
Morphisms and Semantics for

Higher Order Parameterized Programming

Kai Lin and Joseph Goguen

Dept. Computer Science & Engineering

University of California at San Diego

9500 Gilman Drive, La Jolla, CA 92093-0114, USA

fklin, gogueng@cs.ucsd.edu
Phone: (858) 534-4197. Fax: (858) 534-2079

Abstract. Parameterized programming is extended to higher order mod-

ules, by extending views, which �t actual parameters to formal param-

eters in a
exible way, to morphisms, with higher order module expres-

sions to compose modules into systems. A category theoretic semantics

is outlined, and examples in BOBJ show the power of morphisms.

1 Introduction

Modularization is key to controlling the complexity of large systems, by com-
posing them from parts, so as to ease program construction and maintenance.
First order parameterized programming [10, 11] signi�cantly enhances the
exi-
bility and reusability of modularization, by providing parameterized modules and
views, to
exibly �t syntax of formal parameters to actual parameters, including
defaults when there is an obvious choice. Here we generalize views to morphisms,
which are used for both instantiating and re�ning higher order modules.

Our examples use the BOBJ [14] extension of the OBJ3 speci�cation and
functional programming language [16] to higher order parameterized program-
ming, but the approach is not limited to speci�cation and functional languages,
as shown by the Lileanna [23, 15] extension of Ada. Although Lileanna modules
are �rst order, the same techniques can implement higher order module systems
for compiled functional and imperative languages. Module bodies are translated
to the compiler's intermediate language (Dianna for Ada), which is manipu-
lated for instantiation and re�nement of modules. Once fully instantiated, the
intermediate code is passed to the compiler's backend for optimization. This
supports separate compilation, and experiments found that compiled Lileanna
is often more eÆcient than Ada, because larger blocks of intermediate code are
optimized. For an interpreted language like BOBJ, it suÆces to transform sig-
natures and equations, though the transformations are still rather complex.

OBJ began around 1974 as a notation for algebraic speci�cation, and was
soon implemented as a term rewriting interpreter. Early designs [9] had a �rst
order module system like that of Clear [1], later formalized as parameterized pro-

gramming [10], which added default views and simpli�ed syntax. Parameterized
programming was �rst fully implemented in OBJ3 [16], extending earlier versions
of OBJ, and it appears in all members of the OBJ family, including CafeOBJ

[5], Maude [3], BOBJ [14], and the European languages casl [4] and acttwo.
Semantics follows that of Clear [1], using a category of theories, with theory
morphisms for views, and colimit for module composition, based on ideas from
an early category theoretic general systems theory [8]. This semantics works over
any logical system, using the formalism of institutions [13].

Other languages in
uenced by parameterized programming include Ada, ML,
C++, and Modula, none of which has views, so that actual parameter syntax
must contain formal parameter syntax; only ML has higher order modules, and
that only in recent releases. Ada generics do not even allow instantiated param-
eterized modules as actual parameters. C++ has higher order parameterized
templates, but these are little more than macro expansions with type checking.
Larch [7] has a parameter passing mechanism that can simulate some uses of
�rst order views, but does not have views as reusable �rst class citizens. Recent
SML/NJ releases of ML include higher order parameterized modules, based on
higher order parameterized signatures, but without views. The only implemented
higher order module system with views is in BOBJ.

We believe views are not just a syntactic convenience, but are key to unlocking
the full potential of higher order parameterization. We speculate that the lack of
views explains the confusing multiplicity of semantics given for ML higher order
\functors," as well as ML's awkward treatment of functor sharing.

An early operational semantics for higher order ML modules due to Mac-
Queen and Tofte [20] is expressed with rules of deduction, using higher order pa-
rameterized signatures and \stamps" (i.e., compile-time generated unique iden-
ti�ers) to handle sharing. As in ML, it requires actual parameter signatures to
contain formal parameter signatures, which is a special case of default viewing.
Cengarle [2] extends the ASL approach [22] to higher order modules, with mod-
ule denotations sets of models, functions between sets of models, etc., expressing
parameterization with simply typed lambda calculus. Since this cannot distin-
guish legal from illegal speci�cation expressions, \requirement conditions" are
used for \signature terms" and \speci�cation terms" (i.e., module expressions),
with a complex deductive system to weed out ill-formed expressions; in addition,
the signatures of actual and formal parameters are required to be equal. This
strong restriction and much of the complexity in [2] can be avoided with views.

Jimin�enez and Orejas [18] work over a category having \multiple pushouts,"
and use a lambda calculus formalism inspired by ASL to de�ne higher order
modules and views over this category; multiple pushouts are used for instantia-
tion, subject to some technical conditions that seem very restrictive. We believe
these problems arise from the way that the lambda calculus is used for param-
eterization. There is also a type theoretic literature on higher order modules,
largely associated with ML, but because this approach is remote from ours, we
do not survey it here; see [6] and its references.

Space precludes many details, including proofs, some de�nitions, and further
examples; see the full technical report [19]. Parts of the paper assume familiarity
with basics of category theory and algebraic speci�cation (e.g. [17, 21]).

2 Examples

This section introduces parameterized programming through examples, begin-
ning with the �rst order case, and then higher order examples.

Example 1 The simplest non-trivial module has only a single sort:
th TRIV is sort Elt . end

The keyword \th" introduces \theories," which consist of declarations for sorts,
operations, and variables, plus equations over these declarations. TRIV has just
one declaration, for the sort Elt. The name of the module, TRIV, follows the
keyword th. Next, we de�ne a parameterized module SET for �nite sets:

th SET[X :: TRIV] is sort Set .

op empty : -> Set .

op insert : Elt Set -> Set .

op _in_ : Elt Set -> Bool .

vars E E1 E2 : Elt . var S : Set .

eq E in empty = false .

eq E in insert(E,S) = true .

eq E1 in insert(E2,S) = E1 in S if E1 =/= E2 .

end

Since this module has TRIV as its interface, it can be instantiated with any
module having at least a sort. A new sort Set is declared, followed by three
operations: empty is a constant for the empty set; insert adds an element to
a set; and in checks if an element is in a set. The module BOOL of booleans is
imported into every module (unless explicitly excluded), and operations declared
in the form used here have \parenthesis-with-commas" syntax. 2

Example 2 We can instantiate SET with a simple view, which picks out a par-
ticular sort in a module, such as the following

view V1 from TRIV to BOOL is sort Elt to Bool . end

view V2 from TRIV to INT is sort Elt to Int . end

Here INT is BOBJ's built-in module for integers. Instantiation using a named
view may be done in the following forms:

make SET-OF-BOOL is SET[V1] end

open SET[V2] .

red 2 in insert(1, empty) .

close

where the �rst creates a new named module, and the second \opens" a temporary
environment. The command \red" calls for \reducing" the term that follows, in
the sense of term rewriting, applying equations as rules left to right until no
more apply. In both cases, since there is just one reasonable view, BOBJ can
compute it from just the target, and we can write SET[INT] instead of SET[V1],
and SET[BOOL] instead of SET[V2]. These are default views, and their use can
greatly simplify complex examples. 2

In algebraic speci�cation, a �rst order parameterized module is an inclusion
F : I !M , where I is the interface andM is the body; recall also that a view is
a theory morphism, that is, a signature morphism that maps equations to logical
consequences of equations in the target theory. Moreover, the instantiation of a
parameterized module is the pushout of the inclusion with a view f : I ! P ,
denoted F [f] or perhaps M [f]; the term �tting morphism is used for a view
in an instantiation.

De�nition 1 A pushout of f : A ! B, g : A ! C in a category C is a pair
p : B ! D, q : C ! D such that p Æ f = q Æ g, and for any E and morphisms
r : B ! E and s : C ! E such that r Æ f = s Æ g, there is a unique t : D ! E

such that t Æ q = r and t Æ p = s; D is the pushout object. 2

Intuitively, pushouts combine two objects, identifying parts of one with parts of
another; this gives an elegant semantics for instantiating parameterized modules.
(For more detail, see [12]; all this actually works for any logical system, via the
formalism of institutions [13]. For example, the institution for Lileanna [23, 15]
has Anna for speci�cations and Ada programs for models.) For the special case of
Example 1, the construction is as follows: Given a �tting morphism f : TRIV!
P , let E = f(Elt). Then the signature of SET[f] is �SET(Elt E) [�P , the
result of substituting E for Elt in the signature of SET, and then combining that
with the signature of P (assuming there are no name clashes). Operations and
equations are treated similarly.

Example 3 It is common to restrict the interface of a module to a more spe-
cialized module; e.g., WEIGHT below specializes TRIV by requiring actual modules
to have (at least) a sort with a natural number valued operation on that sort,

th WEIGHT is sort Thing . pr NAT .

op weight : Thing -> Nat .

end

and we can restrict SET from Example 1 to the interface WEIGHT as follows:

th SETW[X :: WEIGHT] is pr SET[X] . end

There is an obvious view from TRIV to WEIGHT, which just maps sort Elt to
Thing; it is a default view, already constructed and used by BOBJ in evaluating
SET[X] in SETW above.

view D from TRIV to WEIGHT is sort Elt to Thing . end

However, the relation between SET and SETW is more subtle, and cannot be
captured by just a view. The intuition is that SETW can be used wherever SET is
called for. This more general notion is de�ned below. 2

De�nition 2 Given �rst order parameterized algebraic speci�cations (which
could be modules over any institution [13, 12]), F : I ! M and F 0 : I 0 ! M 0,
a �rst order morphism from F to F 0 is a view (i.e., a ground morphism)
d : I 0 ! I and a view r : M !M 0[d] such that the diagram below commutes,

M 0

d0 ��

I 0
F 0

oo

d��
M 0[d] I

F //ioo M
r

ee

where the left square is the pushout of F 0 and d. 2

This de�nition improves on the literature; e.g., [18] is less general in lack-
ing the pushout. Intuitively, M 0[d] is a \re-parameterization" or \specializa-
tion" of M 0, to interface I instead of I 0, and r is a view from M to this re-
parameterization. We apply M 0[d] to an actual parameter with a �tting view

f : I ! P as usual by pushout, obtaining M 0[d][f] = M 0[f Æ d]. The �rst order
parameterized module I ! M 0[d] is the result of (d; r). If I = I 0 and d = 1I ,
then M 0[d] =M 0 and (d; r) amounts to an ordinary view r : M !M 0. Thus we
may refer to views as morphisms, and or even conversely.

Example 4 De�ne parameterized lists as follows:

th LIST[X :: TRIV] is sort List .

op nil : -> List . op cons : Elt List -> List .

op hd : List -> Elt . op tl : List -> List .

op contains : List Elt -> Bool .

var L : List . var S S' : Elt .

eq hd(cons(S, L)) = S . eq tl(cons(S, L)) = L .

eq contains(nil, S) = false .

eq contains(cons(S', L), S) = contains(L, S) or S == S' .

end

Here nil is the empty list, cons adds an element at the head of a list, hd and
tl return the head and tail of a list, while contains checks if an element is in
a list. A morphism from SETW to LIST is de�ned as follows:

morph SETW-TO-LIST from SETW to LIST is

[view to WEIGHT is sort Elt to Thing . end]

sort Set to List . op empty to nil . op insert to cons .

var T : Thing . var S : Set .

op T in S to contains(S,T) .

end

Note that all this is default, except the last; the abstract module morphism that
it determines is given by the construction in Proposition 3 below. Use of this
code requires a second order setting, for which see Example 7 in Section 4. 2

Example 5 There is a morphism from SETW to SET, since we can use SET wher-
ever SETW is needed:

morph SETW-TO-SET from SETW to SET is

[view to WEIGHT is sort Elt to Thing . end]

end

This morphism has two components: a view d, from the target interface to the
source interface, and a mapping from the body of the source to the body of the
target via D. An interface view can be omitted if it is a default. For example, the
above morphism can be written in any of the following forms:

morph SETW-TO-SET from SETW to SET is [view to WEIGHT is end] end

morph SETW-TO-SET from SETW to SET is end

morph SETW-TO-SET from SETW to SET is [D] end

since D is already de�ned. 2

Example 6 The usual reason for restricting an interface is to support adding
some new functionality to the body of its module. For example, we might want
to calculate the total weight of things in a set of things that each have weight,
as in the following:

th SETWT[X :: WEIGHT] is pr SETW[X] .

op total : Set -> Nat .

vars E : Thing . var S : Set .

eq total(empty) = 0 .

eq total(insert(E, S)) = weight(E) + total(S) if not E in S .

eq total(insert(E, S)) = total(S) if E in S .

end

Notice that there is no module morphism between SET and SETWT, because the
view and the natural transformation involved go in the same direction, rather
than in opposite directions. This corresponds to the fact that we cannot use
either of these where the other would be needed. However, there is a morphism
from SETW to SETWT, and we can use SETWT wherever SETW was needed:

morph SETW-TO-SETWT from SETW to SETWT is [view to WEIGHT is end] end

(Note that both components of this are defaults.) 2

Of course, higher order modules can do much more than this.

3 Abstract Parameterized Modules

If C is a category, then jCj denotes the class of objects of C, and 1C denotes the
identity functor on C. Also, if A is an object in C, then pAq : 1 ! C denotes
the functor that sends the unique object in 1 to A, where 1 is the one morphism
category, and 1A denotes the identity morphism on A.

De�nition 3 Given functors F : A ! C, G : B ! C, the comma category

(F=G) has: triples (A;B; c) as objects, with A 2 jAj; B 2 jBj and c : F (A) !
G(B) inC; pairs (f; g) as morphisms (A1; B1; c1)! (A2; B2; c2), where f : A1 !
A2, g : B1 ! B2, such that c1 Æ G(g) = F (f) Æ c2; the pair (1F (A); 1G(B)) as
identity on (A;B; c); and composition of (f1; g1) : (A1; B1; c1) ! (A2; B2; c2)
and (f2; g2) : (A2; B2; c2)! (A3; B3; c3) is (f2 Æ f1; g2 Æ g1).

If C is a category and A 2 jCj, then (A=C) denotes the (pAq=1C), and
is called a slice category, with A its top object. Also, let (C=C) denote
(1C=1C). If F is a functor on (A=C) and f : A! C, then f could be an object
or a morphism in (A=C); to avoid this confusion, we may write jF j(f) for the
application of F to f as an object.

Given v : B ! A in C, a functor (v=C) : (A=C) ! (B=C) has (v=C)(f) =
f Æ v, for f : A ! X in j(A=C)j; and (v=C)(h) = h, for h : f1 ! f2 in (A=C),
which works because h is a morphism f1 Æ v ! f2 Æ v in (B=C). 2

Although parameterized modules are intuitively functions having modules as
input and output, they di�er from ordinary functions in signi�cant ways:

1. The conventions of parameterized programming [10] build on those for pro-
cedures in ordinary programming. M [X :: I] indicates a �rst order param-
eterized module with body M , formal parameter X , and interface I , a
ground module \type" for actual modules allowed to instantiate X in M ,
since not all actual modules give the desired behavior to the instantiation.

2. After category theory, ground modules have morphisms, with composition
and identities; these correspond to relations of re�nement.

3. Often there are many ways to use a given module P as an actual parameter
of a module M with interface I , corresponding to morphisms I ! P , i.e., to
re�nements of I by P , where P provides what I requires; such morphisms
are called �tting morphisms. Thus parameterized modules are functions
on �tting morphisms rather than on modules. Let M [f] denote the result of
instantiating M with P using f : I ! P .

4. Parameterized module instantiation should preserve actual module re�ne-
ment, i.e., it should be functorial. Therefore given M with interface I , and
P; P 0 actual modules with �tting morphisms f; f 0, if h : P ! P 0 such that
f Æ h = f 0, then there should exist M [h] : M [f]!M [f 0].

5. If possible actual modules form a category C, and possible instantiation
results form a category D, then a parameterized module M should be a
functor from the slice category (I=C) to D, where I in C is the interface.

6. A key step in our higher order semantics is de�ning parameterized module
morphisms, so that parameterization can be iterates from order n to or-
der n + 1. Since modules are functors, their morphisms should be natural
transformations. But since their sources vary with the top object of the slice
category (i.e., the interface), we also need functors to relate these. Intuitively,
an abstract module morphism from F to G allows using G wherever F is
needed, with G having a more general (less restrictive) interface and a more
re�ned body (more functionality).

De�nition 4 Given categories C, D, an abstract (parameterized) module

is a functor (A=C)! D for some A 2 jCj, and amorphism from F : (A=C)!
D to G : (B=C) ! D is a pair (d; �) with d : B ! A in D and � is a natural
transformation F) GÆ(d=C). The identity 1F on F : (A=C)! D is (1A;1F),
where 1F is the identity natural transformation on F , with 1F (f) = 1F (f) for
f : A! P in C.

Given Fi : (Ai=C)! D for i = 1; 2; 3 and morphisms (di; �i) : Fi ! Fi+1 for
i = 1; 2, the composition (d2; �2) Æ (d1; �1) is (d1 Æ d2; �) where � is the natural
transformation F1) F3 Æ (d1 Æ d2=C) de�ned by �(f) = �2(f Æ d1) Æ �1(f),
for f 2 j(A1=C)j; this makes sense because �1(f) : F1(f) ! F2(f Æ d1) and
�2(f Æ d1) : F2(f Æ d1)! F3(f Æ d1 Æ d2) are morphisms in D.

(A1=C)

F1 00

(d1=C) // (A2=C)

F2
��

(d2=C) // (A3=C)

F3nn

�1

08iiiiii iiiiii �2

.6ffffffffffff
ffffffffffff

D

We say A is the interface of M : (A=C)! D, and we let Inf (M) = A. 2

Proposition 1 The structure with abstract modules as objects and with their
morphisms as de�ned above, is a category, which we denote (C==D). Moreover,
Inf : (C==D)! C is a contravariant functor, sending (d; �) to d. 2

For the cogniscenti, the categories (C==D) are a special \lax comma category,"
replacing equality in the commutative squares that are morphisms by natural
transformations.

To start a hierarchy of higher order modules, we assume a category M0 of
zeroth order, i.e., of unparameterized or ground, modules. We then construct
M1, the �rst order modules, as (M0==M0); Section 4 iterates this to obtain
modules of all orders. We illustrate the approach withM0 = Th, the category of
unparameterized algebraic theories with subsorts and initiality constraints; since
this is a sublogic of BOBJ [14] (excluding its powerful hidden algebra features),
we can use BOBJ for executable examples.

The simple idea that a parameterized module is an inclusion extends to higher
order algebraic speci�cations, but not to abstract modules, which include many
other examples, such as higher order functions (see the end of Section 4).

Proposition 2 A �rst order algebraic speci�cation F : I ! M determines an
abstract module (I=Th) ! Th, and thus an object in (Th==Th), which we
denote F , or just F or even M or M . 2

Proposition 3 Given �rst order algebraic speci�cations F; F 0 with interfaces
I; I 0 and bodiesM;M 0, and given a morphism (d; r) : F ! F 0, there is a natural
transformation � : F) F 0 Æ (d=Th) such that (d; �) is an abstract module
morphism F ! F 0 in (Th==Th). 2

4 Higher Order Modules

Example 7 The ground module WTHING below provides an in�nite collection of
\things," each with a distinct weight, while the following second order module
SETWTHING instantiates its parameterized formal parameter with WTHING, and
then extends the result with an operation total that gives the total weight in a
set of these things:

obj WTHING is sort Thing .

pr NAT .

op t : Nat -> Thing . op weight : Thing -> Nat .

var N : Nat .

eq weight(t(N)) = 2 * N + 1 .

end

th SETWTHING[X :: SETW] is pr X[WTHING] .

op total : Set -> Nat .

vars E : Thing . var S : Set .

eq total(empty) = 0 .

eq total(insert(E, S)) = weight(E) + total(S) if not E in S .

eq total(insert(E, S)) = total(S) if E in S .

end

The speci�cation SETWTHING determines a second order abstract module, an
object in ((Th==Th)==Th), i.e., a functor (SETW=(Th==Th))! Th, by the con-
struction in Example 8 below. We instantiate SETWTHING with the abstract mod-
ule morphism SETW-TO-SET:

open SETWTHING[SETW-TO-SET] .

red t(2) in insert(t(1), empty) .

red total(insert(t(1), empty)).

close

We can also instantiate and test the code of Example 3:

obj APPLYSW[S :: SETW][W :: WEIGHT] is pr S[W]. end

open APPLYSW[SETW-TO-SET][WTHING] .

red t(2) in insert(t(1), empty) .

close

Both of these give the expected results, and we can similarly test Example 4,

obj APPLYSWT[S :: SETW][W :: WEIGHT] is pr S[W].

op total : Set -> Nat .

var S : Set . var T : Thing . var N : Nat .

eq total(empty) = 0 .

eq total(insert(T, S)) = weight(T) + total(S) if not T in S .

eq total(insert(T, S)) = total(S) if T in S .

end

open APPLYSWT[SETW-TO-LIST][WTHING] .

red contains(cons(t(1), nil), t(2)) .

red total(cons(t(1), nil)).

close

which again works as expected. 2

Higher order modules often include a module expression that uses the formal
parameters of the module. The line pr S[W] in APPLYSWT above illustrates this,
since both S and W are formal parameters, with S �rst order and W ground. Such
module expressions do not in general denote concrete modules, and can only
do so when their formal parameters are fully instantiated. This implies that
views (and morphisms) in such expressions are also formal when they contain
formal parameters, i.e., they do not denote concrete views (or morphisms). For
example, if M[view to N is ...end] where M and N contain formal parameters,
then the expression and its inline view are formal. For such an expression to be
well formed, the view should have source Inf (M) and target N , instantiating
to a concrete view from the interface of the result of instantiating M to that
of instantiating N. \Telescopes" are an important special case; the term was
introduced by de Bruijn in type theory, and is also been used for similar situations
in algebraic semantics [12].

De�nition 5 An nth order telescope is a sequence of theory inclusions, In !
::: ! I1 ! M , where M is the body, and for each j > 0, the telescope In !
:::! Ij is the interface of Ij�1 (with I0 =M). 2

Example 8 There can be many ways to instantiate a telescope. For example,
F = J ! I ! M can be �rst instantiated J with f : J ! P to get a map
from second order theories to ground theories. The result of instanting F by f

is as below, with F0 the �rst inclusion and F1 the second, with both squares
pushouts,

J
F0 //

f ��

I
F1 //

f 0 ��

M

f 00 ��
P // F0[f] // F1[f 0]

where the diagonal I ! F1[f
0] of the second square is the result of instantiating

J with f ; denoting it i : I !M [f], we can instantiate i with n : K ! N using
a morphism (d; r) with d : K ! J and r : I ! N , as shown below,

N
))SSSSSS (M [f 0])[r]

K

d))RRRRRR

n 66mmmmmm
N [d]

33hhhhh
M [f 0]

kkVVVVV

J

55jjjjjj
I

r

kkWWWWWWWWW i

33ggggggggg

where the two squares are pushouts, and (M [f 0])[r] is the instantiation result.
One can show that this determines an abstract module, and that instantiating
the two formal parameters in the reverse order gives the same result. 2

We can generalize from a single higher order parameter to multiple parameters
of various orders, by having multiple telescopes of various lengths, I ini ! ::: !
I i1 ! M for various i; this amounts to having a tree of theory inclusions with
root M . It may help to think of this as a collection of interconnected lenses that
give a range of views under various magni�cations. Modules that contain more
than one instantiation of one (or more) of their higher order formal parameters
can be given semantics using the \multiple morphisms" of [18].

Generalizing to acyclic graphs of inclusions is more challenging, because these
allow \dependent interfaces," that contain formal parameters, analoguously to
dependent types [12]. OBJ3 and CafeOBJ allow such interfaces; this works be-
cause these languages only have �rst order modules. Formal parameters can play
two roles in module expressions: to instantiate modules, and to be instantiated.
The latter is only possible for second or higher order modules. Dependent inter-
faces work for �rst order modules, because it is possible to check (dynamically) if
a view is valid for an instantiation, but this fails for higher orders. For example,
if M and V in M [V] contain formal parameters, then when actuals are supplied,
V gives a morphism v : f1 ! f2 where f1 is declared in the code, but f2 must be
computed at run time. For this to work, M must be functorial. Thus BOBJ al-
lows �rst order dependent interfaces, but not higher order, because these are not
in general functorial under instantiation, unlike the special case of telescopes.

The iterative construction of higher order abstract parameterized modules,
starting from a category M0 of ground or zeroth order modules, is straightfor-
ward. For n > 0, let Mn+1 = (Mn==Mn). Every possible higher order abstract
module is embedded somewhere in one of these, but for speci�c concrete mod-
ules (e.g., in BOBJ), it is more convenient to work in a more speci�c category,
such as Mi;j = (Mi==Mj), M(i;j);k = (Mi;j==Mk), M(i;j);(k;l) = (Mi;j==Mk;l)
and so on, over what amount to binary trees of natural numbers (see De�nition
6). In the most speci�c instances, all indices are zero. We can form even more
speci�c semantic domains by using slice categories, in forms such as (I=Mj),
((I=Mj)=Mk), and so on, as well as functor categories like [(I=Mi)!Mj], etc.,
which are contained in the categories (Mi==Mj).

We can see how other domains embed in the Mn through the injections
in : Mn ! Mn+1 de�ned below, which represent a parameterized module of
order n as a constant module of order n+1. We assume M0 has intial and �nal

objects, ? and >, and we let these symbols also denote initial and �nal objects
in any Mn.

{ Given an object F in M0, let i0(F) in M1 be F̂ : (? =M0) ! M0 de�ned
by F̂ (?! T) = F for any ?! T in (? =M0), and for f any morphism from
?! T to ?! T 0 in (? =M0), let F̂ (f) be the identity on F .

{ Given a morphism h : F ! G in M0, let i0(h) : F̂ ! Ĝ in M1 be (1?; �)
where �(f) = h for any f : T ! T 0 in (? =M0).

{ Given an object F in Mn for n > 0, say F : (A=Mn�1)!Mn�1, let in(F)
be F̂ : (? =Mn)!Mn sending each object (?! T) in (? =Mn) to F , and
sending each morphism in (? =Mn) to the identity on F , which is (1?;1F).

{ Given a morphism (d; �) : F ! G in Mn for n > 0, let in(d; �) : F̂ ! Ĝ

in Mn+1 be (d0; �0), where d0 = 1?, and for f a morphism from ?! T to
?! T 0, let �0(f) = (d; �).

{ Now we de�ne the initial objects ?n inMn for n > 0; for this, we also de�ne
�nal objects >n, where the subscripts are temporary for added clarity. Let
>n = b>n�1, and let ?n be the functor (>n�1=Mn�1)!Mn�1 sending each
object >n�1 ! T in (>n�1=Mn�1) to ?n�1, and sending each morphism in
(>n�1=Mn�1) to the identity on ?n�1, which is (1>n�1

;1?n�1
). Notice that

the de�nitions of ? and > are mutually recursive.

It is easy to check that each in is injective, and that ?n and >n are respec-
tively initial and �nal objects in Mn. From this and the fact that an injection
N ! N0 induces an injection (M==N) ! (M==N0), it follows for example that
(M0==(M0==M0)) is embedded in M2. In addition, any inclusion i : M ! M0

induces a functor i� : (M0==N) ! (M==N), as follows: First, given an ob-
ject M in M, i induces an inclusion (M=i) : (M=M) ! (M=M0), which in
turn induces a functor [(M=i) ! N] : [(M=M0) ! N] ! [(M=M) ! N]
that sends F 0 : (M=M0) ! N to F 0 Æ (M=i). This then extends to the func-
tor i� : (M0==N) ! (M==N). Finally, it can be shown that the image of i�

includes all the functors that never take the value ?. To prove this, extend
F : (M=M) ! N to F 0 : (M=M0) ! N by �lling in the missing values with
>; then i�(F 0) = F . This implies that the reasonable abstract modules in
((M0==M0)==M0) also appear in M2, and so on for higher orders. If M0 is the
theories over some institution, then ? is the empty theory, which is never useful
in speci�cation or computation. We can construct the sequence of injections in
and take its colimit,

M0

i0 // M1

i1 // M2

i2 // : : : in�1 // Mn
in // Mn+1

in+1 // : : :

which we denote M1; it is a \universal domain," including all possible higher
order abstract modules. But any particular program can work within a more
speci�c category as described above, since a program has only �nitely many
modules, of �nite order. M1 does not have initial or �nal objects, but we can
get them by adding maps kn : 1!Mn to the above diagram, sending the unique
object in 1 to ?, so that the initial objects in the various Mn are identi�ed in
the colimit.

Example 9 IfM0 = Th, the category of equational (order sorted with initiality
constraints [13]) theories, then M1 includes all possible higher order modules

that can be written in BOBJ (though hidden algebra should be added to re
ect
the full power of BOBJ). 2

Example 10 Although it would be tedious to give a complete formal de�nition,
the reader can easily imagine a category C of all C++ template classes, with
morphisms given by inheritence. Then with M0 = C, the above construction
gives a semantic space for higher order templates for C++. 2

Given a poset D, let
�!
D be the category with objects the elements of D, and

with a morphism from a to b i� a � b. If N is the poset of natural numbers plus
a new minimum ?, with ? � n the only non-trivial orderings, and if M0 =

�!
N,

then the material below shows that M1 contains representations for all partial
higher order functions over natural numbers. Let [C ! D] denote the poset of
all monotone functions from poset C to poset D.

De�nition 6 Given a poset D with minimum element ?, the set B of binary
types is as follows: � is in B; and if t; t0 2 B, then t ! t0 is in B. Given t 2 B
and a poset D, let Dt denote the poset of functions of type t, de�ned as follows:
D� = D; and Dt!t0 = [Dt ! Dt0]. 2

De�nition 7 For any t 2 B, de�ne ?t in jM
tj as follows: if t = �, let ?t = ?D;

and if t = t1 ! t2, let ?t : (?t1=M
t1) ! Mt2 as follows: For g : ?t1 ! x in

Mt1 , let ?t(g) = ?t2 ; and for h : g1 ! g2 in (?t1=M
t1), let ?t(h) = 1?t2

. 2

Although ?t is a kind of totally unde�ned function, it is not initial in Mt for
types t 6= �. Functors it : D

t ! Mt and jt : M
t ! Dt, for t 2 B, are de�ned

in [19]; they have the properties below; the last one says it faithfully represents
the functions of Dt within Mt.

Proposition 4 jt Æ it = 1Dt , for every t 2 B. For any t 2 B and a 2 Dt, there is
a unique morphism from ?t to it(a). Given f in Dt1!t2 , a in Dt1 and b in Dt2 ,
then f(a) = b i� it(f)(g) = it2(b), where g is the unique morphism from ?t1 to
it1(a). 2

5 Semantic Module and Morphism Expressions

This section gives a language of \semantic expressions" for higher order modules
over any category of basic modules; the semantics itself is in [19]. The language is
analoguous to intermediate compiled code, or assembly code, a convenient inter-
mediary between user level code and actual meaning. Some of these expressions
are not meaningful; the semantics in [19] says which ones are.

De�nition 8 LetM be a category, with objects the ground (zeroth order) mod-
ules, and let Var be a set of variable symbols. Then the semantic expressions
for modules and for morphisms, denotedModx andMorphx respectively, with
their sets of free variables, are as follows:

1. Module Expressions:
(a) jMj �Modx.
(b) Morphx �Modx.
(c) Given X 2 Var and Ei 2Modx for i = 1; 2, if E1 has no free variables

(i.e., Var(E1) = ;, as de�ned below), then E2[X::E1] 2Modx.

(d) Given E 2Modx and E 62Morphx, then E � V 2Modx.
2. Morphism Expressions:

(a) If v : M ! N in M, then v 2Morphx.
(b) Var �Morphx.
(c) If V1; V2 2Morphx, then V2 Æ V1 2Morphx.
(d) Given V1; V2 2Morphx, X 2 Var and E 2Modx, if Var(E) = ;, then
hV1; V2[X::E]i 2Morphx.

(e) If V1; V2 2Morphx, then V1 � V2 2Morphx.
(f) If V1 and V2 2Morphx, then V13V2 2Morphx.
(g) If E 2Modx, then I(E) 2Morphx.
(h) If Vi 2Morphx for i = 1; :::; 4, then 3(V1; V2; V3; V4) 2Morphx.
(i) Given V 2Morphx and Ei 2Modx for i = 1; 2, if Var(E1) = ;, then

V : E1) E2 2 Exp.
3. Free Variables: For E;E1; ::: 2Modx and V; V1; ::: 2Morphx, the free

variable sets VarE(E) and VarV (V), may be de�ned in a familiar way.
2

We now explain the constituents of the above de�nition:
1. E[X::E0] indicates that a module expression E with interface E0 is a func-

tion of morphism expressions X having source E0, where E0 must have no
free variables; a more familiar notation might be (�X : E0):E.

2. E �V denotes the instantiation of a parameterized module E by a morphism
V , which should have the interface of E as its source; this may also be written
E[V], especially when the notation E[X::E0] has been previously used.

3. I(E) denotes the identity morphism with source E.
4. V : (E1) E2) indicates that V is a morphism from E1 to E2.
5. V2 Æ V1 denotes the composition of the morphism denoted by V1 with that

of V2, where the target of V1 should agree with the source of V2.
6. V13V2 denotes the morphism in the pushout of V1 and V2 opposite V1 (see

below), where V1; V2 have the same ground module source.
7. hV1; V2[X::E]i denotes a morphism from a (higher order) module M to

anotherN , where V1 is a morphism from the interface ofN to E, the interface
of M , and where if f is a morphism from E, then V2[X::E] � f should be
a morphism from M � f to N � (f Æ V1). We may write V2[f] instead of
V2[X::E] � f .

8. 3(V1; V2; V3; V4) is as indicated in the right diagram below,

�
V1 //

V2 ��

�
V23V1��

�

���
� �

V4 ��
V1

oo
V2

// �

���
�

V3

vv

�
V13V2

// � � �
V13V4

oo_ _ _ _ _
V23V4

//_____ �oo_ _ _ _ _ _ _ _ _ _ _

3(V1;V2;V3;V4)

hh

where the two squares are pushouts and where V1 = V3 ÆV2. By the universal
property of pushouts, there is a unique morphism as indicated.

These semantic expressions apply to many di�erent frameworks, not just alge-
braic speci�cation. Although di�erent frameworks may require di�erent sca�old-
ing, we included pushouts because of BOBJ.

Example 11 Examples 3 and 4 de�ned modules SETW and LIST, respectively;
here we give semantic expressions for them. Let SETW-BODY be the union of
SETW with WEIGHT, with i : WEIGHT! SETW-BODY the inclusion in Th. Then the
semantic expression for SETW is (i3X)[X::WEIGHT]. Similarly, the expression for
LIST is (j3X)[X::TRIV], where j is the inclusion of TRIV into LIST-BODY, which
is the union of TRIV with LIST.

Example 4 de�ned SETW-TO-LIST. Let d : TRIV! WEIGHT send Elt to Thing,
and de�ne u : SETW� BODY! j3d as follows, where j is as above: Nat and Thing

map to themselves; Setmaps to List; emptymaps to new; insertmaps to cons;
and has maps to contains. Then the semantic expression for SETW-TO-LIST is
(d; (3(i; j � d; u; X))[X::WEIGHT] : SETW) LIST. 2

Example 12 The semantic expression for second order telescope J ! I !M ,
with F0 : J ! I , F1 : I !M , is F = ((Y � I(J))3F1)[Y::((X3F0)[X::J])]. 2

The full version of this paper [19] has semantic details showing how to compute
abstract modules from semantic expressions, and semantic expressions from al-
gebraic speci�cations.

References

1. Rod Burstall and Joseph Goguen. Putting theories together to make speci�cations.

In Raj Reddy, editor, Proceedings, Fifth International Joint Conference on Arti-

�cial Intelligence, pages 1045{1058. Department of Computer Science, Carnegie-

Mellon University, 1977.

2. Mar��a Victoria Cengarle and Martin Wirsing. A calculus of higher order param-

eterization for algebraic speci�cation. Bulletin of the Interest Group in Pure and

Applied Logics, 3(4):615{641, 1995.

3. Manuel Clavel, Francisco Dur�an, Steven Eker, Patrick Lincoln, Narciso Mart��-Oliet,

Jos�e Meseguer, and Jos�e F. Quesada. Maude: Speci�cation and programming in

rewriting logic. Theoretical Computer Science, 2001.

4. CoFI Task Group on Semantics. CASL { the common algebraic speci�cation lan-

guage, 1999. http://www.brics.dk/Projects/CoFI/Documents/CASL.

5. R�azvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report: The Language, Proof

Techniques, and Methodologies for Object-Oriented Algebraic Speci�cation. World

Scienti�c, 1998. AMAST Series in Computing, Volume 6.

6. Derek Dreyer, Karl Crary, and Robert Harper. A type system for higher-order

modules, 2002. Submitted for publication.

7. Steven Garland. LP { the Larch prover: version 3.1, 1995. MIT, Laboratory for

Computer Science, http://larch.lcs.mit.edu:8001/larch/LP.

8. Joseph Goguen. Mathematical representation of hierarchically organized systems.

In E. Attinger, editor, Global Systems Dynamics, pages 112{128. S. Karger, 1971.

9. Joseph Goguen. Abstract errors for abstract data types. In Eric Neuhold, edi-

tor, Proceedings, First IFIP Working Conference on Formal Description of Pro-

gramming Concepts, pages 21.1{21.32. MIT, 1977. Also in Formal Description of

Programming Concepts, Peter Neuhold, Ed., North-Holland, pages 491{522, 1979.

10. Joseph Goguen. Parameterized programming. Transactions on Software Engineer-

ing, SE{10(5):528{543, September 1984.

11. Joseph Goguen. Suggestions for using and organizing libraries in software de-

velopment. In Steven Kartashev and Svetlana Kartashev, editors, Proceedings,

First International Conference on Supercomputing Systems, pages 349{360. IEEE

Computer Society, 1985. Also in Supercomputing Systems, Steven and Svetlana

Kartashev, Eds., Elsevier, 1986.

12. Joseph Goguen. Types as theories. In George Michael Reed, Andrew William

Roscoe, and Ralph F. Wachter, editors, Topology and Category Theory in Computer

Science, pages 357{390. Oxford, 1991. Proceedings of a Conference held at Oxford,

June 1989.

13. Joseph Goguen and Rod Burstall. Institutions: Abstract model theory for speci-

�cation and programming. Journal of the Association for Computing Machinery,

39(1):95{146, January 1992.

14. Joseph Goguen, Kai Lin, and Grigore Ro�su. Circular coinductive rewriting. In

Automated Software Engineering '00, pages 123{131. IEEE, 2000. Proceedings of

a workshop held in Grenoble, France.

15. Joseph Goguen and William Tracz. An implementation-oriented semantics for

module composition. In Gary Leavens and Murali Sitaraman, editors, Foundations

of Component-based Systems, pages 231{263. Cambridge, 2000.

16. Joseph Goguen, Timothy Winkler, Jos�e Meseguer, Kokichi Futatsugi, and Jean-

Pierre Jouannaud. Introducing OBJ. In Joseph Goguen and Grant Malcolm,

editors, Software Engineering with OBJ: Algebraic Speci�cation in Action, pages

3{167. Kluwer, 2000.

17. Robert Goldblatt. Topoi, the Categorial Analysis of Logic. North-Holland, 1979.

18. Rosa Jimin�enez and Fernando Orejas. An algebraic framework for higher-order

modules. In Jeannette Wing, Jim Woodcock, and Jim Davies, editors, Proceed-

ings, FM'99, volume 1709 of Lecture Notes in Computer Science, pages 1778{1797.

Springer, 1999.

19. Kai Lin and Joseph Goguen. Semantics and implementation of higher order param-

eterized programming. Technical Report CSE2002{0743, University of California

at San Diego, July 2002.

20. David MacQueen and Mads Tofte. A semantics for higher-order functors. In

European Symposium on Programming, volume 788 of Lecture Notes in Computer

Science, pages 409{423. Springer, 1994.

21. Jos�e Meseguer and Joseph Goguen. Initiality, induction and computability. In

Maurice Nivat and John Reynolds, editors, Algebraic Methods in Semantics, pages

459{541. Cambridge, 1985.

22. Donald Sannella and Martin Wirsing. A kernel language for algebraic speci�ca-

tion and implementation. In Proceedings, Eleventh Colloquium on Foundations of

Computation Theory, pages 307{328. Springer, 1983. Lecture Notes in Computer

Science, Volume 158.

23. William Tracz. lileanna: a parameterized programming language. In Proceed-

ings, Second International Workshop on Software Reuse, pages 66{78, March 1993.

Lucca, Italy.

