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ABSTRACT
A wide variety of in-network services have been developed for
RMT-based switching hardware, almost exclusively through the
P4 language and ecosystem. Many of these applications maintain
state in switch memory, a scarce shared resource. As with any
other network resource, varying traffic demands necessitate re-
allocations, yet the P4 ecosystem is not well suited for dynamic
resource management: Modifying the set of services deployed on
a switch using P4 requires the network operator to prepare a new
binary image and re-provision the switch, disrupting all existing
traffic. We present an alternate approach—using techniques from
capsule-based active networking—to programming RMT devices
that enables non-disruptive (re)allocation of switch memory at time
scales that are much faster than P4 compilation without operator
intervention. We use P4 to implement a single, shared runtime on
commodity RMT hardware that interprets instructions received
via the switch data plane to deliver a variety of exemplar services
including caching, load balancing, and network telemetry. Our
prototype implementation is able to dynamically provision dozens-
to-hundreds of instances of simultaneous stateful services at the
timescale of seconds.
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1 INTRODUCTION
Despite the availability of programmable switch hardware from
a variety of vendors [1, 10, 44], there is considerable uncertainty
regarding the viability of operator-managed service deployment.
The P4 [8] ecosystem has enabled the development of a vast spec-
trum [22] of in-network services that can be compiled and installed
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on programmable switches such as those based on the reconfig-
urable match table (RMT) model [9]. Yet, when P4 is employed
on currently available ASICs, it is not possible to alter the set
of services deployed on a switch—or reallocate resources among
them—without operator intervention. While Intel Tofino-based
switches [1] can be re-provisioned with relatively brief (𝑂(50-ms))
impact to traffic forwarding [5], each potential service combination
must be developed and compiled independently, a complicated and
time-intensive process. As a result, the existing P4-based service-
deployment model limits the potential of modern programmable-
switch hardware: there is no practical way to adjust a switch’s
service set without deep operator involvement, dramatically limit-
ing the utility of hardware programmability in many networks and
undermining the value proposition [11, 21].

In most environments, switches are shared resources, and
what is needed is a way to alter the set of services (i.e., multi-
programmability) and the resources allocated to each at runtime,
without disrupting traffic forwarding or the functionality of exist-
ing services. Prior research on runtime RMT reconfiguration has
pushed in three distinct directions: hardware extensions to support
hit-less reprogramming [5, 17, 37, 41], software virtualization to
enable multi-programming [20, 45, 46], and dynamic resource al-
location among a fixed set of services [23, 47]. While promising,
the limitations and overheads (e.g., additional crossbars) of novel
hardware-based approaches are not yet fully understood—nor is
any such device commercially available. Virtualization, on the other
hand, has been demonstrated on commodity hardware. However,
practical use cases for runtime multi-programming also require
dynamic resource management which existing virtualization sys-
tems do not provide. Conversely, published approaches to dynamic
memory management do not support runtime programmability.

We present an alternative approach to service deploy-
ment that enables existing RMT-based hardware to support
multi-programmability and dynamic resource management: Ac-
tiveRMT [15]. Rather than target the natively supported RMTmodel
through the P4 language, in ActiveRMT services are expressed in a
custom instruction set that is interpreted by the switch’s data plane.
Services—in the form of code and data—are delivered by clients
to the switch as in (capsule-based [38]) active networking. These
programs are synthesized at the client on-demand according to re-
source allocations determined by the switch and communicated to
the client through control packets. The switch runs a single, shared
runtime (written in P4) that parses active packets, enforces memory
isolation between services, and interprets program instructions in
the data plane. The switch control plane handles admission control
and resource allocation when services arrive and depart.

In ActiveRMT, program instructions are executed at line-rate
directly on RMT stages one-by-one as the packet flows through
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the switch pipeline: the order of instructions dictates the stage in
which each instruction will execute. Because switch resources are
stage-local, a service’s program needs to be dynamically synthe-
sized based upon its resource allocation. Conversely, the potential
allocation for any service is constrained by the semantics of its
program: a program that needs to, e.g., store a value on the switch
after computing a function based upon both packet contents and
existing switch state cannot be allocated memory in only one stage:
it needs to first read the prior state and compute the new value
before it can store the result. As a result memory allocation and
service synthesis are symbiotic: clients express constraints regard-
ing their desired allocation and the switch attempts to satisfy them
while minimizing disruption to already admitted services. Isolation
is ensured by requiring clients to re-target memory access instruc-
tions (akin to linking) as part of the synthesis process upon receipt
of an allocation; the switch need only enforce protection.

Without requiring any changes to hardware, ActiveRMT is able
to express services as capable as those implemented using P4—
including caching [26], load balancing [3], and network teleme-
try [35]—while supporting multi-programming. We are able to
make efficient use of switch resources by synthesizing program
instantiations at each client that best fit with services already exe-
cuting at the switch; our prototype is able to accommodate over a
hundred concurrent services on a five-year-old switch (Section 6.1).
Time to deployment for new services is comparable (Section 6.2) to
published reconfiguration times for approaches using hardware ex-
tensions [37, 41], and resource overheads are much lower (Section 5)
than in prior virtualization approaches [20, 45]. Accommodating
new services does not disrupt network operation: only services—if
any—whose allocations were adjusted to make room are affected
(Section 6.3). This work does not raise any ethical issues.

2 MOTIVATION AND PRIORWORK
Programmable switches are network resources and, hence, must be
shared among their users. This problem is multi-dimensional. In
the rest of this section, we cover some of the related work that falls
within the space of potential solutions.

2.1 Modular Programming
A trivial approach to deployingmultiple services is tomanually com-
bine them into one monolithic P4 program, but custom-crafting pro-
grams for each possible service combination is intractable. `P4 [36]
supports modular program composition by presenting a homoge-
nized logical architecture and uses match-action tables to provide
generic packet-processing capabilities. P4All [23] similarly extends
the P4 language with support for elasticity and modular program-
ming: each independent program can make the most efficient use of
switch resources by using elastic data structures that are designed to
maximize memory utilization. P4Visor supports deploying multiple
versions of the same service simultaneously for testing [46].

While these approaches enable modular composition, they do
not solve the chief drawback of P4-based approaches: the time to
deploy a novel combination of services—even if each individual
service has been previously designed, debugged, and even deployed
alongside a different set of services—remains dominated by the

process of materializing a particular composition. Due to their var-
ious resource constraints, mapping non-trivial P4 programs onto
RMT devices can be challenging [34], often requiring significant
programmer expertise and compilation times on the order of min-
utes requiring sophisticated tools such as ILP solvers [27]. As a
result, this custom compilation typically must be conducted by the
operator with full access to and ability to modify the source code
for each individual service. Chipmunk [18] presents an alternative
(combinatorial) approach to finding feasible mappings in challeng-
ing circumstances, at a significant cost in terms of computation and
time, further delaying service deployment.

2.2 Architectural Extensions
Even if a suitable binary were readily available, reprogramming
currently available switches disrupts network processing for all
traffic, regardless of whether it depends upon the (set of) services
being (re)provisioned. While existing hardware requires blackout
periods on the order of tens of milliseconds [5], researchers have
proposed alternative architectures [37, 41] to allow incremental
updates to the device without disrupting packet processing at all.
This is achieved by modularizing switch hardware and heavily
multiplexing resources across the switch using crossbars. For ex-
ample, Menshen’s fully isolated packet-processing modules can be
independently re-configured at runtime in less than a second [37].
Unfortunately, such extensions have not made their way into com-
mercially available devices.

Other proposed extensions seek to improve resource efficiency.
For example, dRMT [12] decouples processing from memory, al-
lowing memory to be partitioned among match-action stages ac-
cording to program requirements. Follow-on work demonstrated
that device behavior could be modified without disrupting oper-
ation: FlexCore [41] extends dRMT with primitives to support
partial re-configuration. By breaking down various elements of
a P4 program (i.e., parsers, tables, control-flow) into hardware-
mapped re-configurable units, FlexCore is able to update each of
these elements at runtime with varying degrees of consistency. The
In-situ Programmable Switch Architecture (IPSA) [17] is another
approach to enabling incremental updates to switch configura-
tion and decoupling processor from device memory. IPSA intro-
duces self-contained, independently programmable units known as
Templated Stage Processors (TSPs) that support non-disruptive re-
configurations. The degree of multi-programmability of the switch
(i.e., number of concurrent services) in such approaches, however,
is limited by the number of independent hardware units.

2.3 Virtualization
Our work is similar in spirit to prior attempts to virtualize standard
RMT devices [20, 45, 47]. Like ActiveRMT, Hyper4 [20] employs a
generic P4 “Persona” program that runs on the device and can be
configured to provide various functionality—through table updates
in Hyper4’s case. Their approach works well for a restricted set of
functions like network slicing, snapshotting and virtual networking,
but it lacks support for stateful processing required by a large num-
ber of services. Moreover, the use of resubmission to parse packets
consumes switch bandwidth, and their approach to virtualization
leads to prohibitive overhead [20, 45].
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Virtualizing a subset of switch resources such as stateful memory
is a more tractable approach on current devices. NetVRM [47] virtu-
alizes register memory constructs on programmable switches such
as the Tofino. Memory is dynamically apportioned across a pre-
compiled set of applications at runtime through virtual addressing.
While address translation is performed at runtime on the switch,
page sizes are selected from a fixed set of values determined at com-
pile time. (This, along with a two-stage cost for address translation
is a consequence of the lack of hardware support for virtualization
on current devices.) In addition to the coarse-grained allocations
of stages (i.e. memory cannot be allocated to applications on a
per-stage basis), the virtualization overheads are also significant.

2.4 Resource Allocation
Regardless of how services are deployed, they must share limited
switch resources, which requires not only a mechanism to partition
them but policies to determine appropriate allocations. NetVRM
attempts to determine the appropriate allocation using knowledge
of utility gradients and network traffic. Determining an appropri-
ate utility function is not always straightforward, however [19].
Take the example of a telemetry service such as the count-min
sketch [13]; the width of the filter determines the accuracy of
the filter whereas the depth determines the probability of error in
counting. Neither of these twometrics can be evaluated at runtime—
otherwise it would defeat the need for the filter; they are specified at
allocation time and can only be calculated using a given width and
depth. Similarly, the hit rate of an in-network cache varies based
upon both memory allocation and workload mix, yet the latter is a
complicated function of demand, congestion control, traffic engi-
neering, etc. ActiveRMT adopts a first-come-first-serve approach
wherein new services request resources and the switch performs
admission control; services with elastic demands may have their
allocation reduced as additional services arrive.

2.5 Active Networking
Our approach to service deployment harkens back to design pat-
terns from classical active networking [7, 38, 39]. While the capabili-
ties of currently available programmable switches allow [16, 40] for
a broad range of functionality, we focus on traditional in-network
services like those currently supported by P4. Others have taken
similar approaches in even more restricted domains. Jeyakumar
et al. propose active packets containing Tiny Packet Programs
(TPPs) [25] of up to 20 bytes in length that can take advantage
of stateful processing on RMT devices, but they focus on storing
and retrieving switch attributes to support network telemetry. We
recognize many challenges of active-networking style approaches
remain unsolved; this paper focuses on the issue of memory alloca-
tion and we defer the others to future work.

3 ACTIVERMT
The RMT [9] architecture consists of a sequence of match-action
stages comprising ALUs, stateful register memory and several other
hardware units that can be configured to perform a specific set of
operations. Languages such as P4 [8] and Domino [34] can be used
to write programs that map to such configurations to enable desired
behavior. We overlay a homogenized logical architecture (shown in

Figure 1: ActiveRMT packet processing overview

Figure 1) that enables network packets to determine device behavior
at runtime. To this end, we pre-configure the device (using P4) to
expose a set of abstractions—in the form of instructions—that can
express a range of programs. (Appendix A contains the details of
our instruction set.) Programs can be attached to individual packets
to trigger desired behavior when the packets traverse the switch.

Our design allows for an essentially unlimited degree of multi-
programmability as each packet executes an independent program.
Behavioral and performance isolation follows from RMT’s line-rate
processing wherein each packet has its own independent state—
contained within a packet header vector (PHV)—and does not affect
the processing of other packets. Many services implement state-
ful processing across a set of packets (i.e., flows), however, which
requires programs to access high-speed switch memory, a limited
resource on such devices. As a result, in practice the degree of multi-
programmability is limited by the extent to which switch memory
can be shared among applications. ActiveRMT allows users to write
programs that access partitioned stateful memory. Unlike prior ap-
proaches [47] we are able to dynamically partition memory—both
vertically (within stages) and horizontally (across stages)—resulting
in more efficient resource utilization.

3.1 Program Execution
In ActiveRMT, parsing units on a PISA switch extract code and data
corresponding to an active program and store them in the PHV.
Programs can have variable length and are terminated using a spe-
cial EOF instruction. Parsed code is executed in match-action stages
with one instruction being executed per physical stage. Applica-
tions that contain more instructions than the switch pipeline has
stages are recirculated to continue execution. ActiveRMT defines
three additional 32-bit variables that are maintained in the PHV:
the memory address register (MAR) and two memory buffer regis-
ters MBR and MBR2 that serve as general-purpose accumulators. Our
instruction set is based on the Tofino native architecture (TNA) [4]
and provides capabilities such as hashing and access to ALUs.

Instruction interpretation. Figure 2 illustrates the execution pro-
cess for active programs. From a P4 perspective, the control plane
installs a match table for each stage which matches on the pro-
gram’s FID (see Section 3.3), instruction opcode, contents of the
variables, and additional control flags. Table entries define valid
memory regions for each program and are computed by the control
plane during allocation. We use the contents of MAR to enforce mem-
ory protection and the contents of MBR to facilitate branching. Note
that both these variables can contain the results of previous oper-
ations. We implement instruction decoding using exact matches
in SRAM. Memory protection is enforced through range matching
in TCAMs, which end up being the resource bottleneck for the
number of distinct address ranges that ActiveRMT can support.
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Figure 2: ActiveRMT runtime processing model

A successful match executes a corresponding P4 action which
invokes a subset of primitives defined by the underlying device
architecture. To support runtime programmability, we only employ
primitives where the operands are all obtained from the PHV.

Control flow. Program execution proceeds sequentially through
the stages of the RMT pipeline with the help of control flags. Instruc-
tion execution is enabled by default at each stage, except when there
is branching or the program terminates. The latter is determined by
using a control flag labeled complete. This flag is usually set when
the RETURN instruction is executed. Branching occurs when a CJUMP
instruction or one of its variants is executed. Correspondingly, a
disabled flag is set and subsequent instructions (corresponding to
the alternate branch) are skipped until this flag is reset. A branch
instruction is associated with a label indicating where in the pro-
gram to branch. Due to the sequential nature of program execution,
this location has to be later on in the program. The flag is reset
once this label is encountered.

Once an instruction is executed on a logical stage, a flag is set
in the corresponding instruction header in the packet. This flag
provides indication to the P4 parser that the instruction’s field
should be discarded from the packet. Consequently, active packets
shrink in size after execution—an optimization that can be disabled
if variable packet sizes are undesirable.

The full set of instructions is available in each stage, simplifying
program structure. The downside of this design choice is additional
overhead: A match-action stage in a typical PISA switch consists
of various hardware units that can be used to implement certain
programming constructs. By using match-action tables to perform
instruction decoding, we are not able to take advantage of vari-
ous Tofino optimizations such as checking a condition and using
it to predicate table execution within the same stage. Instead, Ac-
tiveRMT typically requires conditionals to execute in a distinct
stage, although there are certain instructions that can be condition-
ally executed without requiring an additional stage (e.g. CRET). Our
approach similarly cannot parallelize execution within a stage.

Recirculation. There are three factors that determine whether
a program can be run in one pass through the switch or requires
recirculation: The first one is the program length. Programs where
the number of instructions exceed the number of logical stages
require packet recirculation to complete execution. (A switch can
thus directly infer the recirculation cost by observing the program
length.) The next one is the position (on the logical pipeline) where
certain instructions are executed. For example, the return-to-sender
(RTS) instruction should ideally be executed on a stage of the ingress
pipeline, since ports cannot be changed at egress on devices such as

the Tofino. (Otherwise we recirculate packets to change ports with
a corresponding overhead). Finally, instructions that clone packets
(e.g., FORK) also require recirculation.

3.2 Memory Semantics
The ability to access stateful memory from the data plane enables
a large number of interesting applications. On a Tofino switch
register “externs” enable this capability. Each register has its own
stateful ALU for which multiple micro-programs (register actions)
can be defined and selected, on a per-packet basis, from the same
match table. We define memory semantics using four register ALU
actions. (The resulting instructions are listed in Appendix A.4.)

Layout. In our design, we use one large register array to store
memory objects in a particular stage. Based on the constraints
described above, we define a set of register ALU semantics and
corresponding actions which (in our experience) is enough to ex-
press a number of non-trivial applications (Appendix B). Memory
is directly addressable based on the contents of the MAR variable
and protection is enforced by the match tables. Consistent with the
RMT design, a packet (and consequently an active program) can
access only one memory object per stage.

Address translation. We allocate a contiguous region of each
stage to a particular application. The pipeline uses physical address-
ing, so we need to apply a mask and add an offset to translate a
program’s accesses for a given allocation. Because there are no
primitives on the Tofino to perform such an operation, we imple-
ment address translation as part of program synthesis at the client:
the switch communicates the details of an service’s memory allo-
cation at admission, and the client updates its program’s memory
access instructions accordingly.

ActiveRMT can support runtime translation at the switch when
necessary, however, such as to perform address translation on the
result of a hash. We define instructions (Appendix A.6) to apply the
appropriate mask and offset (determined by the switch at runtime
based upon the stage at which the memory access will execute to
ensure memory safety) to the value of MAR.

3.3 Program Encoding
(End-host) clients run a shim layer that is configured with the (set
of) service(s) they wish to employ at the switch. Active programs
do not operate—or even inspect—the TCP/IP payload of packets;
rather, outgoing packets are encapsulated with special headers that
contain the instructions1 and data corresponding to an ActiveRMT
program. The order of instructions is determined based upon the
match-action units and parsers allocated to the service by the switch.
As a result, the shim-layer logic for each service needs to understand
the protocols used by packets upon which it operates, and encode
any relevant data from the payload into the active headers.

Our prototype uses layer-2 encapsulation, following the standard
Ethernet header (i.e., a special VLAN tag). While limiting its use
to local networks, this choice dramatically simplifies interaction
with standard transport protocols such as TCP and UDP and allows
packets to be “activated” just prior to transmission in a traditional

1Such a design adds overhead. We could potentially optimize our solution by caching
code on the switch; However, such enhancements are beyond the scope of this paper.
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Figure 3: ActiveRMT packet header format. Numbers in
parentheses indicate field byte position.

POSIX networking stack. Figure 3 illustrates the ActiveRMT header
format. An initial header marks the beginning of an active program.
This header contains an identifier called FID which is used to iden-
tify an active program along with control flags that determine the
nature of the active packet. One of the control flags specifies the
type of active packet which determines the next set of headers.

There are three types of active packets: allocation requests, allo-
cation responses, and active programs. Allocation request packets
contain a set of headers that describe an active program in terms of
its memory access patterns—the length of the program, the stages
where it accesses memory and the respective demands of each stage.
Allocation response packets contain the start and end locations of
the memory regions allocated in each stage. Active program pack-
ets comprise of a set of argument headers (containing program
data) followed by a sequence of instruction headers which define
the (code for the) active program.

The initial header is 10 bytes while the argument header is 16
bytes (consisting of four 32-bit data fields) followed by a variable
number of instruction headers, each of which contains two bytes: a
one-byte opcode and a one-byte flag. The former is used to identify
the instruction to be executed while the latter is used for control
flow (as described in Section 3.1). In our prototype allocation request
headers are 24-bytes long, consisting of eight three-byte headers
corresponding to eight potential memory accesses. Allocation re-
sponse headers are 160-bytes long and consist of 20 eight-byte
headers encoding the memory regions allocated in each of the 20
stages in our switch pipeline.

3.4 Example: In-Network Cache
Our instruction set allows us to implement a number of useful ser-
vices. Here we present a toy example of an in-network cache that
can store small objects (4-byte values with 8-byte keys) from realis-
tic workloads [2, 42, 43] on a PISA switch. (Additional examples of
active programs can be found in Appendix B.) This service consists
of two separate active programs: one to store key/value objects on
the switch and one to request objects if available. Listing 1 shows
the active program for the latter, which clients attach to application-
level read requests addressed to the server. When inserting the pro-
gram into the packet, the ActiveRMT shim on the client computes
a hash of the desired key (by parsing the application-layer payload
of the packet) and calculates the address of the corresponding hash-
table bucket on the switch based upon the memory allocation it
received when registering the service at the switch (following the
process described in Section 4.3).

Object retrieval. Line 1 of the program loads that address (de-
picted as $ADDR) into the MAR variable. In the next line, the program

1 MAR_LOAD ,$ADDR // locate bucket
2 MEM_READ // first 4 bytes
3 MBR_EQUALS_DATA_1 // compare bytes
4 CRET // partial match?
5 MEM_READ // next 4 bytes
6 MBR_EQUALS_DATA_2 // compare bytes
7 CRET // full match?
8 RTS // create reply
9 MEM_READ // read the value
10 MBR_STORE // write to packet
11 RETURN // fin.

Listing 1: Active program for querying an object cache

reads the first four bytes of the key stored in that bucket (i.e., lo-
cated at MAR) into MBR—and advances MAR accordingly—which is
compared (line 3) with first the four bytes of the requested key
stored in the first data header in the packet. If the bytes are not
equal, it is a cache miss and the program terminates (line 4), causing
the packet to be forwarded to its destination, presumably a server
that will service the application-level request for the same object
contained in the (TCP/IP) payload of the packet. Lines 5–7 repeat
the exercise for the remaining four bytes of the key to check for an
exact match. If the program reaches line 8, it is a cache hit and the
switch is directed to return the packet back to the source. Before
terminating (line 11), however, the program reads the stored value
from the the last byte of the hash bucket (line 9) and writes it into
the first data header (lines 9–10). When the packet is received back
at the client, the shim layer can extract the value from the data
header and construct an appropriate application-layer response
packet. This program can be fully executed in one pass through
the switch since the total number of instructions (11) is less than
the number of logical stages (20) and the RTS instruction maps to a
stage (8) within the ingress pipeline.

Data-plane cache management. Deploying a full-featured in-
network cache service like NetCache [26] using ActiveRMT in-
volves more than just the active program above. Concretely, the
service needs to determine popular items and populate the cache
accordingly. As a P4 program, NetCache can use the switch’s match-
action tables to look up keys; in other words—in the context of key-
value objects—it uses content-addressable memory. The register
memory that ActiveRMT exports, on the other hand, is direct (or
hash-based) addressable. Moreover, match-action table entries can-
not be updated via the data plane and, as such, NetCache requires
a control-plane application to perform cache management.

In NetCache, the P4 program instantiates counters for stored
objects in addition to sketch-based counting of every requested
key while its control-plane application identifies popular items and
updates the set of objects cached in the tables. Match tables can
store an arbitrary set of objects so the exact set of frequent items can
always be maintained. Using register memory requires a different
approach: hash-based addressing like that used in our example
results in collisions. Hence, the problem transforms to storing the
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Figure 4: Mutating a program to efficiently fit within the
available memory region. The red line marks the limit to
which the RTS instruction can be moved.

most-frequent key-value pair among the set of keys that hash to
each bucket [6, 30, 35]. Section 6.3 presents a realization of such
an approach in ActiveRMT. Similarly, while NetCache relies on its
control plane to populate the cache, ActiveRMT employs the data
plane. Section 5 presents a set of RDMA-style client primitives that
enable clients to directly access allocated switch memory. Clients
of our cache service use these primitives to populate the cache in
response to workload changes or due to memory reallocation.

4 DYNAMIC MEMORY ALLOCATION
Active services like in-network caching must store state at the
switch. In the RMT architecture, every logical stage has its own
memory which cannot be shared across stages. ActiveRMT dy-
namically (re)assigns memory to programs at runtime to achieve
multi-programmability.

4.1 Memory Virtualization
ActiveRMT instantiates one large register array in each logical
stage to be used as a dynamic memory pool. Each array fills up
the entire physical memory region of its stage; the total memory
available to active programs is the sum across all logical stages. At
runtime, we accommodate new applications by allocating memory
regions from this set of pools. Since each pool is tied to an execu-
tion stage, memory access instructions require an allocation in the
corresponding stage. For the example program in Listing 1, there
are three memory-access instructions: at lines 2,5 and 9. Each of
these instructions require an allocation in the corresponding stages.

Because each stage is functionally equivalent, we can place any of
the MEM_READ instructions into subsequent stages (and fill gaps with
NOP instructions) without altering program semantics. We refer to
these adjusted programs asmutants and exploit this flexibility when
performing allocations. Figure 4 illustrates how we can mutate
the cache program from Listing 1 to utilize memory in different
stages. In the diagram, an instance of the cache application (P1) was
allocated memory stages𝑀2,𝑀5, and𝑀9. The allocator can avoid
contention from a subsequent instance (P2) of the same application
by mutating the program and inserting a NOP instruction at line 2
to move the memory accesses to stages𝑀3,𝑀6, and𝑀10. As we
show in Section 6.1 mutants facilitate more efficient allocation of

switch resources. (Mutants that push instructions too far ahead
require additional packet recirculations.)

Allocation granularity. Within a stage, the memory pool is split
among currently resident programs. Unlike prior approaches [15,
47], ActiveRMT allows memory regions of arbitrary size, but analy-
sis (Section 6.4) shows that increasing the granularity of allocation
increases the time to compute an allocation. We group a contiguous
set of register indices into a block and allocate memory at the gran-
ularity of fixed-size blocks. In our implementation, we split each
stage’s memory region into 256 blocks. Applications are allocated
a contiguous set of blocks per logical stage. (A non-contiguous
allocation can be achieved using multiple allocations.)

Elasticity. We factor in the nature of the application (character-
ized by its demands) when allocating memory. We defer a sophis-
ticated utility-function-based approach [47] to future work and
classify applications into two types. We refer to applications that
have variable demands as “elastic” and those with fixed demands as
“inelastic”. An application such as the in-network cache described in
Section 3.4 can be categorized as elastic: any amount of memory is
beneficial, the more the better. In contrast, a stateless load balancer
has inelastic demand: the amount of memory needed is based on
the number of VIPs it balances among.

4.2 Allocation Algorithm
When a new service arrives, the allocations for existing applica-
tions may need to be adjusted. For existing applications, this implies
moving data from the old memory region to a new one, resulting in
a temporary disruption of active functionality for the affected ap-
plications. Because inelastic applications never benefit from altered
(even potentially larger) allocations, we pin inelastic applications to
the beginning of the memory pool in each stage. While this does not
prevent fragmentation of memory when such applications depart,
we speculate that inelastic applications (such as a load balancer) are
unlikely to depart frequently. When computing a new allocation
we consider two objectives: maximizing overall switch memory
utilization and ensuring fairness among (elastic) applications.

Problem formulation. Finding a feasible allocation on pro-
grammable RMT targets is non-trivial [18, 23, 27]. Our problem,
although simpler (since we only allocate memory) remains non-
linear. For a given allocation, we consider the set of memory ac-
cesses resulting from all possible mutants of existing (inelastic)
applications and new programs under consideration. Each candi-
date in the feasibility set is encoded as a fixed-length sequence
of constraints on memory stage indices: a lower bound, an upper
bound, and a minimum distance between consecutive memory ac-
cess indices. For example, Listing 1 has𝑀 = 3 memory accesses at
lines 2, 5 and 9, which is the most compact of all possible mutants.
Thus, the lower-bound constraints are LB =

[
2 5 9

]
and the

minimum distances are B =
[
1 3 4

]
. When targeting a logical

pipeline with 𝑛 = 20 stages, the corresponding upper bounds can
be computed as UB =

[
11 14 18

]
. Moreover, if we seek to avoid

recirculation by restricting RTS to the ingress pipeline (i.e., in the
first 10 stages), the upper bound becomes

[
4 7 11

]
.
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We formulate the problem of finding an allocation vector x ∈
{1 . . . 𝑛}𝑀 as follows:

minimize 𝑓 (x) = 𝑔(x) · C
subject to LB ≤ x ≤ UB

𝐴x ≥ B

where 𝐴 ∈ {−1, 0, 1}𝑀×𝑀

𝐴𝑖, 𝑗 = {1, 𝑖 = 𝑗 ;−1, 𝑗 = 𝑖 − 1; 0 otherwise}

𝑔(x) maps from x to an indicator vector y ∈ {0, 1}𝑛 , where 𝑦𝑖 = 1
if 𝑖 ∈ x, and C is a cost vector that represents the current allocation
on the device. Because the objective function is non-linear we
cannot use standard (I)LP solvers. Fortunately, our online allocation
mechanism does not consider relocating existing applications across
stages (i.e. it does not consider their mutants). Hence, a systematic
search over the feasibility region can be performed in polynomial
time,𝑂 (𝑘) where 𝑘 is the number of mutants. Section 6.1 shows we
can find solutions for our example applications rapidly in practice.

Allocation scheme. We compute the cost C of allocating to a par-
ticular stage based on how much “fungible” memory is available in
each stage: in addition to free memory available in a logical stage,
memory previously assigned to elastic applications can be reallo-
cated to other applications. Based on this metric (and consistent
with terminology in the memory-allocation literature), we refer to
an allocation scheme as “worst-fit” if the scheme chooses stages
that have the greatest amount of fungible memory and “best-fit” if
it does the opposite. A corresponding “first-fit” approach greedily
selects the first available memory region in the systematic enumer-
ation sequence. Our prototype uses a worst-fit allocation scheme to
maximize utilization; we evaluate other approaches in Section 6.4.

Fairness. Since elastic applications fill up the memory pool
within a stage, they always maximize utilization within a stage.
Splitting a memory pool among co-located applications within a
stage raises the question of fairness, however.We follow approaches
from classical network resource allocation [14, 28, 29, 31, 32] and
attempt to deliver max-min fairness. Because memory is not arbi-
trarily divisible, we approximate it using progressive filling [32].

4.3 Allocation Process
Clients initiate an allocation with allocation-request packets (de-
scribed in Section 3.3). Each such request encodes the constraints
described above, effectively characterizing the application’s mem-
ory access patterns. When a switch receives such a request, it
communicates the information encoded in the packet to the switch
controller running on the switch CPU (using Tofino message di-
gests in our implementation). The controller serializes requests to
ensure applications are admitted one at a time. The allocation is
computed based on the current occupancy of the switch and the
constraints specified in the request; details of a successful allocation
(or failure notification) are returned to the requesting client in an
allocation response packet. Once a client receives a response, it is
ready to start transmitting activated packets. Section 6.2 shows the
entire process takes on the order of a second.

Reallocation. During an allocation process, an existing appli-
cation may be required to yield some of its previously allocated

memory to an incoming application—or relocate to a different mem-
ory region entirely. We require each service to implement its own
reallocation handler, which may be a simple initialization process, a
straightforward copy, or an involved aggregation computation. To
facilitate the task, ActiveRMT provides a consistent memory snap-
shot. Once a new allocation has been identified, the switch notifies
the impacted applications and “deactivates” their packet programs
(recognized by FID) for the duration of the reallocation process to
avoid inconsistency. Once a client has completed extracting any
state it wishes to save it notifies the switch using special packets
containing only the global active header. Unresponsive applications
are timed out to prevent them from obstructing new allocations.

State extraction. ActiveRMT provides two methods for a client
to extract existing memory contents from the snapshot before its
new allocation is applied and packets “reactivated.” One is via the
control plane (using APIs to access register memory) and the other
is via the data plane (using active packets); we expect most appli-
cations to use the latter. Performing state extraction via the data
plane involves writing active programs that access locations in the
allocated memory region. However, since we can only access one
register index per stage in the data plane, extracting a full snapshot
requires sending multiple packets to retrieve a range of memory
indices; retrieving contents of the entire memory region in our
implementation would require 94K × 20 packets—a modest amount
of traffic at 100 Gbps. Even still, to speed up the process, ActiveRMT
provides primitives to read (and write to) a set of memory indices
(corresponding to a set of stages) at once. The client can ensure
success of the writes by programming each packet to reply back
after a write through the RTS instruction. Packets that fail execu-
tion (i.e., are dropped) do not generate a response. Since reads and
writes are idempotent the client can safely retransmit after a time-
out. Appendix C shows examples of how to use these instructions;
we employ them to populate the cache in Section 6.3.

5 IMPLEMENTATION
The ActiveRMT runtime consists of ≈10K lines of P4 code targeting
a Tofino switch. Our controller is written in Python and comprises
≈1.2K lines of code; we use BFRT Python APIs to interact with the
Tofino ASIC. Client-side support to inject and coordinate active
programs is implemented in ≈3K lines of C using DPDK and VirtIO.

Switch runtime. Our P4-based runtime consumes 100% of SRAM
available for register memory in each stage of our switch. We also
use all of the TCAMs in each execution stage to decode instructions
and enforce memory protection. That said, a full 83% of the match-
action stage resources are available for active program execution.
For context, in the case of a trivial cache application that reads
a key and subsequently a value based on the key, even a native
P4 program cannot make full use of memory in the first and last
stages of the physical pipeline due to read-after-read dependencies,
leading to a roughly 92% resource availability. NetVRM constrains
the total addressable memory region per stage to be a power of two;
as a result the overhead of its virtual address translation means
less than half of the match-action stage resources are available to
application programs [47].
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Client compiler. An active program such as the one described in
Section 3.4 has to be compiled to a set of bytes that can be inserted
into active packets. In addition to generating the byte code, our
compiler for ActiveRMT computes the memory access indices and
ingress constraints (such as those for RTS) which are required to
request allocations. It also synthesizes the appropriate mutant in
response to allocation responses from the switch and performs any
necessary address translation.

Shim layer. Our prototype exports a VirtIO-based Unix network
socket to encapsulate and decapsulate active packets. Packets cor-
responding to supported active services (arriving on the virtual
interface) are identified by their destination ports and parsed ap-
propriately. Active packets arriving on the physical interface are
identified by their active headers and processed accordingly.

We use a state-machine model to keep track of what state a given
service and its constituent programs are in: this could be an opera-
tional state (when active programs are injected into packets being
sent over the wire), a negotiating state (when an allocation is being
requested/released) or a memory-management state (when state
extraction is being performed). Active transmissions are paused
when the client is negotiating or responding to a memory reallo-
cation. Communications with the controller involve a poll-based
mechanism with intervals around 100 `s (which is faster than the
fastest allocation time).

6 EVALUATION
We evaluate the performance of our ActiveRMT prototype along
two distinct dimensions: 1) the effectiveness of its online memory
allocator, including the impact of (re)allocations on existing services,
and 2) the speed with which we can provision new services. We also
include a case study of a full-featured in-network cache service as
well as a comparison of different memory allocation algorithms. All
of our experiments are conducted on a 64-bit, 4-core Wedge100BF-
65X switch built around a Tofino ASIC connected to 20-core Intel
client machines equipped with 128 GB of RAM using 40-Gbps
NVIDIA Mellanox ConnectX-3 Ethernet cards. We allocate switch
memory at a granularity of 1-KB blocks unless specified otherwise.

6.1 Memory Allocation
We evaluate the performance of our memory allocator when faced
with different mixes of three active applications: an in-network
cache [26] (as in Listing 1), stateless load balancer [3], and heavy-
hitter detector [35] (with implementations in Appendix B). The
cache application has elastic memory demand, while the load bal-
ancer and heavy hitter have inelastic demands of 2 blocks (enough
to manage 512 active virtual IPs) and 16 blocks (to achieve less than
0.1% error with high probability) each.

Computation time. We start by ensuring that the computational
task of calculating allocations is sufficiently modest so as to be
performed by a switch’s control processor. (For now we focus ex-
clusively on control-plane operations and return to the data-plane
aspects in subsequent experiments.) We consider two different
allocation policies: one that considers only mutants that avoid
additional recirculations (most constrained) and one that enjoys
maximum flexibility at the cost of additional passes through the

(a) Pure workloads (b) Mixed

Figure 5: Control-plane allocation time for two different poli-
cieswithworkloads containing (a) a single type of application
and (b) a mixture of cache, heavy hitter, and load balancer.

(a) Most constrained (b) Least constrained

Figure 6: Memory utilization of four different workloads
using (a) most- and (b) least-constrained allocation policies.

switch (least constrained). Figure 5a plots the control-plane alloca-
tion time for a sequence of 500 arrivals of cache, heavy-hitter (HH)
and load-balancer (LB) application instances. We term each arrival
event an “epoch”. Allocation time comprises the time to search for
a feasible allocation that admits the newly arrived instance plus
the time to compute the final assignments for all (re)allocated in-
stances. The latter stage takes most of the time, so epochs with
failed allocations are quite brief (𝑂(10 ms)).

As a result, the observed time collapses with the onset of place-
ment failures. While the switch can accommodate several hundred
(elastic) cache instances, inelastic applications exhaust available
resources much earlier: after 23 (most-constrained) and 57 (least-
constrained) instances in the case of heavy hitter and 368 load-
balancer instances with the most-constrained policy. Allocations
that allow recirculations to make the most efficient use of memory,
i.e., those computed by least constrained (lc), take more time. The
least-constrained policy considers 915, 587 and 1149 mutants of the
cache, heavy-hitter, and load-balancer applications, respectively,
compared to 34, 1 and 5 mutants in the most-constrained case.

Pure workloads are unlikely in practice, however. Figure 5b
shows the computation time for a mixed workload (where instances
are chosen uniformly at random among cache, heavy-hitter and
load-balancer applications). We plot the allocation time for each
arrival for 10 random trials as a scatter plot. In addition, we plot the
average time across all 10 trials in each corresponding epoch as an
exponentially weighted moving average (EWMA) with 𝛼=0.1 (solid
lines). After around 50–150 arrivals (depending on the allocation
policy) the switch cannot accommodate further inelastic applica-
tions and the only remaining successful placements correspond
to cache instances. In sum, while certain cases (e.g. purely elastic
applications or a long run of exclusively load-balancer instances)
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(a) Utilization (b) Concurrency (c) Reallocation % (elastic) (d) Fairness (elastic)

Figure 7: Online allocation sequence consisting of applications randomly drawn among cache, heavy hitter and load balancer.
Arrivals and departures follow a Poisson distribution with arrival rates twice that of departures.

can approach a second to allocate, arrivals from practical workloads
are likely to be placed in well under a second regardless of policy.

Utilization. Figure 6 shows the memory utilization of alloca-
tions using both policies—as a fraction of total available switch
register memory—plotted as a sequence of up to 500 application
arrivals. While the pure cache application workload reaches its
maximum memory utilization with as few as 8 instances (9 for least
constrained)—at that point, there are enough different mutants to
place memory allocations in all the pipeline stages its mutants can
access—it can continue to admit all 500 instances. In contrast, the
workload consisting entirely of load-balancer instances does not
reach its maximum utilization until the allocator places 100s of
instances. At that point, however, no further instances can be ac-
commodated. Regardless of allocation policy, the maximum possible
memory utilization depends on the application mix: a single appli-
cation is limited in the number of stages it can utilize by its mutant
set. The cache has mutants that can—at least in a least-constrained
setting—make use of memory in all switch stages; the same is not
true for the other two applications.

In practice, active services will arrive and depart. In order to eval-
uate our allocator in a realistic scenario we generate a sequence of
application arrivals and departures over 1,000 unit-less time epochs.
In each epoch, we draw a number of application arrivals at random
following a Poisson distribution with mean 2 and departure events
from a Poisson distribution with mean 1, resulting in increasing
application population over time. Each new application instance is
one of cache, heavy hitter, or load balancer with equal probability,
while departures are selected uniformly at random from the set of
currently resident applications. Figure 7a shows the utilization at
the completion of each epoch for the two different allocation poli-
cies; we plot the mean across 10 trials; the shaded region depicts
the range between minimum and maximum. We see that while
the least-constrained policy is able to achieve a higher level of
utilization initially, they both converge to about 75%.

Degree of concurrency. Figure 7b plots the number of resident
applications in each epoch. As expected, the overall population
grows over time, with the least-constrained policy able to place
more instances due to its increased flexibility. Not all arrivals can
be placed; after about 100 resident instances the allocator can only
satisfy slightly less than half of the arrival instances. We expect,
however, that practical scenarios are unlikely to require more than a
few tens of applications to be resident at a time on any given switch.
Moreover, ActiveRMT’s virtualization enables it to accommodate

an order of magnitude more applications than the non-virtualized
alternative. For example, a minimal cache application reads a key
from memory, compares it to a value in the packet, and subse-
quently reads the corresponding object. This application requires
two memory stages: one for the key and the other for the value.
When composed into a single monolithic P4 program, we can ac-
commodate only 22 (isolated) applications (across both ingress and
egress pipelines) on our switch. ActiveRMT is able to multiplex
each stage across multiple instances of each mutant, supporting up
to 94K instances of each mutant in theory. Admittedly, the utility
of instances with such miniscule memory allocations is dubious.

Reallocation cost. While inelastic applications are unperturbed
by the arrival of new applications, elastic applications are likely to
be reallocated with some frequency. Figure 7c shows the fraction
of resident cache applications that are reallocated (alternatively,
the expectation that any given instance will be reallocated) in each
epoch in the same set of arrival sequences under both policies. To
enhance visibility we plot the exponential moving average (𝛼 =

0.6). The frequency increases initially but stabilizes after there are
multiple cache mutants inhabiting each stage.

Fairness. Figure 7d plots Jain’s fairness index [24] among the set
of cache application instances at each epoch in the online sequence.
Fairness dips initially as the allocator attempts to fill up as much
of the device memory as possible. Once enough cache instances
have arrived, however—recall that only a third of the resident ap-
plications are cache instances in expectation—allocations converge
to fair shares with the variance hovering above 0.99 in the most-
constrained policy and only slightly lower for least constrained.

6.2 Latency Overhead
The time spent computing an allocation is only a fraction of the
time required to actually provision a new service: the switch must
update its tables and clients need to perform snapshotting on their
respective memory regions.

Provisioning time. Figure 8a shows the total provisioning time for
each application—including any required reallocations of existing
applications—for a sequence of applications arriving and departing
according to a Poisson distribution as before. Provisioning time ini-
tially grows as an increasing number of existing elastic applications
must be reallocated. After almost all memory is being used by some
application, reallocation overhead stabilizes and the allocation time
levels off at slightly over a second.
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(a) Provisioning time for a se-
quence of 60 application arrivals.

(b) Impact of active program
length on round-trip latency.

Figure 8: ActiveRMT latency overheads on a Tofino.

Provisioning time is dominated by the time taken to update
table entries on the switch, including removing old entries and
installing new ones based on the updated allocations. In contrast,
the time required for reallocated applications to perform snapshot-
ting (“snapshot”) is a function of the number of reallocated stages
and remains relatively low. This is because the total amount of
memory that needs to be paged across all (reallocated) applications
remains bounded by the total memory in each stage. We observe
that one-to-two seconds is an order of magnitude faster than P4
compilation time on our hardware. Hence, even if we are able to
(instantaneously) synthesize a composite P4 program comprising
of the requisite application instances, the time to compile it would
be significant. For example, on our hardware it takes it takes 28.79
seconds to compile a single P4 program for the Tofino comprising
22 instances (the maximum we can instantiate) of a semantically
equivalent cache program.

Processing latency. Once provisioned, applications execute on
packets as they traverse the switch, which can introduce additional
forwarding latency. To measure delay we craft active programs
consisting entirely of a varying number of NOP instructions along
with a RTS instruction that causes the switch to respond to the
sender. We inject programs containing 10, 20, and 30 instructions
into 256-byte packets and plot the (client-to-switch) RTT in Fig-
ure 8b. Because these measurements include end-host processing
time, we compare to a baseline (shown in green) where the switch
echos responses without any (active) processing. Our switch can
process 10 instructions in the ingress pipeline, while 20 instructions
require a full pass through the switch; a 30-instruction program
requires recirculation. Latency increases linearly with program
length; each pass through a pipeline adds approximately 0.5 `s.

6.3 Case Study
Section 3.4 presents an active program that provides basic in-
network caching functionality. However, a full-featured caching
service (such as NetCache) requires additional functionality such
as frequent-item monitoring and cache maintenance. Here we de-
scribe an approach to implementing the full service in ActiveRMT
by employing a set of distinct active programs. To use the service,
a client first deploys a frequent-item (i.e., heavy-hitter) monitor to
compute a set of popular objects. After a suitable amount of time, it
can extract the statistics computed by the heavy-hitter program and
use another program to populate the switch with a set of objects
determined to be frequently accessed. Once the cache is populated,

(a) Demonstration of demand-
based allocation for an active in-
network cache application.

(b) Hit rate (solid, left axis) and
throughput (dashed, right axis)
of four cache instances.

Figure 9: Full in-network cache lifecycle.

the client can then begin injecting the program shown in Listing 1
on its application-level requests.

Figure 9a illustrates precisely this scenario. For the entire dura-
tion of the experiment, a client application sends UDP (application-
level) object requests containing eight-byte keys drawn from a Zipf
distribution [2, 42, 43] to a remote server as fast as possible; the
graph plots the fraction of these requests that are instead serviced
by an on-switch cache (i.e., cache hit rate) in blue, with a smoothed
EWMA shown in red. At 𝑇 = 0 seconds, the client deploys the
frequent-item application (using the allocation process described
in Section 4) and activates each of its object requests with this pro-
gram (shown in Appendix B.1). For a particular key requested in the
packet, the program essentially performs a count-min-sketch and
stores the key if the count exceeds a running threshold. The pro-
gram uses packet recirculation [6] to re-access the memory stage
containing the threshold and subsequently update the threshold
(and store the new key). After two seconds, the client performs a
memory synchronization (Section 4.3) to retrieve the thresholds
and their corresponding keys. The client then begins a context
switch to the cache (indicated by the vertical lines), involving deal-
locating the frequent-item monitor and requesting an allocation
for the cache; the process completes in slightly over half a second.
Once notified that the allocation process has completed, the client
uses a separate program to populate the cache with the set of com-
puted frequent items, which takes the remainder of the second. At
that point, the hit rate stabilizes due to the fixed request workload
used in this experiment. (The program that populates the cache
could be injected on arbitrary traffic—including requests—but we
use separate packets in this experiment. Moreover, while there is
only one client in our testbed, in practice any of these operations
could be performed by any instance from a set of clients using the
(shared) cache—or even the server.)

Of course, the entire goal of ActiveRMT is to enable multi-
programming. Figure 9b illustrates a scenario in which four separate
clients conduct the same exercise as above, each installing their
own private cache instance on the same switch, staggered by five
seconds. We run this experiment from a single server and using a
single core each for RX and TX; hence, bandwidth is shared. For sake
of brevity, we omit the frequent-item monitor in this experiment;
each client populates its cache based on known request patterns.
Cache population is done at (multiplicative) intervals starting from
100 ms, rapidly populating the cache on startup. We plot the per-
ceived hit rate of each application (at a granularity of 1 ms) using an
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(a) Application 1 (b) Application 2 (c) Application 3 (d) Applications 1 & 4

Figure 10: Effective hit rate for each of the four application instances in Figure 7. Solid lines indicate the stable average hit rate.

EWMA with 𝛼 = 0.01 against the left 𝑦 axis; per-client throughput
is plotted against the right 𝑦 axis.

Each application instance, on arrival, triggers an allocation on
the switch. The first three instances are able to take advantage of
disjoint mutants (we use a most-constrained allocation policy to
limit bandwidth inflation), thus obtaining exclusive memory re-
gions (stages) and consequently zero disruption. The final instance,
however, is unable to obtain an exclusive set of stages and requires
sharing memory regions with the first one. Since the applications
are elastic, this results in an equal—but lower—hit-rate for the two
co-located instances. (Per-application) throughput is also lower
than the other clients because a smaller fraction of requests are
serviced by the cache as opposed to the application server.

Allocations may disrupt active functionality of concurrent appli-
cations, causing all requests to be forwarded to the server in this
example. Figure 10 illustrates, at finer time scales, the perceived
hit rates of each of the application instances beginning with their
respective arrivals. For the first three arrivals, we observe that the
hit rate starts at zero and then eventually climbs up and stabilizes
at ≈85%. (The intermediate ≈30% hit rate is an artifact of the in-
tervals used in cache population.) The duration for which each of
the applications stay at zero hit-rate corresponds to provisioning
time: the time taken to compute the allocations, perform snapshots,
and update switch tables. Notice that when the final application
arrives, the first one experiences a ≈ 150 ms disruption (at𝑇 ≈ 15.25
seconds). During this time, the first application performs state ex-
traction (Section 4.3) and recomputes the set of objects that need to
be stored in its reduced memory region. Allocation for the incoming
application then resumes and both applications perceive similar hit
rates. Note that the first application can resume operation immedi-
ately after state extraction, while the incoming one has to wait for
the allocation to be applied (table updates, etc.). Overall, each of the
applications (irrespective of their placement) are fully functional
within a second of their arrival.

6.4 Allocation Alternatives
The previous experiments all employ a worst-fit allocation policy
with a fixed granularity. Here we present an analysis of alternatives.

Allocation schemes. As described in Section 4.2 we choose a
program mutant and corresponding stages based on the current
occupancy of the stages. We employ a “worst-fit” (wf) allocation
scheme that attempts to maximize resource utilization. Here we
compare with other allocation schemes including “first fit” (ff) and
“best fit” (bf). The former arbitrarily chooses any feasible allocation

(a) Utilization (b) Reallocations

(c) Fairness (d) Failures

Figure 11: Comparison of first-fit (ff), best-fit (bf), worst-fit
(wf) and reallocation-minimizing (realloc) schemes.

while the latter attempts to maximize per-stage occupancy. We also
evaluate an allocation scheme that attempts to minimize the num-
ber of reallocations required to admit new applications (realloc).
Figure 11 compares the allocation schemes over a simulated set of
application arrivals. Consistent with our previous analyses, appli-
cations arrive for 100 epochs according to a Poisson distribution
with the arrival rate twice that of the departure rate. Application
instances are chosen uniformly at random from the same set of
three example applications. We repeat the simulation ten times and
plot the (aggregate) utilization, percentage of (elastic) applications
that are reallocated, fairness index among elastic instances, and
allocation failure rates across all epochs and trials. As we can see,
worst fit and realloc are competitive in terms of utilization and
reallocations, but worst fit has a dramatically lower failure rate.
Worst-fit fairness trails that of first and best fit, but out-performs
realloc and remains high in the median case.

Granularity. The amount of available memory in each stage is
fixed for a particular instance of the runtime. However, the granu-
larity with which the memory is allocated and, consequently, the
number of memory blocks available in a given stage determines
maximum occupancy and also impacts the time to perform alloca-
tion. The previous experiments use a granularity of 1-KB blocks.
Figure 12 shows the control-plane allocation time for a sequence
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(a) Cache (b) Heavy Hitter

(c) Load Balancer (d) Mixed

Figure 12: Impact of allocation granularity on control-plane
allocation time for four different application mixes.

of 100 applications for four different application workloads with
varying levels of allocation granularity using a most-constrained
policy (c.f. Figure 5). (The switch cannot accommodate 100 heavy-
hitter instances at once at 512 or 1024-B granularity.) The finer the
granularity, the more complex the allocation problem becomes; the
absolute impact varies across application workloads.

7 LIMITATIONS AND FUTUREWORK
While we have demonstrated the technical feasibility of support-
ing a large number of concurrent application instances, we have
implemented only a small number of example services. As such,
it is difficult to speculate on how general our initial instruction
set will prove to be, or how the allocation process may handle
an increased variety of demands. Moreover, practical deployment
requires addressing a number of management challenges.

7.1 Limits to Generality
Internal program state is stored within PHV containers during the
lifetime of a packet within the switch. Functional redundancy re-
quires some of that state to be shared across all active program
processing tables. However, due to the limited size of those contain-
ers and certain other device constraints, the total size of the shared
internal state is also limited, resulting in a tradeoff between the
size of memory words and the maximum number of state variables
(including program arguments) that can be supported.

As mentioned earlier, our design does not allow us to take advan-
tage of some Tofino compiler optimizations that can pack certain
pieces of functionality into fewer stages. One alternative would be
to use a parallel set of register variables and program-data fields,
and, consequently, multiple tables. However, this may require con-
straining certain actions to specific stages, violating functional re-
dundancy and potentially reducing efficiency in terms of utilization.
We leave the evaluation of such alternatives to future work.

Finally, our runtime provides only baseline forwarding func-
tionality and lacks support for many of the protocols often found

on full-featured enterprise switches. Some network operators may
wish to (permanently) install support for additional protocols (e.g.,
MPLS or IGMP). Currently, merging other P4 programs with the
ActiveRMT runtime is only possible manually. For example, we in-
tegrated a subset of L2-forwarding functionality from switch.p4,
but were forced to remove one stage from active program process-
ing and increase the TCAM and PHV usage of the runtime by 3
and 6 percent, respectively. This extended runtime also increases
latency by ≈ 4%. Further enhancements to baseline functionality
could similarly decrease the resources available to active programs.

7.2 Deployment Considerations
Security is an obvious concern when deploying an active network.
Our present model assumes a network where packets can be authen-
ticated and dropped at the edge (e.g. using port-based access control
lists). Where this is not possible, one could consider signing packets
and verifying them at the switch, but the hash functions supported
by our current switch are not cryptographically secure; there is no
reason future hardware could not provide the necessary primitives.
Even if all programs are appropriately authorized, however, recir-
culation provides a vector for one service to impact others in terms
of available bandwidth. While ActiveRMT can impose limits on the
number of recirculations, one could contemplate implementing a
fairness controller that accounted for bandwidth inflation due to
recirculations and rate-limited services appropriately.

In terms of inter-application isolation, RMT enforces behavioral
isolation by design. For the same reasons, however, services such
as firewalls cannot be implemented using capsule-based active
networking, where users inject programs into packets. Options
include installing a trusted host-based module that inserts active
programs at the source as a form of network capability [33] or
by adding a notion of privilege levels to active programs. We are
exploring the latter in ongoing work.

8 CONCLUSION
We enable runtime programmability of modern RMT hardware. By
leveraging capsule-based active networking, our prototype imple-
mentation is able to support dozens-to-hundreds of concurrent,
stateful applications through efficient runtime provisioning of lim-
ited switch memory. Our work provides a new way to dynamically
provision switch resources to deploy in-network functionality with-
out operator intervention and at time scales much faster than the
present P4-based compilation and re-configuration process. We ex-
pect, however, that practical realizations will not be used to enable
arbitrary program execution by individual end users, but rather
the dynamic deployment of application-specific functionality by a
curated set of services.
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Appendices
Appendices are supporting material that has not been peer-
reviewed.

A INSTRUCTION SET
In this section, we describe the set of instructions that we used to
write our active programs. We group our instructions into cate-
gories corresponding to data copying operations, data manipulation
operations, memory access (and manipulation), control flow and
special instructions.

A.1 Data Copying
Assignment instructions effectively move data between PHV con-
tainers (which contain metadata and extracted packet headers).

(1) MBR_LOAD <arg> – Loads the MBR register with the speci-
fied argument from a corresponding argument field.

(2) MBR_STORE – Stores the value of MBR into an argument
field.

(3) MBR2_LOAD <arg> – Loads the MBR2 register with the spec-
ified argument from a corresponding argument field.

(4) MAR_LOAD <arg> – Loads the value of MAR with the speci-
fied argument from a corresponding argument field.

(5) COPY_MBR2_MBR – Copies the value of MBR2 into MBR.
(6) COPY_MBR_MBR2 – Copies the value of MBR into MBR2.
(7) COPY_MAR_MBR – Copies the value of MAR into MBR.
(8) COPY_MBR_MAR – Copies the value of MBR into MAR.
(9) COPY_HASHDATA_MBR – Copies the value of MBR into the

hash metadata fields.
(10) COPY_HASHDATA_MBR2 – Copies the value of MBR2 into

the hash metadata fields.

A.2 Data Manipulation
We enable most compiler primitives in standard P4 and Tofino with
the exception of shift instructions (which cannot be virtualized).

(1) MBR_ADD_MBR2 – Performs an addition of MBR and MBR2
and stores it in MBR.

(2) MAR_ADD_MBR – Performs an addition of MBR and MAR
and stores it in MAR.

(3) MAR_ADD_MBR2 – Performs an addition of MBR2 and MAR
and stores it in MAR.

(4) MAR_MBR_ADD_MBR2 – Performs an addition of MBR and
MBR2 and stores it in MAR.

(5) MBR_SUBTRACT_MBR2 – Subtracts the value of MBR2 from
MBR and stores it in MBR.

(6) BIT_AND_MAR_MBR – Performs an AND operation be-
tween the values of MAR and MBR and stores it in MAR.

(7) BIT_OR_MBR_MBR2 – Performs and OR of MBR and MBR2
and stores it in MBR.

(8) MBR_EQUALS_MBR2 – Performs a XOR of MBR and MBR2
and stores it in MBR. This results in the value of MBR being 0
if MBR = MBR2 else a non-zero value.

(9) MAX – Computes the maximum of MBR and MBR2 and stores
it in MBR.

(10) MIN – Computes the minimum of MBR and MBR2 and stores
it in MBR.

(11) REVMIN – Computes the minimum of MBR and MBR2 and
stores it in MBR2.

(12) SWAP_MBR_MBR2 – Swaps the contents of MBR and MBR2.
(13) MBR_NOT – Performs a bit-wise NOT operation on MBR.

A.3 Control Flow
These instructions facilitate branching and program termination.

(1) RETURN – Marks execution of the program as complete and
indicates that the packet should be forwarded to the resolved
destination. (There may still be additional instructions in the
active packet.)

(2) CRET – Conditionally returns if true (based on value of MBR).
(3) CRETI – Conditionally returns if false (based on value of

MBR).
(4) CJUMP <label> – Performs a conditional jump to the label if

true (based on the value of MBR).
(5) CJUMPI <label> – Performs a conditional jump to the label

if false.
(6) UJUMP <label> – Performs an unconditional jump – similar

to a goto instruction certain programming languages.

A.4 Memory Access
These instructions enable reads and writes to register memory.

(1) MEM_WRITE – Writes the contents of MBR to the memory
location specified by MAR.

(2) MEM_READ – Reads the contents of the memory location
specified by MAR and stores it in MBR.

(3) MEM_INCREMENT – Increments the counter at the respec-
tive stage by the value of INC and stores the result into MBR.

(4) MEM_MINREAD – Reads the value of the register object
and performs a min with the value of MBR.

(5) MEM_MINREADINC – Increments the value of the register
object and performs a min with the value of MBR.

A.5 Packet forwarding
These instructions allow programs to impact packet forwarding.

(1) DROP – Drops the current packet.
(2) FORK – Creates a clone of the current packet and continues

execution – similar to a fork() system call.
(3) SET_DST – Sets the destination for the current packet to the

contents of MBR.
(4) RTS – Performs a return-to-sender operation. The source

and destination addresses are swapped and the packet is
re-directed to the source.

(5) CRTS – Performs a return-to-sender operation if condition
is true (specified by MBR).

A.6 Special Instructions
Here we list a set of instructions that enable specific capabilities
(similar to fixed-functions).

(1) EOF – Marks the end of the active program.
(2) NOP – Performs a no-operation – skips an instruction.
(3) ADDR_MASK – Applies the address mask for the next mem-

ory access.
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(4) ADDR_OFFSET – Applies the address offset for the next
memory access.

(5) HASH – Computes a hash from the values of the hash meta-
data fields.

(6) LOAD_5TUPLE – Loads the hash metadata fields with the
5-tuple values of the executing packet.

(7) LOAD_QDELAY – Loads MBR with the queuing delay re-
ported by the switch.

(8) LOAD_QUEUE – Loads MBR with the queue occupancy.
(9) LOAD_PKTCOUNT – Load the current packet count at the

switch.

B ACTIVE PROGRAMS
Here we list some of the active programs used in the paper.

B.1 Heavy-Hitter Detection (Cache)
Listing 2 shows the active program for computing frequent items.
For our cache application described in Section 3.4 we use 8-Byte
keys and 4-Byte values. Packets carry the 8-Byte value across two
argument fields in the header. Lines 1 and 2 loads this value into
MBR and MBR2 respectively. Lines 3 and 4 copy these values into a
hashing data structure. Lines 5–13 compute the count-min-sketch
update corresponding to the key. The key is hashed in line 5. The
address mask and offset for logical stage 8 is applied on lines 6 and
7 respectively. On line 8, the instruction MEM_MINREADINC performs
the following: a counter is incremented, the count returned is stored
in MBR and the minimum of MBR and MBR2 is stored in MBR2. We do
not use the minimum value now but store the value of MBR in MBR2
for use later. These steps are repeated in lines 10–13. Now, MBR2
contains the minimum and hence the sketched count. The address
of the key is loaded in line 15. In line 16 we load the corresponding
heavy-hitter threshold. The minimum of this threshold and the
sketched count is stored in MBR in line 17. If this value equals MBR2
(line 18) then the count has not exceed the threshold and the pro-
gram correspondingly terminates (line19). Since the first four bytes
of the key was overwritten previously, we reload this value in line
20. We then write this part of the key to memory in line 21. We
perform a trick to avoid another re-circulation by writing the up-
dated threshold next. We first insert two NOP instructions to reach
the memory stage for the threshold. We then copy the threshold
(stored in MBR2) to MBR and write it in line 26. We interleave one of
the instructions for storing the remaining part of the key in line 25.
In lines 27–28 we load the remaining part of the key into MBR and
write it to memory. On line 29 the program terminates.

B.2 Cheetah Load Balancer
For load-balancing we adapt the P4 based approach to the Cheetah
load balancer [3] into our active approach. Consistent with their
implementation, there are two functions – one that selects a server
for a flow and the other that routes flows to the selected server.
We present active programs for both these functions. The server
selection function is inserted into TCP SYN packets while the other
packets carry the active program for flow routing.

B.2.1 Server selection. Listing 3 shows the active program for se-
lecting a server. In this implementation, the VIP pool size, the VIP
pool and the page table for the VIP pool is stored in memory. We

1 MBR_LOAD // load key 0
2 MBR2_LOAD // load key 1
3 COPY_HASHDATA_MBR
4 COPY_HASHDATA_MBR2
5 HASH
6 ADDR_MASK
7 ADDR_OFFSET
8 MEM_MINREADINC
9 COPY_MBR2_MBR
10 HASH
11 ADDR_MASK
12 ADDR_OFFSET
13 MEM_MINREADINC
14 COPY_MBR_MBR2
15 MAR_LOAD
16 MEM_READ // read hh threshold
17 MIN
18 MBR_EQUALS_MBR2
19 CRETI
20 MBR_LOAD // reload key 0
21 MEM_WRITE
22 NOP
23 NOP
24 COPY_MBR_MBR2
25 MBR2_LOAD
26 MEM_WRITE
27 COPY_MBR_MBR2
28 MEM_WRITE
29 RETURN

Listing 2: Active program for computing frequent items for
a cache with 8-Byte keys and 4-Byte values.

use a round-robin scheduler for selecting a server and assume pool
sizes to be a power of two. The program begins with loading the
TCP 5-tuple into a hashing data structure in line 1. The address of
the VIP pool size is then loaded (line 2) into the address variable and
translated accordingly (lines 3–4). The subsequent instruction then
reads the bucket size and saves it to MBR2. In line 7 the a counter
is read and incremented, which is used to select the next server in
a round-robin fashion. The counter value is then loaded into the
address variable (MAR) and the bucket size into MBR (lines 8–9). The
offset for the next server is then computed in line 10 and stored in
MBR and MBR2 (lines 11–12). We then load the address for the VIP
pool page table and apply the necessary translations (lines 13–15).
The location of the VIP pool is read in line 16. In line 17, we apply
the offset (to the server) computed earlier to the base address of the
VIP pool to get the address of the server. We then read and set the
corresponding port to the server (lines 18–19).

Once the server port (identifier) is obtained, we store it in a
“cookie” according to the CheetahLB implementation. The server
port is saved to MBR2 and MBR is loaded with a “salt” (lines 20–21).
This value is loaded into the hashing data structure which contains
the TCP 5-tuple (line 22). In the next line, the hash of the salt and
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1 LOAD_TCP_5TUPLE
2 MAR_LOAD ,$VIP_ADDR
3 ADDR_MASK
4 ADDR_OFFSET
5 MEM_READ // mbr now has bucket size
6 COPY_MBR2_MBR
7 MEM_INCREMENT // mbr now has counter

value
8 COPY_MAR_MBR
9 COPY_MBR_MBR2
10 BIT_AND_MAR_MBR
11 COPY_MBR_MAR // mbr now has round -robin

server index
12 COPY_MBR2_MBR
13 MAR_LOAD ,$VIP_ADDR
14 ADDR_MASK
15 ADDR_OFFSET
16 MEM_READ // mbr now has offset to VIP

pool
17 MAR_MBR_ADD_MBR2 // mar now has address

to VIP
18 MEM_READ // mbr now has VIP
19 SET_DST
20 COPY_MBR2_MBR
21 LOAD_SALT
22 COPY_HASHDATA_MBR
23 HASH
24 COPY_MBR_MAR
25 MBR_EQUALS_MBR2
26 MBR_STORE
27 RETURN

Listing 3: Active program for SYN packets in CheetahLB.

the 5-tuple is computed and stored in MAR. This value is copied to
MBR and a bit-XOR is performed between this value and the server
port (lines 24–25). We then store this value into the packet headers
(line 26) and terminate the program in line 27.

B.2.2 Flow routing. Listing 4 shows the active program for rout-
ing flows on the switch based on the server selected using SYN
packets. Consistent with the CheetahLB approach for stateless load
balancing, we compute a hash of a (switch-specific) salt and the
TCP 5-tuple and XOR it with the cookie to obtain the server port.
Lines 1–2 load the 5-tuple into a hashing data structure and the
salt into MBR, which is loaded into the hashing data structure in the
next line. The hash is computed and stored in MAR in line 4. In line 5
the cookie is loaded from the packet headers and copied to MBR2 in
line 6. We then copy the hashed value into MBR (line 7) and perform
a XOR with the cookie on line 8. The result stored in MBR is then
used to determine the destination port for the packet (line 9). The
program returns on line 10.

1 LOAD_TCP_5TUPLE
2 LOAD_SALT
3 COPY_HASHDATA_MBR
4 HASH
5 MBR_LOAD ,$COOKIE
6 COPY_MBR2_MBR
7 COPY_MBR_MAR
8 MBR_EQUALS_MBR2
9 SET_DST
10 RETURN

Listing 4: Active program for non-SYN packets in CheetahLB.

1 MAR_LOAD ,$ADDR
2 MEM_READ
3 MBR_STORE
4 RETURN

Listing 5: Remotely reading a memory location.

1 MAR_LOAD ,$ADDR
2 MBR_LOAD ,$DATA
3 MEM_WRITE
4 RETURN

Listing 6: Remotely writing a memory location.

C MEMORY SYNCHRONIZATION
A (re)allocation process may involve synchronizing memory re-
gions with the client. We use activate packets containing programs
to read/write memory locations to perform synchronization. We
use direct addressing to access the memory locations. Here we
describe these active programs.

C.1 Memory READ
Listing 5 shows the active program for reading a memory location.
Note that with such a program, memory regions in the first logi-
cal stage are not accessible (due to the MAR_LOAD instruction). The
active compiler performs an optimization to get around this limita-
tion by “preloading” values (such as MAR) before active execution
begins. Thus the program can be re-written in a way that omits the
MAR_LOAD instruction (enabling access to the first memory region).

C.2 Memory WRITE
A corresponding memory write active program can be found in
Listing 6. Notice that in this program, an additional MBR_LOAD in-
struction precedes the memory access instruction. Our “preloading”
trick is applied here as well to MBR, allowing memory writes to
every memory location in the active memory region.
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