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Abstract. This paper builds on the theory of institutions, a version of abstract
model theory that emerged in computer science studies of software specifica-
tion and semantics. To handle proof theory, our institutions use an extension
of traditional categorical logic with sets of sentences as objects instead of sin-
gle sentences, and with morphisms representing proofs as usual. A natural
equivalence relation on institutions is defined such that its equivalence classes
are logics. Several invariants are defined for this equivalence, including a Lin-
denbaum algebra construction, its generalization to a Lindenbaum category
construction that includes proofs, and model cardinality spectra; these are
used in some examples to show logics inequivalent. Generalizations of famil-
iar results from first order to arbitrary logics are also discussed, including
Craig interpolation and Beth definability.

1. Introduction

Logic is often informally described as the study of sound reasoning. As such, it
plays a crucial role in several areas of mathematics (especially foundations) and
of computer science (especially formal methods), as well as in other fields, such as
analytic philosophy and formal linguistics. In an enormous development beginning
in the late 19'" century, it has been found that a wide variety of different princi-
ples are needed for sound reasoning in different domains, and “a logic” has come
to mean a set of principles for some form of sound reasoning. But in a subject
the essence of which is formalization, it is embarrassing that there is no widely
acceptable formal definition of “a logic”. It is clear that two key problems here are
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to define what it means for two presentations of a logic to be equivalent, and to
provide effective means to demonstrate equivalence and inequivalence.

This paper addresses these problems using the notion of “institution”, which
arose within computer science in response to the population explosion among the
logics in use there, with the ambition of doing as much as possible at a level of
abstraction independent of commitment to any particular logic [17, 31, 19]. The
soundness aspect of sound reasoning is addressed by axiomatizing the notion of
satisfaction, and the reasoning aspect is addressed by calling on categorical logic,
which applies category theory to proof theory by viewing proofs as morphisms.
Thus, institutions provide a balanced approach, in which both syntax and se-
mantics play key roles. However, much of the institutional literature considers
sentences without proofs and models without (homo)morphisms, and a great deal
can be done just with satisfaction, such as giving general foundations for modu-
larization of specifications and programs, which in turn has inspired aspects of the
module systems of programming languages including C++, ML, and Ada.

Richer variants of the institution notion consider entailment relations on sen-
tences and/or morphisms of models, so that they form categories; using proof
terms as sentence morphisms provides a richer variant which fully supports proof
theory. We call these the set/set, set/cat, cat/set, and cat/cat variants (where the
first term refers to sentences, and the second to models); the table in Thm. 5.20
summarizes many of their properties. See [19] for a general treatment of the vari-
ant notions of institution, and [33, 35, 11, 12, 14] for some non-trivial results in
abstract model theory done institutionally.

This paper adds to the literature on institutions a notion of equivalence,
such that a logic is an equivalence class of institutions. To support this thesis,
we consider a number of logical properties, model and proof theoretical, that are,
and that are not, preserved under equivalence, and apply them to a number of
examples. Perhaps the most interesting invariants are versions of the Lindenbaum
algebra; some others concern cardinality of models. We also develop a normal
form for institutions under our notion of equivalence, by extending the categorical
notion of “skeleton”.

We extend the Lindenbaum algebra construction to a Lindenbaum category
construction, defined on any institution with proofs, by identifying not only equiv-
alent sentences, but also equivalent proofs. We show that this construction is an
invariant, i.e., preserved up to isomorphism by our equivalence on institutions.
This construction extends the usual approach of categorical logic by having sets
of sentences as objects, rather than just single sentences, and thus allows treating
a much larger class of logics in a uniform way.

A perhaps unfamiliar feature of institutions is that satisfaction is not a dyadic
relation, but rather a relation among sentence, model, and “signature”, where sig-
natures form a category the objects of which are thought of as vocabularies over
which the sentences are constructed. In concrete cases, these may be propositional
variables, relation symbols, function symbols, and so on. Since these form a cat-
egory, it is natural that the constructions of sentences (or formulae) and models
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appear as functors on this category, and it is also natural to have an axiom ex-
pressing the invariance of “truth” (i.e., satisfaction) under change of notation. See
Def. 2.1 below. When the vocabulary is fixed, the category of signatures is the
one object category 1. (Another device can be used to eliminate models, giving
pure proof theory as a special case, if desired.) If o: ¥ — ¥/ is an inclusion of
signatures, then its application to models (via the model functor) is “reduct.” The
institutional triadic satisfaction can be motivated philosophically by arguments
like those given by Peirce [27] for his “interpretants,” which allow for context de-
pendency of denotation in his semiotics, as opposed to Tarski’s dyadic satisfaction.
We also use this feature to resolve a problem about cardinality raised in [3]; see
Example 2.2.

2. Institutions and Logics

We assume the reader is familiar with basic notions from category theory; e.g.,
see [1, 23] for introductions to this subject. By way of notation, |C| denotes the
class of objects of a category C, and composition is denoted by “o”. Categories are
assumed by convention to be locally small (i.e., to have a small set of morphisms
between any two objects) unless stated otherwise. The basic concept of this paper
in its set/cat variant is as follows!:

Definition 2.1.  An institution T = (Sign®,Sen”, Mod”, =7) consists of

1. a category S@gnz, whose objects are called signatures,

2. a functor Sen” : Sign? — Set, giving for each signature a set whose elements
are called sentences over that signature,

3. a functor Mod? : (Sign®)°P — CAT giving for each signature ¥ a category
whose objects are called X-models, and whose arrows are called X-(model)
morphisms? and

4. a relation =L C [Mod® ()| x Sen®(¥) for each ¥ € [Sign?|, called %-satis-
faction,

such that for each morphism o : ¥ — %/ in Sign?, the satisfaction condition
M’ =L, Sen ()(p) iff Mod” (0)(M') EL ¢

holds for each M’ € |Mod®(¥/)| and ¢ € Sen”(%). We denote the reduct functor
Mod® (o) by _[, and the sentence translation Sen”(s) by o(_). When M = M'[,
we say that M’ is a o-expansion of M.

LA more concrete definition is given in [20], which avoids category theory by spelling out the
conditions for functoriality, and assuming a set theoretic construction for signatures. Though
less general, this definition is sufficient for everything in this paper; however, it would greatly
complicate our exposition. Our use of category theory is modest, oriented towards providing easy
proofs for very general results, which is precisely what is needed for the goals of this paper.
2CAT is the category of all categories; strictly speaking, it is only a quasi-category living in a
higher set-theoretic universe. See [23] for a discussion of foundations.
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A set/set institution is an institution where each model category is discrete;
this means that the model functor actually becomes a functor Mod” : (Sign®)°P —
Class into the quasi-category of classes and functions.

General assumption: We assume that all institutions are such that satisfaction is
invariant under model isomorphism, i.e. if ¥-models M, M’ are isomorphic, then
M 5 ¢ ifft M’ 5 ¢ for all E-sentences . O

We now consider classical propositional logic, perhaps the simplest non-trivial
example (see the extensive discussion in [3]), and also introduce some concepts from
the theory of institutions:

Example 2.2. Fix a countably infinite? set X of variable symbols, and let Sign be
the category with finite subsets X of X" as objects, and with inclusions as morphisms
(or all set maps, if preferred, it matters little). Let Mod(X) have [¥ — {0, 1}]
(the set of functions from ¥ to {0,1}) as its set of objects; these models are
the row labels of truth tables. Let a (unique) Y-model morphism h: M — M’
exist iff for all p € ¥, M(p) = 1 implies M'(p) = 1. Let Mod(¥' — X) be the
restriction map [¥ — {0,1}] — [¥’ — {0,1}]. Let Sen(X) be the (absolutely)
free algebra generated by ¥ over the propositional connectives (we soon consider
different choices), with Sen(¥ < ¥') the evident inclusion. Finally, let M 5 ¢
mean that ¢ evaluates to true (i.e., 1) under the assignment M. It is easy to
verify the satisfaction condition, and to see that ¢ is a tautology iff M 5 ¢ for
all M € |[Mod(X)|. Let CPL denote this institution of propositional logic, with
the connectives conjunction, disjunction, negation, implication, true and false. Let
CPL™"f4¢ denote propositional logic with negation, conjunction and false, and
CPL ™" with propositional logic negation, disjunction and true?.

This arrangement puts truth tables on the side of semantics, and formulas on
the side of syntax, each where it belongs, instead of trying to treat them the same
way. It also solves the problem raised in [3] that the cardinality of £(X) varies
with that of X, where £(X) is the quotient of Sen(X) by the semantic equivalence
|y, defined by ¢ |y, ¢ iff (M s ¢ iff M =5 ¢/, for all M € [Mod(X)]); it
is the Lindenbaum algebra, in this case, the free Boolean algebra over ¥, and its
cardinality is 22" where n is the cardinality of 3. Hence this cardinality cannot
be considered an invariant of CPL without the parameterization by 3 (see also
Def. 4.13 below). O

The moral of the above example is that everything should be parameterized by
signature. Although the construction of the underlying set of the Lindenbaum
algebra above works for any institution, its algebraic structure depends on how
sentences are defined. However, Section 4 shows how to obtain at least part of this
structure for any institution.

Example 2.3. The institution FOLR of unsorted first-order logic with relations
has signatures ¥ that are families 3,, of sets of relation symbols of arity n € IV,

3The definition also works for finite or uncountable X'
4The truth constant avoids the empty signature having no sentences at all.
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and FOLR signature morphisms o: ¥ — ¥’ that are families 0,,: X, — X! of
arity-preserving functions on relation symbols. An FOLR X-sentence is a closed
first-order formula using relation symbols in ¥, and sentence translation is relation
symbol substitution. A FOLR X-model is a set M and a subset Ry € M™ for
each R € X,,. Model translation is reduct with relation translation. A Y-model
morphism is a function h: M — M’ such that h(Rp;) C Ry for all R in X.
Satisfaction is as usual. The institution FOL adds function symbols to FOLR in
the usual way, and MSFOL is its many sorted variant. O

Example 2.4. In the institution EQ of many sorted equational logic, a signature
consists of a set of sorts with a set of function symbols, each with a string of
argument sorts and a result sort. Signature morphisms map sorts and function
symbols in a compatible way. Models are many sorted algebras, i.e., each sort is
interpreted as a carrier set, and each function symbol names a function among
carrier sets specified by its argument and result sorts. Model translation is reduct,
sentences are universally quantified equations between terms of the same sort, sen-
tence translation replaces translated symbols (assuming that variables of distinct
sorts never coincide in an equation), and satisfaction is the usual satisfaction of
an equation in an algebra. ]

Example 2.5. K is propositional modal logic plus O and <. Its models are Kripke
structures, and satisfaction is defined using possible-world semantics in the usual
way. IPL is intuitionistic propositional logic, differing from CPL in having Kripke
structures as models, and possible-world satisfaction. The proof theory of IPL
(which is favored over the model theory by intuitionists) is discussed in Section 5.

O

Both intuitionistic and modal logic in their first-order variants, with both con-
stant and varying domains, form institutions, as do other modal logics restricting
K by further axioms, such as S4 or S5, as well as substructural logics, like linear
logic, where judgements of the form ¢j ... ¢, b 1 are sentences. Higher-order [7],
polymorphic [32], temporal [16], process [16], behavioural [4], coalgebraic [9] and
object-oriented [18] logics also form institutions. Many familiar basic concepts can
be defined over any institution:

Definition 2.6.  Given a set of X-sentences I' and a X-sentence ¢, then ¢ is
a semantic consequence of I'; written I' =5 ¢ iff for all ¥-models M, we have
M s T implies M =5 ¢, where M s T’ means M =y ¢ for each ¢ € T.
Two sentences are semantically equivalent, written @1 |=| @9, if they are satisfied
by the same models. Two models are elementary equivalent, written M; = Mo,
if they satisfy the same sentences. An institution is compact iff I' 5 ¢ implies
IV 5 ¢ for some finite subset IV of T'. A theory is a pair (X,T') where T is a set
of Y-sentences, and is consistent iff it has at least one model. [l

Cardinality properties associate cardinalities to objects in a category. It is
natural to do this using concrete categories [1], which have a faithful forgetful or
carrier functor to Set. Since we also treat many sorted logics, we generalize from
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Set to categories of many sorted sets Set”, where the sets S range over sort sets
of an institution’s signatures. The following enriches institutions with carrier sets
for models [5]:

Definition 2.7. A concrete institution is an institution Z together with a functor
sortsT . Sign? — Set and a natural transformation |_|Z : Mod? — Set(sorts")? ()
between functors from Sign°? to CAT such that for each signature X, the carrier
functor | & : Mod® (%) — Setsorts™(¥) ig faithful (that is, Mod®(X) is a concrete
category, with carrier functors |_|% : Mod?(Z) — Set#orts” () patural in Y). Here,
Set(s0rts")" () gtands for the functor that maps each signature ¥ € |SignZ| to
the category of sorts?(X)-sorted sets. A concrete institution has the finite model
property if each satisfiable theory has a finite model (i.e., a model M with the
carrier |M| being a family of finite sets). A concrete institution admits free models
if all carrier functors for model categories have left adjoints. O

The following notion from [26] also provides signatures with underlying sets
of symbols, by extending sorts”; essentially all institutions that arise in practice
have this structure:

Definition 2.8. A concrete institution with symbols is a concrete institution Z to-
gether with a faithful functor Symb® : SignZ — Set that naturally extends sortsZ,
that is, such that for each signature X, sorts’ (X) C Symb* (%), and for each ¢ in
Sign®, Symb* (o) extends sorts”(c). A concrete institution with symbols admits
free models if all the forgetful functors for model categories have left adjoints. [

3. Equivalence of Institutions

Relationships between institutions are captured mathematically by ‘institution
morphisms’, of which there are several variants, each yielding a category under a
canonical composition. For the purposes of this paper, institution comorphisms [19]
are technically more convenient, though the definition of institution equivalence
below is independent of this choice. The original notion, from [17] in the set/cat
form, works well for ‘forgetful’ morphisms from one institution to another having
less structure:

Definition 3.1. Given institutions Z and 7, then an institution morphism (®, a, ) :
7 — J consists of

1. a functor ® : Sign? — Sign?,
2. a natural transformation o : Sen? o ® = Sen”, and
3. a natural transformation 3 : Mod? = Mod” o ®°P

such that the following satisfaction condition holds
M 5 as(p) iff Be(M) Egm) ¢
for each signature ¥ € [Sign?|, each ¥-model M and each ®(¥)-sentence ¢. [0

Institution morphisms form a category Ins under the natural composition.
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Definition 3.2.  Given institutions Z and J, then an institution comorphism
(®,,8): T— J counsists of

e a functor ®: Sign? — Sign7,

e a natural transformation o : Sen” = Sen” o @,

e a natural transformation 8 : Mod” o P = Mod”
such that the following satisfaction condition is satisfied for all X € [SignZ|, M’ €
IMod” (®(%))] and ¢ € Sen” (%):

M ':g(z;) 042(4,0) iff BZ(M/) ':é P -

With the natural compositions and identities, this gives a category Colns of in-
stitutions and institution comorphisms.

A set/set institution comorphism is like a set/cat comorphism, except that
B is just a function on the objects of model categories; the model morphisms are
ignored.

Given concrete institutions Z, 7, then a concrete comorphism from Z to J
is an institution comorphism (®,a,5): T — J plus a natural transformation
§: sortst = sorts? o ® and a natural in Z-signatures ¥ family of natural trans-
formations px : |Be(L)E = (|_|‘<IZ(E))[5Z between functors from Mod” (®(X)) to

sorts (X)-sorted sets, so that for each Z-signature ¥, ®(X)-model M’ in J and
sort s € sorts?(X), we have a function us a5 0 (|Bs(M')|E)s — (|M’|g(2))52(5).

Given concrete institutions with symbols Z and J, a concrete comorphism
with symbols from Z to J extends an institution comorphism (®, «, 5): Z— J by
a natural transformation & : Symb? = Symb” o ® that restricts to &' : sorts? =
sorts” o ®, and a family of functions ux : (|8s(0)|%)s — (\_|g(2))5;;(s), required to
be natural in Z-signatures X. Notice that then (®,«, 3,4, ) is a concrete comor-
phism. ([l

Fact 3.3. An institution comorphism is an isomorphism in Colns iff all its com-
ponents are isomorphisms. O

Unfortunately, institution isomorphism is too strong to capture the notion of “a
logic,” since it can fail to identify logics that differ only in irrelevant details:

Example 3.4. Let CPL’ be CPL with arbitrary finite sets as signatures. Then
CPL' has a proper class of signatures, while CPL only has countably many. Hence,
CPL and CPL’ cannot be isomorphic. |

However, CPL and CPL/’ are essentially the same logic. We now give a notion
of institution equivalence that is weaker than that of institution isomorphism, very
much in the spirit of equivalences of categories. The latter weakens isomorphism
of categories: two categories are equivalent iff they have isomorphic skeletons. A
subcategory S — C is a skeleton of C if it is full and each object of C is isomorphic
(in C) to exactly one object in S. In this case, the inclusion S < C has a left inverse
(i.e. a retraction) C — S mapping each object to the unique representative of its
isomorphism class (see [23]).
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Definition 3.5. A (set/cat) institution comorphism (®,«, 3) is a (set/cat) insti-
tution equivalence iff
e ® is an equivalences of categories,
e oy has an inverse up to semantic equivalence a%;, (i.e., ax(af(¢)) Fly ¢ and
o5 (as(v)) Elgs) ¥) which is natural in X, and
e Oy is an equivaience of categories, such that its inverse up to isomorphism
and the corresponding isomorphism natural transformations are natural in
3.
7 is equivalent to J if there is an institution equivalence from Z to J. O

This definition is very natural; it is 2-categorical equivalence in the appro-
priate 2-category of institutions [10]. The requirement for a set/set institution
comorphism to be a set/set equivalence is weaker: each Oy need only have an
inverse up to elementary equivalence [35;.

Definition 3.6. A concrete institution comorphism is a concrete equivalence if the
underlying institution comorphism is an equivalence and all d5; and ps; a5 are
bijective, for each ¥ € |Sign®|, M’ € [Mod” (®(X))| and s € sorts(%).

A concrete comorphism with symbols is a concrete equivalence with symbols
if the underlying institution comorphism is an equivalence and Jy, is bijective for
each signature X. |

Proposition 3.7. Both set/cat and set/set equivalence of institutions are equiva-
lence relations, and set/cat equivalence implies set/set equivalence. O

The following is important for studying invariance properties of institutions
under equivalence:

Lemma 3.8. If (®,«,5): T — J is a set/cat or set/set institution equivalence,
I ELZ ¢ iff axn(T) |:g(2) ax (i) for any signature ¥ in Z and I' U {¢} C Sen” (X);

also My = M, iff B (M) = fs(Ms), for any My, My € Mod” (®(X)). O

Example 3.9. CPL and CPL’ are set/cat equivalent. So are CPL™"""¢ and
CPL "¢ gignatures and models are translated identically, while sentences
are translated using de Morgan’s laws. Indeed, CPL™":"¢ and CPL™//%*¢ are
isomorphic, but the isomorphism is far more complicated than the equivalence. [

Definition 3.10. Given a set/cat institution Z, an institution J is a set/cat skeleton
of Z, if
o Sign7 is a skeleton of Sign?,
e Sen’ (%) = Sen” () /[=| for & € [Sign7| (the bijection being natural in %),
and Senj(o) is the induced mapping between the equivalence classes,
o Mod? (%) is a skeleton of Mod” (), and Mod” (o) is the restriction of Mod* (),
o« ML (o] iff M T o
Set /set skeletons are defined similarly, except that Mod () is in bijective corre-
spondence with Mod? (2)/=. O
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Theorem 3.11. Assuming the axiom of choice, every institution has a skeleton.
Every institution is equivalent to any of its skeletons. Any two skeletons of an
institution are isomorphic. Institutions are equivalent iff they have isomorphic
skeletons. (]

We have now reached a central point, where we can claim

The identity of a logic is the isomorphism type of its skeleton institution.

This isomorphism type even gives a normal form for equivalent logics. It follows
that a property of a logic must be a property of institutions that is invariant under
equivalence, and the following sections explore a number of such properties.

4. Model-Theoretic Invariants of Institutions

This section discusses some model-theoretic invariants of institutions; the table in
Thm. 5.20 summarizes the results on this topic in this paper.

Every institution has a Galois connection between its sets I' of X-sentences
and its classes M of Y-models, defined by I'* = {M € Mod(X) | M Ex T'} and
M® = {p € Sen(X) | M [=s ¢}. A S-theory T is closed if (I'*)® = T'.5 Closed
Y-theories are closed under arbitrary intersections; hence they form a complete
lattice. This leads to a functor CF : Sign — CLat. Although CF is essentially pre-
served under equivalence, the closure operator (_*)® on theories is not. This means
it makes too fine-grained distinctions; for example, in FOL, ({rue®)® is infinite,
while in a skeleton of FOL, ([true]®)® is just the singleton {[true|}. As already
noted in [29], the closure operator at the same time is too coarse for determining
the identity of a logic: while e.g. proof theoretic falsum in a sound and complete
logic (see Section 5) is preserved by homeomorphisms of closure operators in the
sense of [29], external semantic falsum (see Dfn. 4.2) is not. Because the theory
closure operator is not preserved under equivalence, we do not study it further,
but instead use the closed theory lattice functor CF and the Lindenbaum functor
L defined below. (We note in passing that this Galois connection generalizes some
results considered important in the study of ontologies in the computer science
sense. )

The category of theories of an institution is often more useful than its lattice
of theories, where a theory morphism (X,T') — (X/,T") is a signature morphism
o: X — ¥ such that IV =s o(T'). Let Th(Z) denote this category (it should
be skeletized to become an invariant). The following result is basic for combining
theories, and has important applications to both specification and programming
languages [17]:

Theorem 4.1. The category of theories of an institution has whatever colimits its
category of signatures has. a

5The closed theories can serve as models in institutions lacking (non-trivial) models.
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Definition 4.2.  An institution has external semantic conjunction [34] if for any
pair of sentences 1, 2 over the same signature, there is a sentence ¥ such that
1 holds in a model iff both ¢; and o hold in it. ¢ will also be denoted 1 wa,
a meta-notation which may not agree with the syntax for sentences in the insti-
tution. Similarly, one can define what it means for an institution to have external
semantic disjunction, negation, implication, equivalence, true, false, and we will
use similar circle notations for these. An institution is truth functionally complete,
if any Boolean combination of sentences is equivalent to a single sentence. |

Example 4.3. FOL is truth functionally complete, while EQ has no external
semantic connectives. O

The Lindenbaum construction of Example 2.2 works for any institution Z:

Definition 4.4. Let Z7 be the single sorted algebraic signature having that subset
of the operations {®,©),,8,60,0,D} (with standard arities) that are ex-
ternal semantic for 7; =% may include connectives not provided by the institution
T, or provided by Z with a different syntax. We later prove that ZZ is invariant
under equivalence®. For any signature in Z, let £(X) have as carrier set the quo-
tient Sen(X)/l=|, as in Example 2.2. Every external semantic operation of Z has a
corresponding operation £(X), so £(X) can be given a ZZ-algebra structure. Any
subsignature of Z can also be used (indicated with superscript notation as in Ex-
ample 2.2), in which case crypto-isomorphisms” can provide Lindenbaum algebra
equivalence. Moreover, £ is a functor Sign — Alg(Z%) because [=| is preserved
by translation along signature morphisms®. If 7 is truth functionally complete,
then £(X) is a Boolean algebra. A proof theoretic variant of £(X) is considered in
Section 5 below. O

Definition 4.5. An institution has external semantic universal D-quantification
[35] for a class D of signature morphisms iff for each o : ¥ — ¥’ in D and each
Y/-sentence, there is a X-sentence Vo.p such that M |y Vo.p iff M’ = ¢ for
each o-expansion M’ of M. External semantic existential quantification is defined
similarly. [

This definition accommodates quantification over any entities which are part
of the relevant concept of signature. For conventional model theory, this includes
second order quantification by taking D to be all extensions of signatures by op-
eration and relation symbols. First order quantification is modeled with D the
representable signature morphisms [11, 13] defined below, building on the observa-
tion that an assignment for a set of (first order) variables corresponds to a model
morphism from the free (term) model over that set of variables:

6By determining =% in a purely model-theoretic way, we avoid the need to deal with different
signatures of Lindenbaum algebras of equivalent logics, as it is necessary in the framework of
[28].

“A cryptomorphism is a homomorphism between algebras of different signatures linked by a
signature morphism; the homomorphism goes from the source algebra into the reduct of the
target algebra.

8L is also functorial in the institution, though the details are rather complex.
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Definition 4.6. A signature morphism x : X — Y’ is representable iff there are

a X-model M, called the representation of x and a category isomorphism i, such

that the diagram below commutes, where (M, /Mod(X)) is a comma category and

U is the forgetful functor. ; O
Mod(¥) — (M, /Mod(X))

mlU

Mod(X)
It seems likely that if external semantic universal quantification over rep-
resentable quantifiers is included in the signature ZFOL, then our Lindenbaum

algebra functor yields cylindric algebras, though not all details have been checked
as of this writing.

Theorem 4.7. Let (®,a,8): T — J be an institution equivalence. Then 7 has
universal (or existential) representable quantification iff 7 also has universal (or
existential) representable quantification.

It follows that the set of the external semantic connectives an institution has is
preserved under institution equivalence.

Example 4.8. Horn clause logic is not equivalent to FOL, because it does not
have negation (nor implication etc.). Horn clause logic with predicates and without
predicates are not equivalent: in the latter logic, model categories of theories have
(regular epi, mono)-factorizations, which is not true for the former logic. O

Example 4.9. Propositional logic CPL and propositional modal logic K are not
equivalent: the former has external semantic disjunction, the latter does not:
(M ks p) or (M Esx —p) means that p is interpreted homogeneously in all
worlds of M, which is not expressible by a modal formula. Indeed, the Linden-
baum algebra signature for CPL is {®,©,0,8,8,®,® }, while that for K
is {®,68,0,D}. Likewise, first-order logic and first-order modal logic are not
equivalent. These assertions also hold replacing “modal” by “intuitionistic”. [

Definition 4.10. An institution is liberal iff for any theory morphism o: T, —
T3, Mod(o): Mod(Ty) — Mod(T}) has a left adjoint. An institution has initial
(terminal) models if Mod(7') has so for each theory T. O

Definition 4.11. For any classes £ and R of signature morphisms in an institution
Z, the institution has the semantic Craig (L, R)-interpolation property [34] if for
any pushout

Ei>21

N

22—1>2/

in Sign such that o1 € £ and o5 € R, any set of 3;-sentences I'; and any set of

Yo-sentences I'y with 02(Ty) | 01(T'2), there exists a set of X-sentences I' (called
the interpolant) such that I'y = 01(T) and o5(T") = T's. O



12 Till Mossakowski, Joseph Goguen, Razvan Diaconescu and Andrzej Tarlecki

This generalizes the conventional formulation of interpolation from intersec-
tion/union squares of signatures to arbitrary classes of pushout squares. While
FOL has interpolation for all pushout squares [15], many sorted first order logic
has it only for those where one component is injective on sorts [8, 6, 21], and
EQ and Horn clause logic only have it for pushout squares where R consists of
injective morphisms [30, 14]. Using sets of sentences rather than single sentences
accommodates interpolation results for equational logic [30] as well as for other
institutions having Birkhoff-style axiomatizability properties [14].

Definition 4.12. An institution is (semi-)ezact if Mod maps finite colimits (pushouts)
to limits (pullbacks). O

Semi-exactness is important because many model theoretic results depend
on it. It is also important for instantiating parameterized specifications. It means
that given a pushout as in Def. 4.11 above, any pair (M7, M) € Mod(%;) X
Mod(X3) that is compatible in the sense that M; and My reduce to the same -
model can be amalgamated to a unique ¥'-model M (i.e., there exists a unique
M € Mod(X’) that reduces to M; and My, respectively), and similarly for model
morphisms. Elementary amalgamation [14] is like semi-exactness but considers the
model reducts up to elementary equivalence.

It is also known how to define reduced products, Lo$ sentences (i.e. sentences
preserved by both ultraproducts and ultrafactors) and Lo$ institutions [11], ele-
mentary diagrams of models [12], and (Beth) definability®, all in an institution
independent way, such that the expected theorems hold under reasonable assump-
tions. All this is very much in the spirit of “abstract model theory,” in the sense
advocated by Jon Barwise [2], but it goes much further, including even some new
results for known logics, such as many sorted first order logic [14, 21].

The faithful functors to Set make it possible to consider cardinalities for
signatures and models in a concrete institutions with symbols. By restricting sig-
nature morphisms to a subcategory, it is often possible to view these cardinality
functions as functors.

Definition 4.13. The Lindenbaum cardinality spectrum of a concrete institution
with symbols maps a cardinal number £ to the maximum number of non-equival-
ent sentences for a signature of cardinality x. The model cardinality spectrum of
a concrete institution with symbols maps each pair of a theory T and a cardinal
number k£ to the number of non-isomorphic models of T" of cardinality . O

Theorem 4.14. Sentence and model cardinality spectra, and the finite model
property, are preserved under concrete equivalence. O

9 As of this writing, the formal proof of the expected results on Beth definability (e.g., the Beth
theorem, which asserts the equivalence of explicit and implicit definability) are still in progress,
though we are confident of success.
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5. Proof Theoretic Invariants

Proof theoretic institutions include both proofs and sentences. Categorical logic
usually works with categories of sentences, where morphisms are (equivalence
classes of) proof terms [22]. But this only captures provability between single sen-
tences, whereas logic traditionally studies provability from a set of sentences. The
following overcomes this limitation by considering categories of sets of sentences:

Definition 5.1. A cat/cat institution is like a set/cat institution, except that
now Sen: Sign — Set comes with an additional categorical structure on sets
of sentences, which is carried by a functor Pr: Sign — Cat such that (_)°P o
P o Sen is a subfunctor of Pr, and the inclusion P(Sen(X))°? — Pr(X) is broad
and preserves products of disjoint sets of sentences!'®. Here P: Set — Cat is
the functor taking each set to its powerset, ordered by inclusion, construed as a
thin category'!. Preservation of products implies that proofs of I' — ¥ are in
bijective correspondence with families of proofs (I' — ¥)yecw, and that there are
monotonicity proofs I' — ¥ whenever ¥ C T'.

A cat/cat institution comorphism between cat/cat institutions Z and J con-
sists of a set/cat institution comorphism (®,«,): Z— J and a natural trans-
formation ~: Prf — Pr? o ® such that translation of sentence sets is compatible
with translation of single sentences: 7y o 1y = & o P(ax)®P, where tx and
are the appropriate inclusions. A cat/cat institution comorphism (®,«, 3,7) is a
cat/cat equivalence if ® is an equivalence of categories, ( is a family of equivalences
natural in X, and so is . Note that there is no requirement on «. As before, all
this also extends to the case of omitting of model morphisms, i.e. the cat/set case.
Henceforth, the term proof theoretic institution will refer to both the cat/cat and
the cat/set cases. O

Given an arbitrary but fixed proof theoretic institution, we can define an
entailment relation Fy between sets of Y-sentences as follows: I' by W if there
exists a morphism I' — ¥ in Pr(X). A proof theoretic institution is sound if
I bs U implies T’ 5 U; it is complete if the converse implication holds. In the
sequel, we will assume that all proof theoretic institutions are sound, which in
particular implies the following;:

Proposition 5.2. Any cat/cat equivalence is a set/cat equivalence. (I

Proposition 5.3. + satisfies the properties of an entailment system [25], i.e. it is
reflexive, transitive, monotonic and stable under translation along signature mor-
phisms. In fact, entailment systems are in bijective correspondence with proof
theoretic institutions having trivial model theory (i.e. Mod(X) = (}) and thin cat-
egories of proofs. |

10nstead of having two functors Pr and Sen, it is also possible to have one functor into a comma
category.

11 A category is thin if between two given objects, there is at most one morphism, i.e. the category
is a pre-ordered class.
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The requirement for sentence translation in proof theoretic institution equiv-
alences is very close to the notion of translational equivalence introduced in [28].
A set/set institution equivalence basically requires that the back-and-forth transla-
tion of sentence is semantically equivalent to the original sentence (i.e. a%(ax(v)) H
©); a similar notion would arise when using H. Note, however, that this does
not work well for modal logics, since e.g. in S5, ¢ H Op. Therefore, [28] require
F of(ax(p)) < . However, this is based upon the presence of equivalence as a
proof theoretic connective, which is not present in all institutions. Our solution
to this problem comes naturally out of the above definition of proof theoretic (i.e.
cat/cat or cat/set) equivalence: af(ax(¢)) and ¢ have to be isomorphic in the
category of proofs. We thus neither identify ¢ and O¢ in modal logics, nor rely on
the presence of a connective <.

Definition 5.4. A proof theoretic institution is finitary if I' Fx ¢ implies T Fg ¢
for some finite IV C I

A proof theoretic institution has proof theoretic conjunction if each category
Pr(X) has distinguished products of singletons, which are singletons again and
which are preserved by the proof translations Pr(y). In terms of derivability, this
implies that for ¢, o Y-sentences, there is a product sentence ¢1[Alps, and two
“projection” proof terms 1 : @1 [Algs — 1 and 7o : 1[Als — o, such that for
any ¢ with ¥ Fx @1 and ¥ by o, then ¥ s @1 [Alps.

Similarly, a proof theoretic institution has proof theoretic disjunction (true,
false) if each proof category has distinguished coproducts of singletons that are
singletons (a distinguished singleton terminal object, a distinguished singleton
initial object) which are preserved by the proof translations.

A proof theoretic institution has proof theoretic implication if each functor
_UA{p}: Pr(X) — Pr(X2) has a right adjoint, denoted by ¢[]_, such that ¢=I-
maps singletons to singletons and commutes with the proof translations. This
means there exists a bijective correspondence, called the ‘Deduction Theorem’ in
classical logic, between Pr(X)(T' U {p}, F) and Pr(X)(T',p — FE) natural in I" and
E, and such that the following diagram commutes for all signature morphisms
o: X—X"

o—_

Pr(¥) ——Pr(%)
Pr(o) Pr(o)

Pr(3) Pr(Y)

_—
a(p)—-

In case is present, it has proof theoretic negation if each sentence
has a distinguished negation [Tty which is preserved by the proof translations
Pr(p) and such that Pr(X)(I' U {¢}, [f]) is in natural bijective correspondence to
Pr(X) (I, {Ev}).

A proof theoretic institution is propositional if it has proof theoretic conjunc-
tion, disjunction, implication, negation, true and false. (]
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Definition 5.5. A proof theoretic institution with proof theoretic negation has
——-elimination if for each X-sentence ¢, [DI[T]p by ¢ (the converse relation easily
follows from the definition). O

For example, CPL and FOL have ——-elimination, while IPL has not. Clearly,
any complete proof theoretic institution with external semantic and proof theoretic
negation has ——-elimination.

Proposition 5.6. A proof theoretic institution having proof theoretic implication
enjoys the deduction theorem and modus ponens for 5. A complete proof theoretic
institution is finitary iff it is compact. U

Example 5.7. The modal logic K does not have proof theoretic implication, nor
negation, and this is a difference from intuitionistic logic IPL, showing that the
two logics are not equivalent. (See [22] for the proof category of IPL.) O

While K does not have proof theoretic implication, it still has a form of local
implication, which does not satisfy the deduction theorem. This can be axiomatized
as follows:

Definition 5.8. A proof theoretic institution has Hilbert implication if for each
signature Y., there is a unique binary operator on Y-sentences satisfying the
Hilbert axioms for implication, i.e.

(K)  0OFs {pBHvBe}
S) s {(eBvBEx)B(»Bv)BeBx}
(MP) {pBv, ¢} Fx {4}

There is a proof theoretic variant of the Lindenbaum algebra of Def. 4.4: .

Definition 5.9. Let UZ be the single sorted algebraic signature having a subset
of the operations {[Al, M, B, B, &I, [t], [f]} (with their standard arities), chosen
according to whether Z has proof theoretic conjunction, disjunction, negation etc.,
and Hilbert implication for implication. Note that like the signature =% introduced
in Def. 4.4, U7 may include connectives not provided by the institution Z, or
provided by Z with a different syntax. By Thm. 5.11, 2% has a canonical embedding
into WZ. Consider £7(X) = Sen(X)/=, where & is isomorphism in Pr(X). Since
products etc. are unique up to isomorphism, it is straightforward to make this a
Ul algebra.

The Lindenbaum algebra is the basis for the Lindenbaum category L£C™(X),
which has object set P(£7(X)). By choosing a system of canonical representatives
for Sen(X)/=, this object set can be embedded into |Pr(X)|; hence we obtain an
induced full subcategory, which we denote by LC H(E). Different choices of canon-
ical representatives may lead to different but isomorphic Lindenbaum categories.
While the Lindenbaum category construction is functorial, the proof theoretic Lin-
denbaum algebra construction is generally not. Also, the closed theory functor CF
has a proof theoretic counterpart C" taking theories closed under . ]
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Definition 5.10. A proof theoretic institution is compatible if for each circled (i.e.,
external semantic) operator in Z%, the corresponding boxed (i.e., proof theoretic)
operator in W7 is present. It is bicompatible if also the converse holds. O

Theorem 5.11. A complete proof theoretic institution with thin proof categories
is compatible, but not necessarily bicompatible. O

Proposition 5.12. Assume a proof theoretic institution with thin proof categories.
If deduction is complete, then £(X) and £™(X)|zz are isomorphic; just soundness

gives a surjective cryptomorphism £7(X)|zz — £(X), and just completeness gives
one in the opposite direction. O

Example 5.13. Intuitionistic propositional logic shows that proof theoretic dis-
junction does not imply external semantic disjunction. O

Definition 5.14. A proof theoretic institution is classical modal if its Lindenbaum
algebras £7(X) are Boolean algebras (also having implication) with an operator
O (congruent with and ) A classical modal proof theoretic institution is
normal if the operator satisfies the necessitation law: ¢ Fx Op. (Note that modus
ponens already follows from implication being present in ¥7.) O

It is clear that equivalences between classical modal proof theoretic institu-
tions need to preserve £ (but not necessarily the operator). It should hence be
possibly to apply the results of [28].

Example 5.15. S4 has a non-idempotent operator (congruent with [A] and [t]) on
its Lindenbaum algebra, while S5 does not have one. Hence, S4 and S5 are not
equivalent. O

Definition 5.16. Given cat/cat institutions Z and J, J is a cat/cat skeleton of 7
if it is like a set/cat skeleton, but such that Sen” (X) = Sen”?(X)/22, and such that
Pr/ () = £LC™(2), the Lindenbaum category. O

Lawvere [24] defined quantification as adjoint to substitution. Here we de-
fine quantification as adjoint to sentence translation along a class D of signature
morphisms, which typically introduce new constants to serve as quantification
“variables”:

Definition 5.17. A cat/cat institution has proof theoretic universal (existential) D-
quantification for a class D of signature morphisms stable under pushouts, if for all
signature morphisms o € D, Pr(c) has a distinguished right (left) adjoint, denoted
by (Vo)- ((3¢)-) and preserved by proof translations along signature morphisms.
This means there exists a bijective correspondence between Pr(X)(E, (Vo)E') and
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Pr(X/)(c(E), E’) natural in E and E’, in classical logic known as the ‘Generalisa-
tion Rule’, such that for each signature pushout with o € D,

y—2 o5

’
o o

Y — 2/1
9/

the pair (Pr(#), Pr(6")) is a morphims of adjunctions. O

One may define a proof theoretic concept of consistency. A theory (X,I) is
consistent when its closure under F is a proper subset of Sen(T"). Craig interpolation
also has a proof theoretic version: for any proof p: 61(FE1) — 63(FE2), there exist
proofs p1 : Ey1 — 01(F) and ps : 09(F) — F3 such that p = 05(p2) 0 01(p1).

Given a set/cat (or set/set) institution Z, we can obtain a complete cat/cat
(or cat/set) institution Z= by letting Pr(X) be the pre-order defined by T' < W if
I' =5 U, considered as a category. Some of the proof theoretic notions are useful
when interpreted in ZF:

Definition 5.18.  An institution Z has internal semantic conjunction if TF has
proof theoretic conjunction; similarly for the other connectives. O

Example 5.19. Intuitionistic logic IPL has internal, but not external semantic im-
plication. Higher-order intuitionistic logic interpreted in a fixed topos (see [22]) has
proof theoretic and Hilbert implication, but neither external nor internal semantic
implication. Modal logic S5 has just Hilbert implication. (|

Theorem 5.20. The properties in the table below are invariant under set/set,
set/cat, cat/set and cat/cat equivalence, resp.'? Sect. 5.) Properties in italics rely
on concrete institutions (as in Def. 2.7).

12Functors such as the Lindenbaum algebra functor are preserved in the sense that £7 is naturally
isomorphic to Lz o ®.
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set/set set/cat
compactness, (semi-)exactness, | all of set/set, having exter-
elementary amalgamation, se- | nal semantic universal or ex-
mantic  Craig interpolation, | istential (representable) quan-
Beth definability, having ex- | tification, exactness, elementary
ternal semantic conjunction, | diagrams, (co)completeness of
disjunction, negation, true, | model categories, existence of re-

false, being truth functionally
complete, Lindenbaum signature
=7, Lindenbaum algebra functor
L, closed theory lattice functor

duced products, preservation for
formuleealong reduced products,
being a Los-institution, model
cardinality spectrum, admission

CF, (co)completeness of the | of free models.
signature category, Lindenbaum
cardinality — spectrum,  finite
model property.
cat/set cat/cat

all of set/set plus its proof the-
oretic counterparts where ap-

all of set/cat and cat/set, having
proof theoretic universal or ex-

plicable, soundness, complete- | istential quantification, compat-
ness, Hilbert implication, ——- | ibility, bicompatibility.
elimination.

6. Conclusions

We believe this paper has established four main points: (1) The notion of “a
logic” should depend on the purpose at; in particular, proof theory and model
theory sometimes treat essentially the same issue in different ways. Institutions
provide an appropriate framework, having a balance between model theory and
proof theory. (2) Every plausible notion of equivalence of logics can be formalized
using institutions and various equivalence relations on them. (3) Inequivalence
of logics can be established using various constructions on institutions that are
invariant under the appropriate equivalence, such as Lindenbaum algebras and
cardinality spectra. We have given several examples of such inequivalences. (4)
A great deal of classical logic can be generalized to arbitrary institutions, and
the generalized formulations are often quite interesting in themselves. Perhaps the
fourth point is the most exciting, as there remains a great deal more to be done,
particularly in the area of proof theory.

Among the proof theoretic properties that we have not treated. Proof the-
oretic ordinals, while an important device, would deviate a bit from the subject
of this paper, because they are a measure for the proof theoretic strength of a
theory in a logic, not a measure for the logic itself. But properties like (strong)
normal forms for proofs could be argued to contribute to the identity of a logic;
treating them would require Pr(X) to become 2-category of sentences, with proof
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terms and proof term reductions. A related topic is cut elimination, which would
require an even finer structure on Pr(X), with proof rules of particular format.
Another direction is the introduction of numberings in order to study recursive-
ness of entailment. We hope this paper provides a good starting point for such
investigations.
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