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Motivation and History of Proof Scores

Although a success of model checking has improved technologies for system verifica-
tion, they are still limited only to system models which can be translated to finite
transition systems. On the other hand it seems that fully automatic theorem provers
will be unable to do really difficult proofs in the near future (if ever). Given this sit-
uation, we believe that successful use of current technologies requires a careful blend
of user and machine capabilities, and of rigor and intuition, to make optimal use of
the respective abilities of humans and computers, with computers doing the tedious
formal calculations, and humans doing the high level planning. This principle is also
supported by the observation that fully automated proofs are not necessary good for
empowering human beings to perceive the logical structure in the reality which has
vital importance in designing truly reliable systems.

The dominant modern logical system is first order predicate logic, but advances in
computer science have spawned a huge array of new logics, e.g., for database systems,
knowledge representation, and the semantic web; these include variants of propositional
logic, modal logic, intuitionistic logic, higher order logic, and equational logic, among
many others. For maximum flexibility, users should be able to choose whatever logical
system they need for their proof, and a mechanical theorem prover should provide
a basic engine for applying rules of inference by term rewriting. In this way, a wide
variety of logical systems can be implemented by supplying appropriate definitions to
the rewrite engine. For example, [1] use UNITY(2] as a logical basis for verifying real
time concurrent systems using CafeOBJ system[3].

This approach requires the user to construct proof scores, which are instructions
such that when executed (or ”"played”), if everything evaluates as expected, then the
desired theorem is proved. A proof score is executed by applying proof measures, which
progressively transform formulae in a language of goals into expressions which can be
directly executed.

It is particularly convenient to implement this approach using language that sup-
port equational specification and term rewriting. CafeOBJ[3,4] and Maude[5] are the
major languages of such kind with usable implementations. In addition, the advanced
module facilities provided in these languages which are inherited from OBJ language
can be used to express the structure of proofs.

Writing proof scores in algebraic specification languages has been promoted by re-
searchers of the OBJ family of languages|6, 7]. The proof score approach was influenced



by the theory of institutions[8], and although its motivation resembles that the Edin-
burgh Logical Framework[9] and Paulson’s Isabelle system[10] in avoiding commitment
to any particular logical system, it differs significantly in its use of equational logic and
term rewriting as basis. Maude can be used as a meta-tool for theorem proving in a
variety of logical systems, but differs in relying on rewriting logic.

Proof Scores in CafeOBJ

CafeOBJ is a general formal specification language with reduction and resolution en-
gines, and can be used at least in the following three ways:

1 Write a formal specification and simulate or test the behaviors of the system spec-
ified by ”executing” the specification using the reduction engine.

2 Write a formal specification and accompanying proof score for verifying the prop-
erties of the system by using only the reduction engine.

3 Write a formal specification and accompanying proof score for verifying the prop-
erties of the system by using both of reduction and resolution engines.

We concentrate on the approach 2 here. There are several reasons for this:

a This approach can provide an appropriate ”blend of user and machine capabilities,
and of rigor and intuition” which is mentioned above.

b Proof score execution only using reduction/term-rewriting can encourage trans-
parent proof structures, and this support modular and readable proof scores. This
feature is important because we want to use proof scores as effective documents
which should be attached to important requirement/design specifications.

¢ Generally, executions of proof score with reduction engine are sufficiently efficient
and support prompt interactions between users and systems.

The approach 3 sounds attractive but we still do not have enough experiences
on this; one important achievement is doing (infinite state) software model checking
by calculating fixpoint using the resolution engine[11]. In the context of verification
with proof score, the resulution engine can be expected to suport limited systematic
applications of backward rules (applications of equations from right to left).

In the course of research and development of CafeOBJ language and sytem, we
have developed through several case studies a technique to write proof scores showing
that a transition system have an invariant property (the property which holds for any
reachable state).

Several important techniques are developed for writing proof scores in CafeOBJ.
One important technique is for modular verification of the invariant property. This
technique makes it possible to divide a formula stating an invariant property under
discussion into reasonably small ones, and each of which is proved by writing and
executing proof scores individually. This relieves the load to reduce logical formulas
and can decrease the number of subcases into which the case is split in case analysis.

These techniques are successfully applied to modeling, specification and verification
of distributed systems such as distributed mutual exclusion algorithms[12] and security
protocols[13]. We named this method the OTS/CafeOBJ method. In OTS/CafeOBJ
method, systems are modeled as Observational Transition Systems, or OTSs, which
are described in CafeOBJ.

An OTS (observational transition system) is a transition system formulated as a
set of operations of following two kinds:



— observations which model the observable values of a system; a state of the system

can be identified as a set of values returned by the observations.

— actions which model the system’s state changes; a state change modeled by an

action act is formulated as the changes of values returned by the observations and
is described by equations which defined the values after the action act based on
the values before the action.

CafeOBJ description of OTSs can be regarded as restricted coherent hidden alge-

bra[14]. We can verify that OTSs, which are models of systems, have properties by
writing proof scores in CafeOBJ.
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