�rst order signatures consists of a signature morphism (f; g) together with an S+-indexed family of maps
kw : �w ! �0

f+(w) on predicate symbols, where f+ is f� restricted to non-empty strings. A model M of

a �rst order signature (S;�;�) is a �-algebra together with an interpretation M� �Mw for each predicate
symbol � 2 �w, with the equality symbol always interpreted as true identity. A morphism h : M ! M 0

between (S;�;�)-models M and M 0 is a �-homomorphism such that for any predicate symbol � 2 �s1:::sn ,
if (m1; : : : ;mn) 2M�, then (hs1(m1); : : : ; hsn(mn)) 2M

0
�.

For a �rst order signature (�;�), let Mod�;� denote the category of (�;�)-models and morphisms. If
(S0;�0;�0) � (S;�;�) is an inclusion of �rst order signatures, then there is a forgetful (reduct) functor
j��0;�0 : Mod�;� !Mod�0;�0 which maps any (�;�)-model M to the (�0;�0)-model M j��0;�0 whose carriers
are the V -sorted carriers ofM , with operations the �0-operations onM , and relations the �0-relations onM .
If h : M !M 0 is a morphism of (�;�)-models, then hj��0;�0 is the (�

0;�0)-morphism obtained by restricting
h to the sorts in �0.

Given a many sorted �rst order signature (�;�) and an S-indexed set X of variables with the sets Xs

disjoint, we can build the (�;�)-term model T�;�(X) with carriers and operations those of T�(X), and
with T�;�(X)� = ; for every � 2 � except when � is the distinguished equality predicate symbol, which is
interpreted as equality in T�(X). An assignment � : X ! M is an S-sorted mapping from an S-indexed
set of variables X to a (�;�)-modelM ; it extends uniquely to a morphism �� : T�;�(X)!M . For a ground
�-term t, we letMt denote the element !M (t) ofM , where !M : T�;�(;)!M is the extension to a morphism
of the unique assignment ; !M .

De�nition 74: Given a �rst order signature (�;�), a �(X)-atom is a term of the form �(t1; : : : ; tn), for
� a predicate symbol in �s1:::sn and ti 2 T�(X)si . Given a (�;�)-model M , an assignment � : X ! M

satis�es an atom B = �(t1; : : : ; tn) i� (��(t1); : : : ; �
�(tn)) 2M�, in which case we write � j=X B. 2

De�nition 75: A (�;�)-Horn clause is an expression of the form

(8X)B if B1; : : : ; Bm

25

where B;B1; : : : ; Bm are all �(X)-atoms. A Horn clause of the above form is said to be unconditional i�
m = 0, and in that case it is written (8X)B.

Given a (�;�)-Horn clause e of the form (8X)B if B1; : : : ; Bm, and a (�;�)-model M , we say that M
satis�es e, written M j=�;� e, i� for every assignment � : X !M , we have � j=X B whenever � j=X Bj for
j = 1; : : : ;m.

For a set C of (�;�)-Horn clauses, let Mod�;�;C denote the full subcategory of Mod�;� whose objects
are all models which satisfy each clause in C. 2

De�nition 76: A (�;�)-query is an expression of the form

(9X)B1; : : : ; Bm

where the Bj are �(X)-atoms. If q is such a query, then a (�;�)-model M satis�es q, written M j=�;� q,
i� there is an assignment � : X !M such that � j=X Bj for j = 1; : : : ;m. 2

As with equational logic, these concepts have hidden counterparts. We �x a universe (V;	;�; D) of data
values, where (V;	;�) is a �rst order signature and D is a (V;	;�)-model.

De�nition 77: A hidden �rst order signature (over (V;	;�; D)) is a �rst order signature (�;�) where
� is a hidden (equational) signature, � � �, and

(S10) �w � �w for w 2 V +;

(S20) if � 2 �w for w 2 S+, then w has at most one element in H .

2

For convenience, assume that for any � 2 �w with a hidden sorted argument, that argument is its �rst.

De�nition 78: For a hidden �rst order signature (�;�), a hidden (�;�)-model is a (�;�)-modelM such
that M j�	;� = D. A morphism h : M !M 0 between hidden (�;�)-models is a morphism of many sorted

models such that hj�	;� = 1D. We let HModD�;�;	;� denote the category of all hidden (�;�)-models and
their morphisms. We may write HMod�;� when the other elements of the signature are clear from the
context. 2

The notion of behavioral equivalence extends to Horn clause logic by requiring that no atoms distinguish
equivalent states:

De�nition 79: Given a hidden �rst order signature (�;�), a (�;�)-model M and m;m0 2 Ms for some
s 2 S, then m and m0 are behaviorally equivalent, written m �M;s m

0, or just m �M m0, i� either s 2 V
and m = m0, or s 2 H and

� m �� m
0, as in hidden equational logic, and

� for every predicate symbol � 2 �s1:::sn and appropriate hidden context c of sort s1 (i.e., c 2 L�[zs]si),
and for all di 2 Dsi , i = 2; : : : ; n, we have

(Mc(m); d2; : : : ; dn) 2M� i� (Mc(m
0); d2; : : : ; dn) 2M� :

2

Satisfaction now extends to hidden models as follows:

De�nition 80: Given a (�;�)-modelM , an assignment � : X !M behaviorally satis�es a �(X)-atom
B i� B is of the form t = t0 and ��(t) �M ��(t0), or B is of the form �(t1; : : : ; tn), where � is not the equality
symbol, and � j=X B. In both cases we write � j�X B.

Given a (�;�)-Horn clause e of the form (8X)B if B1; : : : ; Bm, and a (�;�)-model M , we say that
M behaviorally satis�es e, written M j��;� e, i� for every assignment � : X ! M , we have � j�X B

whenever � j�X Bj for j = 1; : : : ;m.
Given a (�;�)-query q of the form (9X)B1; : : : ; Bm we say that a (�;�)-model M behaviorally sat-

is�es q, written M j��;� q, i� there is an assignment � : X ! M such that � j�X Bj for j = 1; : : : ;m.

2

26

Diaconescu [10] gives a way of translating a �rst order signature into an algebraic signature by treating
the predicate symbols as function symbols with result sort Bool , where Bool is a new sort with a single new
constant true. Here we extend his de�nition to a translation between hidden signatures.

De�nition 81: For any hidden �rst order signature (�;�), de�ne a hidden algebraic signature (� [�b)
over a data universe (V b;	 [�b; Db) by

� V b = V [fBoolg, where Bool is a new sort name;

� �b is a signature de�ned by �b
w;Bool = �w and �b

w;s = ; for s di�erent from Bool;

� �b is a signature de�ned by �b
w;Bool = �w

� Db is the ([�b)-algebra with Db
v = Dv for v 2 V and DBool = ftrue; falseg, with 	-operation

symbols interpreted as in D, and with Db
�(d1; : : : ; dn) = true if (d1; : : : ; dn) 2 D� and false otherwise,

for � 2 �s1:::sn and di 2 Dsi .

2

Again generalizing Diaconescu [10], the corresponding translation from algebras to models uses an adjunction:

De�nition 82: Given a hidden �rst order signature (�;�), de�ne the forgetful functor

W�;� : HAlg
Db

�[�b ! HModD�;�

to map a (� [�b)-algebra A to the (�;�)-model whose S-indexed carriers are those of A, with operations
those of A restricted to �, and with relations in � de�ned by (a1; : : : ; an) 2W (A)� i� A�(a1; : : : ; an) = true.
If f : A ! A0 is a morphism in HAlg�[�b then W�;�(f) = f . We may write W instead of W�;� if the
context permits. 2

Fact 83: W�;� is well-de�ned.

Proof: We have to check that applying W�;� to a hidden sorted algebra really does give a hidden sorted
model. If A is a (�[�b)-algebra then W�;�(A)j�	;� is the (;�)-model whose carriers are the visible sorted
carriers of A. By the de�nition of Db, this is the model D.

The preservation of composition and identity and the homomorphic property of W�;�(f), for any homo-
morphism f in HAlg�[�b , follow easily from the fact that W�;�(f) = f . Finally, for such a homomorphism
f : A ! A0, if (a1; : : : ; an) 2 W (A)� then A�(a1; : : : ; an) = true, so A0�(f(a1); : : : ; f(an)) = true, i.e.,
(f(a1); : : : ; f(an)) 2W (A0)�. 2

Theorem 84: Given a hidden signature (�;�), W�;� has an inverse F�;�.

Proof: For brevity, we write F instead of F�;�. Given a (�;�)-modelM the carriers of F (M) are the same
as those of M . The �-operation symbols are interpreted as in M and, for each � 2 �s1:::sn with mi 2 Msi ,
F (M)�(m1; : : : ;mn) = true if (m1; : : : ;mn) 2 M� and false otherwise. To show that F (M) is indeed a
hidden algebra, note that F (M)j�	[�b is the ([�b)-algebra whose carriers are the visible sorted carriers
of M ; by de�nition, this is the algebra Db.

To see that W and F are each other's inverse, please note: that neither changes the carriers or �-
interpretations of their arguments; that they alternately view symbols in � as predicate symbols and as
Boolean-valued operation symbols; and that for any (�;�)-modelM , predicate symbol � 2 �w, andm 2Mw,

m 2W (F (M))� i� F (M)�(m) = true i� m 2M� :

2

As in the above proof, we often write F�;� as just F .
We now consider Horn clause speci�cations and their models.

De�nition 85: Given a set C of (�;�)-Horn clauses, let HModD�;�;	;�;C denote the full subcategory of

HModD�;�;	;� whose objects behaviorally satisfy each clause in C. We shall often write this as HMod�;�;C
and call its objects (�;�;	;�; C)-models or just (�;�; C)-models if context permits. 2

27

Diaconescu [10] de�nes a translation from Horn clauses to conditional equations; we extend this to include
queries:

De�nition 86: Given a (�;�)-Horn clause e and a (�;�)-query q, de�ne �(e), a conditional (� [�b)-
equation, and �(q), a � [�b-query, as follows:

1. Every equation t1 = t2 is left untouched;

2. every atom �(t1; : : : tn) not of the above form is translated as �(t1; : : : ; tn) = true.

Also � extends in the obvious way to sets of Horn clauses. 2

Lemma 87: Given a (� [�b)-algebra A and elements a; a0 2 As for some s 2 S, we have

a �� a
0 i� a �W�;�(A) a

0.

Proof: The `if' direction is straightforward, because for any �-context c, we have W (A)c = Ac. Moreover,
any (� [�b)-context is either a �-context or of the form �(c[z]; d1; : : : ; dn), in which case, if a �W�;�(A) a

0,
then a and a0 give the same results in such contexts.

Conversely, if a �� a
0 then for any � 2 �h v1:::vn and appropriate hidden context c 2 L�[z]h

(W (A)c(a); d1; : : : ; dn) 2 W (A)� i� A�(Ac(a); d1; : : : ; dn) = true

i�, because a �� a
0,

A�(Ac(a
0); d1; : : : ; dn) = true i� (W (A)c(a

0); d1; : : : ; dn) 2W (A)� ;

and so a �W�;�(A) a
0. 2

Corollary 88: Given a (� [�b)-algebra A, for any �(X)-atom B and any � : X ! A, we have � j�X B

i� ��(t) �� �
�(t0), where �(B) = (t = t0) .

Proof: Lemma 87 proves this for the case where B is the atom (t = t0). If B is of the form �(t1; : : : ; tn), then
� j�X B i� (��(t1); : : : ; �

�(tn)) 2 W (A)� , i� A�(�
�(t1); : : : ; �

�(tn)) = true, i� ��(�(t1; : : : ; tn)) �� ��(true)
as desired. 2

Finally, we can formalize the validity of translating behavioral satisfaction of Horn clauses into behavioral
satisfaction of conditional equations:

Proposition 89: For any (� [�b)-algebra A, we have

(1) for e a (�;�)-Horn clause,

A j=Db

�[�b �(e) i� W�;�(A) j=
D
�;� e

(2) for q a (�;�)-query,

A j=Db

�[�b �(q) i� W�;�(A) j=
D
�;� q

Proof: To see (1), let e be a Horn clause of the form (8X)B if B1; : : : ; Bm, and let �(e) be (8X) t =
t0 if t1 = t01; : : : ; tm = t0m. Then A j� e is equivalent to: for every � : X ! A we have ��(t) �� ��(t0)
whenever ��(tj) �� ��(t0j) for j = 1; : : : ;m. By Corollary 88, this is equivalent to saying that for every
� : X ! A we have � j�X B whenever � j�X Bj for j = 1; : : : ;m, which is equivalent to W (A) j� e. The
proof of (2) is similar. 2

Corollary 90: (Translation) Given a (�;�)-Horn clause e and a (�;�)-query q, if M is any (�;�)-model
then

(1) M behaviorally satis�es e i� F�;�(M) behaviorally satis�es �(e), and

28

(2) M behaviorally satis�es q i� F�;�(M) behaviorally satis�es �(q).

Proof: Since these assertions have very similar proofs, we only prove (1). By Proposition 89 and the fact
that F�;� is a left inverse for W�;�, we have

M j=D e i� W�;�(F�;�(M)) j� e i� F�;�(M) j� �(e) .

2

Proposition 89 and the above corollary imply that we can check whether a model behaviorally satis�es
a Horn clause by testing whether an algebra behaviorally satis�es a conditional equation. We now examine
initial and �nal models of Horn clause speci�cations.

De�nition 91: A set C of (�;�)-Horn clauses is lexic i� �(C) is lexic. 2

Using this, we can extend Theorem 69 to obtain a hidden Herbrand theorem for hidden sorted Horn
clause logic with equality:

Theorem 92: (Hidden Herbrand Theorem) Given a consistent lexic set C of (�;�)-Horn clauses, then
IP j� �(q) i� M j� q for every model M in HMod�;�;C , where P = (� [�b; �(C)).

Proof: By Theorem 69, IP j� �(q) i� every P -algebra behaviorally satis�es �(q); by Corollary 90, this in
turn is equivalent to saying that q is behaviorally satis�ed by every C-model M . 2

In fact, all of the results of the previous section can be pushed through the equivalence between hidden
equational algebras and hidden �rst order models, in the same way as the above Herbrand theorem. For
example, narrowing for �rst order speci�cations is justi�ed by Theorem 71 to give

Theorem 93: Let q be a (�;�)-query such that �(q) is of the form (9X) t1 = t01; : : : ; tm = t0m. For a set
C of (�;�)-Horn clauses, and assignment � : X ! T�, if �(C) j= (8;) ��(c[ti]) = ��(c[t0i]) for all appropriate
c and for i = 1; : : : ;m, then q is behaviorally satis�ed by every hidden (�;�; C)-model. 2

Example 94: To illustrate this result, we add a relation, ascending, to the STACK theory of Example 13,
de�ned by two axioms, using a notation like that of Eqlog [34, 11],

rel ascending : Stack .

var N : Nat .

var S : Stack .

ax ascending(empty) .

ax ascending(push(N,S)) if N > top(S), ascending(S) .

where _>_ : Nat Nat is a built in predicate symbol. To make things more interesting, let us also add a new
attribute height, de�ned as follows,

op height : Stack -> Nat .

var N : Nat .

var S : Stack .

eq height(empty) = 0 .

eq height(push(N,S)) = 1 + height(S) .

giving a Horn clause speci�cation STACKA. Translating to a strictly equational form would mean replacing
the de�nition of ascending with

op ascending : Stack -> Bool .

var N : Nat .

var S : Stack .

eq ascending(empty) = true .

eq ascending(push(N,S)) = true if N > top(S) = true, ascending(S) = true .

29

to give us an equational speci�cation STACKE (the de�nition of height is already equational and so remains
the same). We assume that the sort Bool is a visible sort with constants true and false; note that we have
translated the predicate _>_ into a function symbol _>_ : Nat Nat -> Bool.

Now suppose we want to know whether

(9 S : Stack) ascending(S), height(S) = 4

is behaviorally satis�ed by all models of STACKM. By Theorem 93, we can try to do this using equational
techniques on the speci�cation STACKE. For example, narrowing reduces the goal ascending(S) = true to

N > top(S') = true, ascending(S') = true

with S = push(N,S'); thus height(S) = 4 reduces to 1 + height(S') = 4. Iterating this by means of
backtracking amongst the equations and narrowing, we reach a solution (among many others),

S = push(4,push(3,push(2,push(1,empty)))),

and Theorem 93 shows that this is a solution for all STACKA-models. 2

7 Conclusions

This paper lays foundations for a novel programming paradigm combining the advantages of the logic, object,
and functional paradigms. The Herbrand theorems are our main results, but the hidden model theory in
Sections 3 and 4 further develops the research programme of [31], and the coinductive proof technique of
Section 4 is useful in hidden algebra and related coalgebraic approaches [56, 42, 46, 8]. The consistency
results in Section 3.3.1 are novel and useful.

The hidden approach di�ers from classical algebraic approaches in using behavioral satisfaction except for
a �xed interpretation of visible sorts. This loose semantics allows hidden algebra to capture nondeterminism
by underspeci�cation [31]. Hidden algebra di�ers from Diaconescu's categorical approach to the constraint
paradigm [11, 12], which has loose ordinary satisfaction even for its built in data types.

We have shown that a hidden theory has initial and �nal models i� it is consistent and lexic. The
�nal model consists of abstract behaviors, and an equation is behaviorally satis�ed by all models i� it is
behaviorally satis�ed by the �nal model. Dually, the initial, term-based model behaviorally satis�es an
existential query i� all models behaviorally satisfy it. This gives rise to the two Herbrand theorems, for
hidden equational logic and hidden Horn clause logic, which allow solutions to be constructed in initial term
algebras. There is no completeness result for hidden algebra [5]; intuitively, solving constraints in hidden
speci�cations can be arbitrarily complex; however, coinduction techniques can considerably simplify proofs,
and often (e.g., in the FLAG example) reduce behavioral satisfaction to standard satisfaction. Such techniques
have been implemented in the CafeOBJ [14, 13] algebraic speci�cation language, and the more recent BOBJ
[25] language and system implements some even more advanced techniques.

A useful direction for future research is to extend our results to include the kind of subtyping given
by order sorted algebra [37]. Burstall and Diaconescu [4] have extended the hiding process to many other
institutions, and in particular, to order sorted algebra (in the sense of [37, 23]). Malcolm and Goguen [48]
show that hidden order sorted logic forms an institution, using a construction that di�ers from Burstall and
Diaconescu's in its treatment of error-handling; yet another treatment of ordered sorts in hidden algebra
preserves the relationship between hidden algebra and coalgebra [6]. The relationships between these di�erent
extensions of hidden algebra need further study.

References

[1] Krzystof Apt. From Logic Programming to Prolog. Prentice-Hall, 1997.

[2] Michael Barr and Charles Wells. Category Theory for Computing Science. Prentice-Hall, 1990.

30

[3] Garrett Birkho�. On the structure of abstract algebras. Proceedings of the Cambridge Philosophical
Society, 31:433{454, 1935.

[4] Rod Burstall and R�azvan Diaconescu. Hiding and behaviour: an institutional approach. In An-
drew William Roscoe, editor, A Classical Mind: Essays in Honour of C.A.R. Hoare, pages 75{92.
Prentice-Hall, 1994.

[5] Samuel Buss and Grigore Ro�su. Incompleteness of behavioral logics. In Horst Reichel, editor, Proceed-
ings, Coalgebraic Methods in Computer Science (CMCS'00), volume 33 of Electronic Notes in Theoretical
Computer Science, pages 61{79. Elsevier Science, March 2000.

[6] Corina C�̂rstea, Grant Malcolm, and James Worrell. Hidden order sorted algebra: subtypes for objects,
1999. Draft, Department of Computer Science, University of Liverpool.

[7] Paul M. Cohn. Universal Algebra. Harper and Row, 1965. Revised edition 1980.

[8] Corina C�̂rstea. Coalgebra semantics for hidden algebra: parameterized objects and inheritance. In
Francisco Parisi-Presicce, editor, 12th Workshop on Algebraic Development Techniques, pages 174{189.
Springer, 1998. Lecture Notes in Computer Science, Volume 1376.

[9] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewriting systems. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science, Volume B: Formal Methods and Semantics, pages 243{320.
North-Holland, 1990.

[10] R�azvan Diaconescu. The logic of Horn clauses is equational. Technical Report PRG{TR{3{93, Pro-
gramming Research Group, University of Oxford, 1993. Written 1990.

[11] R�azvan Diaconescu. Category-based Semantics for Equational and Constraint Logic Programming. PhD
thesis, Programming Research Group, Oxford University, 1994.

[12] R�azvan Diaconescu. A category-based equational logic semantics to constraint programming. In Magne
Haveraaen, Olaf Owe, and Ole-Johan Dahl, editors, Recent Trends in Data Type Speci�cation, pages
200{222. Springer, 1996. Lecture Notes in Computer Science, Volume 389.

[13] R�azvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report: The Language, Proof Techniques, and
Methodologies for Object-Oriented Algebraic Speci�cation. World Scienti�c, 1998. AMAST Series in
Computing, Volume 6.

[14] R�azvan Diaconescu and Kokichi Futatsugi. Logical semantics for CafeOBJ. In Precise Semantics for
Software Modelling Techniques, pages 31{54. Technical University of M�unchen, 1998. Report TUM{
19803, Proceedings of an ICSE'98 workshop (Kyoto, Japan).

[15] R�azvan Diaconescu and Kokichi Futatsugi. Behavioural coherence in object-oriented algebraic speci�ca-
tion. Journal of Universal Computer Science, 6(1):74{96, 2000. Also technical report IS{RR{98{0017F,
Japan Advanced Institute for Science and Technology, June 1998.

[16] Marie-Claude Gaudel and Igor Privara. Context induction: an exercise. Technical Report 687, LRI,
Universit�e de Paris-Sud, 1991.

[17] Joseph Goguen. Principles of parameterized programming. In Ted Biggersta� and Alan Perlis, editors,
Software Reusability, Volume I: Concepts and Models, pages 159{225. Addison Wesley, 1989.

[18] Joseph Goguen. Hyperprogramming: A formal approach to software environments. In Proceedings,
Symposium on Formal Approaches to Software Environment Technology. Joint System Development
Corporation, Tokyo, Japan, January 1990.

[19] Joseph Goguen. Types as theories. In George Michael Reed, Andrew William Roscoe, and Ralph F.
Wachter, editors, Topology and Category Theory in Computer Science, pages 357{390. Oxford, 1991.
Proceedings of a Conference held at Oxford, June 1989.

31

[20] Joseph Goguen. An approach to situated adaptive software. In Proceedings, International Workshop
on New Models of Software Architecture, pages 7{20. NEDO, 1993. (Kanazawa, Japan).

[21] Joseph Goguen. Theorem Proving and Algebra. MIT, to appear.

[22] Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for speci�cation and program-
ming. Journal of the Association for Computing Machinery, 39(1):95{146, January 1992.

[23] Joseph Goguen and R�azvan Diaconescu. An Oxford survey of order sorted algebra. Mathematical
Structures in Computer Science, 4:363{392, 1994.

[24] Joseph Goguen and R�azvan Diaconescu. Towards an algebraic semantics for the object paradigm. In
Hartmut Ehrig and Fernando Orejas, editors, Proceedings, Tenth Workshop on Abstract Data Types,
pages 1{29. Springer, 1994. Lecture Notes in Computer Science, Volume 785.

[25] Joseph Goguen, Kai Lin, and Grigore Ro�su. Circular coinductive rewriting. In Proceedings, Automated
Software Engineering '00, pages 123{131. IEEE, 2000. (Grenoble, France).

[26] Joseph Goguen and Grant Malcolm. Proof of correctness of object representation. In Andrew William
Roscoe, editor, A Classical Mind: Essays in Honour of C.A.R. Hoare, pages 119{142. Prentice-Hall,
1994.

[27] Joseph Goguen and Grant Malcolm. Situated adaptive software: beyond the object paradigm. In Pro-
ceedings, International Symposium on New Models of Software Architecture, pages 126{142. Information-
Technology Promotion Agency, 1995. (Tokyo, Japan).

[28] Joseph Goguen and Grant Malcolm. Algebraic Semantics of Imperative Programs. MIT Press, 1996.

[29] Joseph Goguen and Grant Malcolm. Hidden coinduction: Behavioral correctness proofs for objects.
Mathematical Structures in Computer Science, 9(3):287{319, June 1999.

[30] Joseph Goguen and Grant Malcolm, editors. Software Engineering with OBJ: Algebraic Speci�cation in
Action. Kluwer, 2000.

[31] Joseph Goguen and Grant Malcolm. A hidden agenda. Theoretical Computer Science, 245(1):55{101,
August 2000. Also UCSD Dept. Computer Science & Eng. Technical Report CS97{538, May 1997.

[32] Joseph Goguen, Grant Malcolm, and Tom Kemp. A hidden Herbrand theorem: Combining the object,
logic and functional paradigms. In Catuscia Palamidessi, Hugh Glaser, and Karl Meinke, editors,
Principles of Declarative Programming, pages 445{462. Springer Lecture Notes in Computer Science,
Volume 1490, 1998.

[33] Joseph Goguen and Jos�e Meseguer. Universal realization, persistent interconnection and implementation
of abstract modules. In M. Nielsen and E.M. Schmidt, editors, Proceedings, 9th International Conference
on Automata, Languages and Programming, pages 265{281. Springer, 1982. Lecture Notes in Computer
Science, Volume 140.

[34] Joseph Goguen and Jos�e Meseguer. Eqlog: Equality, types, and generic modules for logic programming.
In Douglas DeGroot and Gary Lindstrom, editors, Logic Programming: Functions, Relations and Equa-
tions, pages 295{363. Prentice-Hall, 1986. An earlier version appears in Journal of Logic Programming,
Volume 1, Number 2, pages 179{210, September 1984.

[35] Joseph Goguen and Jos�e Meseguer. Models and equality for logical programming. In Hartmut Ehrig,
Giorgio Levi, Robert Kowalski, and Ugo Montanari, editors, Proceedings, 1987 TAPSOFT, pages 1{22.
Springer, 1987. Lecture Notes in Computer Science, Volume 250.

[36] Joseph Goguen and Jos�e Meseguer. Unifying functional, object-oriented and relational programming,
with logical semantics. In Bruce Shriver and Peter Wegner, editors, Research Directions in Object-
Oriented Programming, pages 417{477. MIT, 1987.

32

[37] Joseph Goguen and Jos�e Meseguer. Order-sorted algebra I: Equational deduction for multiple inheri-
tance, overloading, exceptions and partial operations. Theoretical Computer Science, 105(2):217{273,
1992. Drafts exist from as early as 1985.

[38] Joseph Goguen and Grigore Ro�su. Hiding more of hidden algebra. In Jeannette Wing, Jim Woodcock,
and Jim Davies, editors, FM'99 { Formal Methods, pages 1704{1719. Springer, 1999. Lecture Notes
in Computer Sciences, Volume 1709, Proceedings of World Congress on Formal Methods, Toulouse,
France.

[39] Joseph Goguen, James Thatcher, and Eric Wagner. An initial algebra approach to the speci�cation,
correctness and implementation of abstract data types. In Raymond Yeh, editor, Current Trends in
Programming Methodology, IV, pages 80{149. Prentice-Hall, 1978.

[40] Joseph Goguen, Timothy Winkler, Jos�e Meseguer, Kokichi Futatsugi, and Jean-Pierre Jouannaud.
Introducing OBJ. In Joseph Goguen and Grant Malcolm, editors, Software Engineering with OBJ:
Algebraic Speci�cation in Action, pages 3{167. Kluwer, 2000. Also Technical Report SRI-CSL-88-9,
August 1988, SRI International.

[41] Jacques Herbrand. Recherches sur la th�eorie de la d�emonstration. Travaux de la Soci�et�e des Sciences
et des Lettres de Varsovie, Classe III, 33(128), 1930.

[42] Bart Jacobs. Inheritance and cofree constructions. In Pierre Cointe, editor, European Conference on
Object-Oriented Programming, pages 210{231. Springer, 1996. Lecture Notes in Computer Science,
Volume 1098.

[43] Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1971.

[44] John Wilcox Lloyd. Foundations of Logic Programming. Springer, 1987. Second edition.

[45] Anatoly Ivanovich Malcev. Algebraic Systems. Springer, 1973.

[46] Grant Malcolm. Behavioural equivalence, bisimilarity, and minimal realisation. In Magne Haveraaen,
Olaf Owe, and Ole-Johan Dahl, editors, Recent Trends in Data Type Speci�cations: 11th Workshop
on Speci�cation of Abstract Data Types, pages 359{378. Springer Lecture Notes in Computer Science,
Volume 1130, 1996. (Oslo Norway, September 1995).

[47] Grant Malcolm. Interconnection of object speci�cations. In Stephen Goldsack and Stuart Kent, editors,
Formal Methods and Object Technology, pages 359{378. Springer, 1996. Workshops in Computing.

[48] Grant Malcolm and Joseph Goguen. Proving correctness of re�nement and implementation. Technical
Report Technical Monograph PRG{114, Programming Research Group, University of Oxford, 1994.

[49] Karl Meinke and John V. Tucker. Universal algebra. In Handbook of Logic in Computer Science, Volume
1. Oxford, 1993.

[50] Jos�e Meseguer and Joseph Goguen. Initiality, induction and computability. In Maurice Nivat and John
Reynolds, editors, Algebraic Methods in Semantics, pages 459{541. Cambridge, 1985.

[51] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, 1988.

[52] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, Parts I and II.
Technical Report ECS-LFCS-89-85 and -86, Computer Science Department, University of Edinburgh,
1989.

[53] Robin Milner and Mads Tofte. Co-induction in relational semantics. Theoretical Computer Science,
87(1):209{220, 1991.

[54] Horst Reichel. Behavioural equivalence { a unifying concept for initial and �nal speci�cations. In
Proceedings, Third Hungarian Computer Science Conference. Akademiai Kiado, 1981. Budapest.

33

[55] Horst Reichel. Behavioural validity of conditional equations in abstract data types. In Contributions to
General Algebra 3. Teubner, 1985. Proceedings of the Vienna Conference, June 21-24, 1984.

[56] Horst Reichel. An approach to object semantics based on terminal co-algebras. Mathematical Structures
in Computer Science, 5:129{152, 1995.

[57] Grigore Ro�su. Behavioral coinductive rewriting. In Kokichi Futatsugi, Joseph Goguen, and Jos�e
Meseguer, editors, OBJ/CafeOBJ/Maude at Formal Methods '99, pages 179{196. Theta (Bucharest),
1999. Proceedings of a workshop in Toulouse, 20 and 22 September 1999.

[58] Grigore Ro�su and Joseph Goguen. Hidden congruent deduction. In Ricardo Caferra and Gernot Salzer,
editors, Automated Deduction in Classical and Non-Classical Logics, pages 252{267. Springer, 2000.
Lecture Notes in Arti�cial Intelligence, Volume 1761; papers from a conference held in Vienna, November
1998.

[59] Wolfgang Wechler. Universal Algebra for Computer Scientists. Springer, 1992. EATCS Monographs on
Theoretical Computer Science, volume 25.

34

