

PerEd’09
Proceedings of the Second Workshop on
Pervasive Computing Education

September 30, 2009
Orlando, Florida USA

Held in conjunction with Ubicomp 2009
The Eleventh International Conference on Ubiquitous Computing

William G. Griswold, Editor

Organizers

William G. Griswold
Computer Science and Engineering
UC San Diego
La Jolla, CA 92093-0404 USA

Scott F. Midkiff
Bradley Department of Electrical and Computer Engineering
Virginia Tech
Blacksburg, VA 24061 USA

Gregory Abowd
School of Interactive Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0760 USA

Program Committee

Gillian Hayes UC Irvine, USA
John Krumm Microsoft Research Redmond, USA
Hiroyuki Morikawa University of Tokyo, Japan
Shwetak Patel University of Washington, USA
Aaron Quigley University College Dublin, Ireland

Table of Contents

A Contextual Learning Game for Toddlers Installed on an Interactive Display Attached to a Shopping Cart 1
Gerrit Kahl, Karin Leichtenstern*, Johannes Schöning, Lübomira Spassova, Antonio Krüger
DFKI GmbH (Germany) and *University of Augsburg (Germany)

Ubibot - Prototyping Infrastructure for Mobile Context-Aware Computing 9
Erwin Vedar, W. Brian Evans, William G. Griswold
UC San Diego (USA)

Teaching Smart Environments and Co-operative Ensembles 17
Sebastian Bader, Thomas Kirste, Christoph Burghardt
University of Rostock (Germany)

Introducing TU100 "My Digital Life": Ubiquitous computing in a distance learning environment 26
Mike Richards, John Woodthorpe
The Open University (UK)

Public Digital Note-Taking in Lectures 37
Roshni Malani, William G. Griswold, Beth Simon
UC San Diego (USA)

A Contextual Learning Game for
Toddlers Installed on an Interactive
Display Attached to a Shopping Cart

Abstract
Bored toddlers (children at the age of 1-3) often cause
stress for parents during shopping trips in
supermarkets. Sitting in the front of the shopping cart,
they often grouch or arrogate different articles such as
sweets or toys. The reason for this behavior is often the
lack of useful activities for kids during shopping of their
parents. In this paper, a concept for contextual learning
games is introduced by using an interactive display
attached to the shopping cart's handle bar. With this
game, we want to let toddlers participate in the
shopping process to a certain degree without annoying
their parents. Using RFID technology, the shopping
carts are able to detect the articles and products inside.
These items are reflected in the game played by the
toddlers. We are interested in up to which extent the
integration of real world items in the game can provide
a meaningful learning experience and also the needed
distraction from sweets or toys. As a result, we expect
parents to be more relaxed while their children pursue
a useful experience.

Copyright is held by the author/owner(s).

UbiComp 2009, Sep 30 – Oct 3, 2009, Orlando, FL, USA

Gerrit Kahl
DFKI GmbH
Stuhlsatzenhausweg 3
66123 Saarbrücken Germany
gerrit.kahl@dfki.de

Karin Leichtenstern
Multimedia Concepts and
Applications
University of Augsburg
86159 Augsburg, Germany
leichtenstern@informatik.uni-
augsburg.de

Johannes Schöning
DFKI GmbH
Stuhlsatzenhausweg 3
66123 Saarbrücken Germany
johannes.schoening@dfki.de

Lübomira Spassova
DFKI GmbH
Stuhlsatzenhausweg 3
66123 Saarbrücken Germany
spassova@dfki.de

Antonio Krüger
DFKI GmbH
Stuhlsatzenhausweg 3
66123 Saarbrücken Germany
krueger@dfki.de

2

Introduction & Related Work
Shopping with toddlers, especially young toddlers can
sometimes be irritating and very stressful for their
parents. In the case of parents and toddlers shopping
together, particularly in a supermarket setting, many
parents often have to deal with situations in which the
toddlers want to a have a special product such as
sweets or toys [5]. It is interesting to see that
according to Ebster et al. the influence children wield
over their parents' purchase decisions at the point of
sale is often grossly underestimated by their parents
[5]. Lindstrom [10] estimates that children at the age
between 8 and 14 years spend and cause about
approximately $1.2 trillion worth of sales worldwide
(note that our target group is rather younger, so the
volume toddlers “spend” will be smaller). In the HCI
community as well as in the Ubicomp community, lots
of research has been conducted to investigate the
effects of advertisement on young children [6] as well
as on the interaction with small interactive (mobile)
displays. Brand and Greenberg [2] investigated the
effect of advertisement in a classroom and Adler et al.
[1] present a good overview on that research field.
Ebster [5] suggests that the best way of keeping
toddlers quite is to distract them from the shopping
process. While this can be done by simply showing a
colorful comic movie on the display of a shopping cart,
we are interested in designing games for interactive
displays attached to the shopping cart handle bar that
let toddlers still participate in the shopping process to a
certain degree without requiring too much attention by
their parents. An example of such a display attached to
a shopping cart can be seen in figure 1. We try to lead
the toddler’s attention between the real world and
some games with real world items on the interactive
shopping cart display. While lots of research in the

Ubicomp domain was conducted on how software and
hardware for kids differ from software and hardware fro
adults, the interaction of toddlers with small (7 inch)
interactive displays has not been considered so far.
Most research done up to date has focused on the
design of classical educational software [6] and not on
how toddlers can be involved in learning games in the
context of real world objects and activities. The Parc
Tabs [14] were among the first interactive small

Figure 1: The interactive shopping card attached to the
handle bar of the intelligent shopping car.

3

displays introduced by Want et al. Following the idea of
interactive, mobile displays the Tuister [3] or the
Display Cube [8] were some of the first projects
investigating embedded displays in real world objects.
The work of Leichtenstern et al. [9] explored the role of
the Display Cube in social learning software and the
integration of the Display Cube as interaction and
presentation device. Similar to the display system
attached to our shopping cart are the stationary office
door displays of the Hermes system by Cheverst [4].
Recently, Merrill et al. presented the Siftables [11],
which are small interactive computers with a display,
speaker, wireless communication and motion sensors.

The remainder of the paper is structured as follows:
First, the scenario is described in section 2. Next, we
describe and discuss the design challenges when
developing interactive games for toddlers. Section 4
presents our idea of a contextual learning game.
Finally, section 5 provides an overview of the used
hardware followed by some concluding remarks.

Scenario
Susan Meyer is a 32-years-old bank clerk. She is a
loving wife and mother of a 2-year-old boy named
Sam. On ordinary days, Susan has a lot of stress at her
workplace. After seven hours of hard work, she picks
up Sam from the day nursery. This is the time when
Susan's actual stress often starts because she has to
deal with the daily tasks of a housewife such as
shopping. In these situations, Sam can become a tease.
He is often tired and bored and starts grouching.
Sometimes Sam even starts crying or doing nonsense.
Then, Susan wishes to find ways to overcame this
stress. With our concept, we can help Susan to cope
with such situations. The instrumented shopping cart

detects all goods Susan has inserted. This information
can be used as input for different contextual learning
games, which are displayed on the cart's touch-
sensitive screen. Now, using our concept, Susan can
enter the store and place Sam in the toddler's seat of
the instrumented shopping cart. Then, she can start her
shopping while Sam is calm interacting with hands-on
learning software displayed on the cart's screen.
Normally, Susan buys different healthy fruits and
vegetables such as bananas or apples. Once Susan has
inserted a banana in the shopping cart, different
articles appear on the screen in front of Sam. The
screen shows a picture of a banana but also pictures of
other articles such as an apple or a pizza (see figure 2
(left)). Now, Sam has to select the correct picture by
simply touching it. As a feedback, a smiley is displayed
which represents the correct or wrong response to the
selection (see figure 3). This contextual learning game
is considered to train a toddler's mapping skills of real
and virtual objects. Other possible game types are
illustrated in figure 2 (center, right). The example
illustrates the potential of contextual learning games.
They can hands-on train toddlers' skills and knowledge.
Another example is Memory. Some of the articles in the
shopping cart are displayed as cards, which have been
turned over. The task of Sam is to find the correct
pairs. In this application, Sam's memory skills can be
trained. Overall, we think that contextual learning
games on instrumented shopping carts support a
promising novel platform for human computer
interaction. However, several design challenges are
raised.

Design Challenges
Several design challenges come up when developing
user interfaces for toddlers. The challenges can be

4

summarized in the following two categories: toddlers'
skills and design process issues.

Toddlers' Skills
The first design challenge is the consideration of the
toddlers' skills. As people develop from infants to
adults, their abilities increase over time [7][12][13].
Abilities can be divided into:

 Cognitive Skills and

 Physical Skills.

Toddlers' cognitive skills are often not as trained as
those of older children. Hence, the interface designers
must consider several aspects. For example, the
required memory load must be kept as low as possible,
e.g. by reducing the number of displayed items.
Another aspect concerns the perception and
concentrativeness of toddlers. Toddlers' response time
is lower, than that of older children, which causes
longer interaction times. Thus, interface designers have
to provide clear and easy to recognize information to

support the toddlers' perception and reduce response
times. To increase the children's concentrativeness, the
user interface has to be easy to use but at the same
time absorbing to keep the concentration of the
children. A further cognitive aspect affects the lack of
toddlers' literacy skills. Accordingly, user interfaces
have to provide widgets with icons instead of text.
These icons must indispensably follow toddlers'
knowledge to assure the correct interpretation of an
icon's meaning. For example, different expressions of a
smiley can mean the positive or negative responds to
an interaction. The question is whether children at age
of two or three can understand this feedback.

Apart from toddlers' cognitive skills, physical skills such
as motor skills must also be considered. A lack of
advanced motor skills can cause problems when
interacting with widget displayed on the screen. For
example, trained motor skills are required for the
correct positioning of a widgets. Thus, interface
designer should provide interactions which require less
motor skills such as simple clicks on large widgets and
easy to perform drag and drop operations.

Figure 2: Example for contextual learning games (from left to right): “What have we brought so far?” (game concept described
in the scenario), Memory with “real world items” and “Get the apple” (the toddlers have to collect as many apples as they can
that fall down by moving the small shopping card from left to right).

5

Design Process
The user-centered development requires test with real
users in the different phases of the development
process. Hence, children at the age of two or three
years are required to investigate user interfaces. We
consider problems in recruiting users for several
studies. Whenever the target group is very restricted to
different characteristics, such as age it is time-
consuming to find and recruit enough users to run
evaluations. When conducting user studies with
toddlers, even more challenges emerge. In our
described scenario, toddlers are tired and grouchy
when interacting with the applications. Thus, we require
toddlers with a defined behavior, which can often not

be artificially aroused. Another issue concerns the
execution of applied tasks. Toddlers might not be
disposed to follow the evaluator's instructions. Hence,
controlled studies without any biases can often not be
performed. Apart from that, several evaluation
techniques become unfeasible if user studies are
conducted with toddlers. Subjective methods such as
interviews or questionnaires cannot be used anymore.
Another example is the thinking aloud method which is
not feasible because of the toddlers' faculty of speech.
Accordingly, toddlers' skills exclude any approved
usability evaluation technique. Interface designers can
only conduct observations to investigate toddlers'
behavior. The lack of subjective methods poses a great
challenge for the interpretation of the objective data.

Contextual Learning Games
The described design challenges must be considered
when developing user interfaces for toddlers. In this
section, we describe the consideration of the aspects
when developing a contextual learning game for
toddlers. Our shopping cart provides a touch-sensitive
display, which enables direct and easy to use
interactions such as the selection of items via touching.
Moreover, the screen can be used for drag and drop
operations. These interactions meet aspects of the
toddlers' motor skills. To support their cognitive skills,
we reduce the number of displayed items on the screen
and use icons to meet toddlers' lack of literacy skills.
On the screen, we display large and easy to interpret
widgets, which also support the toddlers' cognitive and
physical skills. Apart from that, another important
aspect of our concept is the combination of the real and
virtual world, which is considered to support toddlers'
mapping skills and meet the toddlers' knowledge.
Toddlers can map real objects of a supermarket such as

Figure 3: A kid interacting with the shopping card: “What’s in?
Fruits or veggies?”

6

a banana in the shopping cart to a widget displayed on
the screen. Accordingly, the combination of the two
worlds can help toddlers to interpret and relate real
aspect to virtual information. Our approach of an
instrumented shopping cart will be evaluated with real
users in field studies. Thus, we do not have the
problem of the recruiting of users because we conduct
the studies in real settings of a supermarket. Moreover,
the conduction of studies can be performed under a
real contextual setting. We can find toddlers and
parents in the required mood as described in our
scenario. Thus, the results of our studies can provide
valuable data to enable correct interpretation of lab
studies.

Setup and Implementation
As an application platform for the toddler games
introduced in this paper, we decided to use the
instrumented shopping cart developed at the
Innovative Retail Lab (IRL). The handle of this shopping
cart is fitted with a 7-inch touch screen, a finger print
scanner and a single button (see figure 4). In a current
shopping cart application, the touch screen is used to
display the customer's shopping list and information
about products placed in the cart. In order to be able to
display personal information, such as a shopping list,
customers have to enroll their fingers using the finger
print sensor. The integrated button is designed to be
used for switching back to an application selection view
(“home” button). Additionally, the cart is instrumented
with two RFID antennas and corresponding tag readers.
One of the readers recognizes passive RFID tags placed
below the flooring of an instrumented supermarket
(which is simulated in the ABC (blinded for review))
and thus enables an indoor tracking of the shopping
cart. Based on this location detection, the customer can

be navigated to products he or she is searching for. The
second RFID antenna is placed under the product
basket and is used to recognize which products are
placed inside the cart. For this purpose, the products
have to be fitted with passive RFID tags. Once a
product is recognized in the basket, information about
it is displayed on the integrated touch screen and the
corresponding shopping list entry is checked. Currently,
our system utilizes the Feig high frequency readers and
tags1. All system components are connected to a
computer, which is also integrated in the shopping cart.
In the current prototype of the instrumented shopping
cart, the touch screen is integrated in the handle in
such a way that the customer pushing the cart can
comfortably see the displayed content. For children
sitting in the shopping cart, this screen orientation is of

1 http://www.feig.de/index.php?lang=en

Figure 4: The intelligent shopping card: The handle of this
shopping cart is fitted with a 7 inch touch screen, a finger print
scanner and a single button (photograph taken from the back,
left). An RFID antenna is placed under the product basket to
recognize which products are placed inside the cart (from below,
right).

7

course unsuitable. Hence, in order to enable children
interaction with the screen, the handle has to be
redesigned so that its orientation can easily be changed
or an extra screen is attached. In this way, the
grownup customers can use the assistance applications
that help them manage their shopping and if they need
distraction for their toddlers, parents can rotate the
display towards their children sitting in the trolley and
start an appropriate game.

A second challenge that has to be addressed is the
childproofness of the application. The toddlers should
not be able to manipulate the application data of their
parents. Accidentally changed or deleted customer
settings would be an annoyance. Therefore, the
application should offer different grades of permission
rights. Obviously, it would be appropriate to use the
already integrated finger print sensor in order to
manage access rights to different applications. Once a
toddler game is started, the customer will have to
enroll his or her finger to get the right to switch to
another application. In this way, an accidental misuse
of the application can be avoided.

Conclusion and Future Work
We have presented a concept for a contextual learning
gaming designed for toddlers using an interactive
display attached to a shopping cart handle bar. We
present design challenges and different sorts of games
that can be played by the toddlers to let them
participate in the shopping process to a certain degree
without annoying their parents. In addition, we present
a hardware solution for the realizing of such interactive
shopping cart games and show design challenges for
the hardware setup as well.

Obviously, the next step is running some evaluations
with parents and toddlers. We already had some young
parents involved in the design process. They gave us
very promising feedback and stated that they would
love to have such an application. They really liked the
idea of reflecting real world items in the games instead
of just showing “standard comics”. In their opinion this
would be an interesting balance between distracting
their kids and involving them in the shopping process
by creating a meaningful in-context learning
experience.

References
[1] C. Atkin. Effects of television advertising on
children. Children and the faces of television: Teaching,
violence, selling, pages 287–305, 1980.

[2] J. Brand and B. Greenberg. Commercials in the
Classroom: The Impact of Channel One Advertising.
Journal of Advertising Research, 34(1), 1994.

[3] A. Butz, M. Groß, and A. Krüger. Tuister: a tangible
ui for hierarchical structures. In Proceedings of the 9th
international conference on Intelligent user interfaces,
pages 223–225. ACM New York, NY, USA, 2004.

[4] K. Cheverst, D. Fitton, and A. Dix. Exploring the
evolution of office door displays. Public and Situated
Displays: Social and Interactional aspects of shared
display technologies, page 141, 2003.

[5] C. Ebster, U. Wagner, and D. Neumüller. Children’s
Influence on In-store Purchases. Journal of Retailing
and Consumer Services, 26(2):145–154, 3009.

[6] M. Helander, T. Landauer, and P. Prabhu.
Handbook of human-computer interaction. Elsevier
Science Inc. New York, NY, USA, 1997.

[7] R. Kail. Developmental change in speed of
processing during childhood and adolescence. Psychol
Bull, 109(3): 490–501, 1991.

8

[8] M. Kranz, D. Schmidt, P. Holleis, and A. Schmidt. A
Display Cube as a Tangible User Interface. In In
Adjunct Proceedings of the Seventh Internation
Conference on Ubiquitous Computing, 2005.

[9] K. Leichtenstern, M. Kranz, P. Holleis, E. Lösch, and
E. Andre. A tangible user interface as interaction and
presentation device to a social learning software. In
Fourth International Conference on Networked Sensing
Systems (INSS ’07), 2007.

[10] M. Lindstrom. Branding is no longer child’s play!
Journal of Consumer Marketing, 21(3):175–182, 2004.

[11] D. Merrill, J. Kalanithi, and P. Maes. Siftables:
towards sensor network user interfaces. In Proceedings
of the 1st international conference on Tangible and

embedded interaction, pages 75–78. ACM New York,
NY, USA, 2007.

[12] L. Miller and P. Vernon. Developmental changes in
speed of information processing in young children.
Developmental Psychology, 33(3):549–554, 1997.

[13] J. Thomas. Acquisition of Motor Skills: Information
Processing Differences between Children and Adults.
Research Quarterly, 51(1):158–73, 1980.

[14] R. Want, B. Schilit, N. Adams, R. Gold, K.
Petersen, D. Goldberg, J. Ellis, and M. Weiser. The
PARCTAB ubiquitous computing experiment. KLUWER
INTERNATIONAL SERIES IN ENGINEERING AND
COMPUTER SCIENCE, pages 45–97, 1996.

Ubibot – Prototyping Infrastructure for
Mobile Context-Aware Computing

Abstract
Mobile context-aware computing requires lots of
infrastructure, making significant term-long student
projects difficult to carry out. In this paper we describe
Ubibot, a flexible publish-subscribe framework
implemented on top of instant messaging. Using
instant messaging as a network substrate provides
many system- and application-layer network
functionalities essentially for free. Ubibot’s publish-
subscribe mechanism includes operators for placing and
delegating computations, making it relatively easy to
add services to a running system and alter its
structure.

Keywords
Mobile computing, context-aware computing,
infrastructure, publish-subscribe.

ACM Classification Keywords
K.3.2 [Computers and Education]: Computer and
Information Science Education--miscellaneous; D.2.11
[Software Engineering]: Software Architectures--
domain-specific architectures. Copyright is held by the author/owner(s).

UbiComp 2009, Sep 30 – Oct 3, 2009, Orlando, FL, USA

Erwin Vedar
Computer Science & Engineering
University of California, San Diego
La Jolla, CA 92093 USA
evedar@cs.ucsd.edu

W. Brian Evans
Computer Science & Engineering
University of California, San Diego
La Jolla, CA 92093 USA
wbevans@cs.ucsd.edu

William G. Griswold
Computer Science & Engineering
University of California, San Diego
La Jolla, CA 92093 USA
wgg@cs.ucsd.edu

10

Introduction
The emerging field of mobile context-aware computing
(MCAC) is exciting to students and researchers.
However, there are many challenges to experimenting
with or otherwise rapidly developing mobile context-
aware software. In contrast to desktop computing,
mobile devices are characterized by small screens, low
memory capacity and computational power [6, 13, 16].
Networking also tends to be unreliable and low in
bandwidth due to device designs and mobility [1, 6, 12,
16]. Experimenters need to account for these resource
constraints, or risk creating software that is unusable or
drains the device. The network connections for these
devices are low speed and not very robust.
Experimenters cannot assume a constant connection,
or a static arrangement of clients and servers.

Yet, coping with these issues from the earliest stages of
development is counterproductive. These issues are
further frustrated in research and educational settings,
where timelines are tight, and not all design issues are
equally interesting (or necessary) to explore. Ideally,
students could prototype a basic application that
validates the basic functionality, and then add support
for the above mobility considerations later in
development, once the basic features had been worked
out.

The problem space of mobile computing is essentially
that of distributed systems, in which participants
connect and disconnect during operation, possibly at a
different access point [4, 12, 13]. Thus the challenge
in solving problems for this space is to create systems
and applications that can function in a dynamic
environment [6]. Connections to wireless networks are
naturally mobile, with weak connections [12].

The ultimate goal for addressing these mobility
problems is to create a meaningful façade for the user.
Users expect their devices to just work as they move
around; the connection and disconnection to the
network should have as little consequence for the user
as possible. If an application is unable to function once
partitioned from the network, it should still handle the
situation in a graceful way. Cooperating applications
need to be able to find each other in the network,
regardless of their host device or the device’s physical
location in the network.

A unique aspect of mobile computing is context
awareness. A key challenge here is converting raw
sensor information to a form that is usable by the
application and user. There can be multiple sensors for
a given context, which are distributed, unconventional,
and heterogeneous [17, 18]. These sensors
communicate in a naturally asynchronous fashion [17]
and the data that they produce is strongly time-
dependent [7]. Furthermore, the array of available
sensors is evolving [14].

Like mobility, the approach to the problems introduced
by context-awareness is again abstraction. In this
case, it is a matter of taking raw data and abstracting it
to a form that can be acted upon programmatically.
This involves dealing with multiple data types, and
writing programs that can act upon context
information.

Several attempts at lowering these barriers have
already been made – mostly focusing on context
awareness – ranging from toolkits to complete
programming suites. Here we discuss just a few as
examples. The Context Toolkit hides much of the

11

specifics of interacting with low-level sensors in order
to enable context-aware applications [8, 9, 18]. It is
based on the idea of widgets, which abstract away the
details of context sensors and the management of
context data to a more easily used form. This approach
enables developers to create reusable solutions for low-
level sensing mechanisms, then separately use those
solutions to create applications. In ActiveCampus,
Griswold, et al., extended beyond the idea of the toolkit
to explore the issues of extensibility and integration
among context-aware applications [14]. Du, et al.,
placed more focus on the development process [10].
The work aimed at creating an entire suite for
developers to work, including a development
environment. In effect, his work is complementary to
ActiveCampus; it addresses the human problem rather
than the technology problems. Topiary addresses the
human problem as well, targeting application designers
rather than software engineers [15]. It attempts to
allow experimentation with different interactions during
early stage design, and to allow rapid iteration utilizing
user feedback.

In complement to these efforts, our goal is to enable
learning through experimentation more quickly and
easily by supporting incremental development.

Ubibot
We hypothesize that many of the problems of mobile
computing cited above can be addressed by an
extensible, dynamically reconfigurable publish-
subscribe architecture.

The well-known publish-subscribe architectural pattern
decouples producers and consumers of context
information through asynchronous event-based

communication, insulating their activities from the low
network speed and (lack of) robustness typical of
mobile networks [5, 11]. A publish-subscribe
architecture naturally enables a system to evolve along
with the sensing capabilities of mobile devices by
incorporating new types of events for publication.

However, these capabilities alone are not enough to
support MCAC. The addition of dynamic reconfiguration
allows devices to introduce new computational
functions at low effort, move computations close to
their data source, or offload them onto the network to,
say, compensate for the limited resources of small,
battery-powered mobile devices. In aggregate, these
features comprise a flexible and easy-to-use
experimentation platform for mobile devices.

We decided to test our hypothesis by creating the
UbiBot infrastructure in C#.Net. An experimenter who
wants to add a new capability or create a new
application need only create a service – a semi-
autonomous plug-in using the libraries included with
UbiBot. The libraries provide the publish-subscribe
communication architecture, and the means for clients
to perform dynamic reconfiguration. The libraries are
designed to be extensible with new data types. Ubibot,
however, does not address the costs and challenges of
developing user interfaces on mobile devices.

Ubibot’s core feature is the service. A service is a
semi-autonomous computational unit that has the
capability to publish events of a prescribed type, as well
as subscribe to events of a type as prescribed by
another service. A full-blown application consists of
one or more services. For example, a mobile phone
application may provide services for location, sound

12

capture, image capture, etc. When an application
consists of just a single service, it may be referred to
simply as a service itself.

Ubibot is built on top of instant messaging (IM).
Instant message provides location-independent naming
of services, asynchronous messaging, and routing
through firewalls. This makes it relatively easy to set
up a basic MCAC system from scratch. All that is
needed is the creation of new IM accounts for each of
the relevant nodes in the system (participating fixed
computers or mobile devices). It is not necessary to
set up a centralized server or related software. Nodes
can host one or more services. A message processor
watching the IM channel parses incoming messages
(event objects) to recognize the destination service and
route appropriately. Messages between services on the
same node are handled with internal routing, avoiding
the IM channel.

What makes Ubibot unique is its ability to “program”
the network through hosting and delegation, enabling
developers to start with a very basic system, and then
gradually evolve it into a more mature form.

Hosting
When a “client” service subscribes to a “server” service,
the server may optionally prescribe that the client host
an additional service on its device, essentially a plug-in.
This plug-in, running locally, can do things for the client
that a purely remote service cannot do effectively. For
example, it may create and operate a user interface, or
it may run a computation locally that would be (more)
expensive to run over the network, such as computing
the running average of a sensor value that the client is
publishing at a high data rate, and re-publishing the

average at a low data rate. This mechanism is a bit
like software agents, and is inspired by Fulcrum [2, 3].

Delegation
Sometimes a client may be able to provide a service to
others, but with high power cost and low reliability, due
to the frequent use of the unreliable network. An
example is a client publishing its location to all
subscribers (See Figure 1). A more efficient solution
would be for the client to publish its location once, and
to have a non-mobile service store and distribute this
information to other services (See Figure 2). However,
such a solution could incur substantial development
delays during initial rapid prototyping. Ideally, the
simple but ineffective location service could be
developed initially, and then later the more robust and
efficient service could be added in later – at low cost –
if desired.

Figure 1. Devices can simply subscribe directly to each others'
locations, but puts a lot of network load on publishers.

13

Figure 2. The device on the left has delegated its location
subscriptions to a proxying locations service, "LS", shedding
network load.

Ubibot’s proxy operator makes this possible. In the
above scenario, the human operator of the naively-
developed client would notice that someone had
developed and deployed a location distribution service,
and then direct the client to delegate location to the
new service. This sets in motion the following changes
to the system’s configuration:

1. The client subscribes to the new location service as
a “producer”, rather than a “consumer” with the
command proxy location, along with a list of
existing location subscribers, if any, as well as
event types that it advertises, e.g.:

proxy location [{latitude, longitude}, GSM] …

2. The location service then subscribes to the client’s
location:

subscribe location [GSM]

3. The client now publishes its location only to the
new location service (indirectly as GSM events in
this case), rather than to the pre-existing
subscribers. The new location service stores this
location and republishes the location to the
subscribers in the client’s stead as {latitude,
longitude} or GSM, just as the client did. Even if
the client drops off the network, the location
service can continue to provide the last-reported
location, albeit with an ever-more-stale timestamp.

4. New location subscriptions received by the client
are forwarded to the location service.

Because delegation enables a service to act on
another’s behalf, some kind of authentication
mechanism is necessary to prevent fraudulent
delegation. This consideration is beyond the scope of
the current paper.

These capabilities of delegation (and hosting for that
matter) require enhancements to the traditional
publish-subscribe prototype. Just as services advertise
the event types that they publish, they must also
advertise that they can support hosting and delegation.
Delegation, however, is not an independent capability,
but rather a meta-service. It asserts that if given
permission to subscribe to a services type, it can
publish that to others. Thus, rather than advertising
location, for example, it advertises proxyable: location,
signaling that rather than accepting direct subscriptions
to its location, subscribe location, it accepts requests to
provide others’ locations, proxy location.

14

In this delegation example, it is important to note that
the client has benefitted from the delegation in several
ways:

 it no longer has to compute {latitude, longitude}; it
can turn off its GPS unit or bypass its GSM 
location translation facility, whichever method it was
employing;

 it uses the network much less to communication its
location, decreasing power consumption;

 if the client drops off of the network briefly, its
location remains available to its subscribers.

Case Study
As a preliminary evaluation of the Ubibot concept, two
students taking a project class were recruited to
develop a location-based reminder service for Windows
Mobile phones (HP 6945’s). As a twist on the usual
reminder service, a reminder could be sent to a buddy,
not just oneself. Reminders could be limited to being
delivered within a given time range, and could be reset
for later delivery if delivered at an inconvenient time.

The students divided their application into server and
client components. The client was developed as a plug-
in that could be hosted by a hosting service on a
phone. The hosting service provided a skeleton GUI
that permitted a “tab” to be plugged in to its display.
The pre-existing client framework also consisted of
services that published the phone’s GPS location and
GSM observations.

At a high level, an instance of the application is set-up
by the phone’s client hosting service, by sending

subscribe reminder to the location service (this may be
initially typed in by the phone’s user or read from a
simple scripting file). The service sends back a handle
to the plug-in, which the client loads. The service also
subscribes to the phone’s location. (Alternatively, the
loaded plug-in could have subscribed to the phone’s
location, allowing it to filter unneeded location events,
when the phone isn’t moving significantly.)

The students were advised to take an incremental
development approach, starting with the most basic
self-reminder application, later adding time windows for
reminders, and then the ability to remind buddies. For
this latter “fancy” feature, its core was simply to
subscribe a chosen buddy to a specific reminder, rather
than one self. The last incremental enhancement to
the application was to delegate the location, as in the
previous example. With a single statement of code, the
students delegated the GPS location calculation to a
GSM  {latitude,longitude} Ubibot service that had
been developed earlier on top of Google’s hidden API
for its “My Location” function of Google Mobile Maps.

The server component consists of five classes,
comprising 469 non-blank non-comment lines of code.
The client component consists of four classes,
comprising 551 lines of code (excluding GUI code
generated by Visual Studio), for a total of 1020 LOC.
About half of the client code is GUI code, and the
students reported that most of their time was spent on
getting the GUI to work properly, which required the
use of C# delegates, a concept unfamiliar to them as
Java programmers. Still, the students had little trouble
completing the project in the 10-week class term, and
most of their effort was concentrated into a few of
weeks scattered across the quarter.

15

The ability to employ incremental development,
especially in adding the “fancy” features of the
application (reminders to buddies and delegated
location calculation), allowed the professor (the third
author) to define concrete milestones throughout the
quarter that could be verified with a running
demonstration, avoiding ugly surprises and saving all
but the last feature from the (unfulfilled) prospect of
failure.

Conclusion
Publish-subscribe addresses many of the challenges of
MCAC, by providing an abstraction of sensors and
communication that minimizes dependencies among
nodes. Adding the features of hosting and delegation
provides an incremental development model for
publish-subscribe that supports prototyping, enabling
students and researchers to initially focus on
application features, and later address issues of
performance and robustness.

Acknowledgements
This project is supported in part by UC MICRO 07-067
in cooperation with Microsoft Research, as well as a gift
from Microsoft Research ER&P and the donation of
phones by Hewlett Packard. We thank John Egan and
Mark Gahagan for their efforts in developing the
location-based reminder program.

References
1. Emmanuelle Anceaume, Ajoy K. Datta, Maria
Gradinariu, and Gwendal Simon. Publish/Subscribe
Scheme for Mobile Networks. In Proceedings of the
second ACM international workshop on Principles of
mobile computing (POMC ’02), pages 74-81, October
2002.

2. R. T. Boyer and W. G. Griswold, "Fulcrum - An Open-
Implementation Approach to Internet-Scale Context-
Aware Publish / Subscribe", HICSS'05: Software
Technology Track, Proceedings of the 38th Annual
Hawaii International Conference on System Sciences,
January 2005.

3. R. T. Boyer,"Open-Implementation Approach to
Internet-Scale Context-Awareness", Ph.D. Dissertation,
June 2005.

4. Mauro Caporuscio, Antonio Carzaniga, and Alexander
L. Wolf. Design and Evaluation of a Support Service for
Mobile, Wireless Publish/Subscribe Applications. IEEE
Transactions on Software Engineering, 29(12):1059-
1071, December 2003.

5.Carzaniga. A., Rosenblum, D. S., and Wolf, A. L.,
Achieving Scalability and Expressiveness in an Internet-
Scale Event Notification Service, 19th ACM Symposium
on Principles of Distributed Computing, pp 219-227,
2000.

6. Oleg Davidyuk, Jukka Riekki, Ville-Mikko Rautio, and
Junzhao Sun. Context-Aware Middleware for Mobile
Multimedia Applications. In Proceedings of the 3rd
international conference on Mobile and ubiquitous
multimedia (MUM 2004), pages 213-220, October
2004.

7. Thanos Demiris. Context Revisited: A brief survey of
research in context aware multimedia systems. In
Proceedings of the 3rd international conference on
Mobile multimedia communications (Mobimedia ‘07),
2007.

16

8. Anind K. Dey and Gregory D. Abowd. The Context
Toolkit: Aiding the Development of Context-Aware
Applications. In the Workshop on Software Engineering
for Wearable and Pervasive Computing , Limerick,
Ireland, June 6, 2000.

9. Anind K. Dey, Daniel Salber and Gregory D. Abowd.
A Conceptual Framework and a Toolkit for Supporting
the Rapid Prototyping of Context-Aware Applications.
Special issue on context-aware computing, Human-
Computer Interaction (HCI) Journal, Volume 16 (2-4),
2001, pp. 97-166.

10. Weichang Du and Lei Wang. Context-Aware
Application Programming for Mobile Devices. In
Proceedings of the 2008 C3S2E conference (C3S2E
‘08), pages 215-227, 2008.

11. Patrick Th. Eugster, Pascal A. Felber, Rachid
Guerraoui, Anne-Marie Kermarrec. The Many Faces of
Publish/Subscribe. ACM Computing Surveys, 35(2): pp.
114-131.

12. Umar Farooq, Shikharesh Majumdar, and Eric W.
Parsons. Engineering Mobile Wireless Publish/Subscribe
Systems for High Performance. In Proceedings of the
The IEEE Computer Society's 12th Annual International
Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems (MASCOTS
’04), pages 295-305, 2004.

13. Abdulbaset Gaddah and Thomas Kunz. A Proactive
Mobility Extension for Pub/Sub Systems. In
Proceedings of the 1st international conference on

MOBILe Wireless MiddleWARE, Operating Systems, and
Applications (MOBILWARE ’08), February 2008.

14. William G. Griswold, Robert Boyer, Steven W.
Brown, and Tan Minh Truong. A Component
Architecture for an Extensible, Highly Integradted
Context-Aware Computing Infrastructure. In
Proceedings of the 25th International Conference on
Software Engineering, pages 363-372, May 2003.

15. Yang Li, Jason I. Hong, and James A. Landay.
Topiary: A Tool for Prototyping Location-Enhanced
Applications. In Proceedings of the 17th annual ACM
symposium on User interface software and technology
(UIST ’04), pages 217-226, October 2004.

16. Gero Muhl, Andreas Ulbrich, Klaus Hemann, and
Torben Weis. Disseminating Information to Mobile
Clients Using Publish-Subscribe. Internet Computing,
8(3):46-53, May-June 2004.

17. Ricardo Couto A. da Rocha, Markus Endler.
Evolutionary and Efficient Context Management in
Heterogeneous Environments. In Proceedings of the
3rd international workshop on Middleware for pervasive
and ad-hoc computing (MPAC 2005), pages 1-7,
November-December 2005.

18. Daniel Salber, Anind K. Dey, and Gregory D.
Abowd. The Context Toolkit: Aiding the Development
of Context-Enabled Applications. In Proceedings of the
SIGCHI conference on Human factors in computing
systems: the CHI is the limit (CHI ’99), pages 434-441,
1999.

Teaching Smart Environments and
Co-operative Ensembles

Abstract
Teaching in the area of ubiquitous computing provides
an interesting and challenging task. The teacher has to
select an appropriate amount and level of material to
be presented during the course and the practical parts
have to be prepared. During practical sessions accom-
panying the courses, many implementation and hard-
ware related problems have to be solved. Here, we pre-
sent a course taught at our university on a master-pro-
gram level, i.e., all students already had some back-
ground on computer science, but not necessarily on the
subjects presented during the course. We describe the
general idea, the topics covered during the theory lec-
tures and the setup chosen for practical sessions.

Keywords
Teaching Ubiquitous Computing, Smart Environments,
Co-operative Ensembles

ACM Classification Keywords
H.5.2. Information interfaces and presentation (e.g.,
HCI): Miscellaneous, I.2.11. Distributed Artificial Intelli-
gence: Multi-Agent Systems, K.3.2. Computer and In-
formation Science Education: Curriculum Copyright is held by the author/owner(s).

UbiComp 2009, Sep 30 – Oct 3, 2009, Orlando, FL, USA

Sebastian Bader,
Thomas Kirste &
Christoph Burghardt
MMIS,
Department of Computer Science
University of Rostock
18059 Rostock
Germany
FIRST.LASTNAME@uni-rostock.de

18

Introduction
During the winter term 2008 / 2009, we taught a
course called “Smart Environments and Co-operative
Ensembles” (SE & CE). The course has been given on a
masters-program level (German “Diplom”) and one
term in Germany lasts 14 weeks in total. All students
had a background in computer science, but a back-
ground on ubiquitous computing has not been as-
sumed. This paper provides a short description of this
course: its theoretical content and the practical work
accompanying it. It should be seen as report on work in
progress because it has been the first time we taught
this course. Even though it was the first time we taught
it, we regard the course as quite successful, resulting in
a number of interesting technology demonstrations de-
veloped by students during the practical part.

This paper is organized as follows. First we describe the
general idea of the course including some background
information on the environment used to teach in. Af-
terwards, we outline the theoretical content covered
during the lectures. Then we discuss the practical part,
i.e., the project work accompanying the course. Finally,
we summarize the lessons learnt while teaching
SE & CE and draw some overall conclusions.

Idea of the Course
In our research, we focus on several aspects of smart
environments and in particular on activity recognition
and device co-operation within ad-hoc ensembles. To
teach some of the basic principles, we designed the
course described here.

We intended to cover two topics, namely multi-agent
systems and smart environments in general. And we
wanted to balance lectures on theory and practical ses-

sions. Those dual aspects are described in some more
detail below. Afterwards and before diving into the de-
tails of the theoretical content of the course, we briefly
outline our smart environment and its capabilities.

Multi-Agent Systems and Smart Environments
The communication between and the interaction of dif-
ferent agents situated in a shared environment plays a
central role in the area of device co-operation in smart
environment and thus also for the field of ubiquitous
computing in general.

The theoretical content of the course was split into two
parts, one focusing on multi-agent systems and the
second focusing on some aspects of smart environ-
ments in general. As described below each part has
been accompanied by practical assignments as well as
student presentations.

During the first part, we taught the basic principles of
intelligent agents and of multi-agent systems, already
with some focus on implementation. Therefore, we did
not teach the full theory behind the scenes, but pro-
vided only the basic ideas and some important conse-
quences.

The second part has been on smart environments.
Again not detailing the theoretical foundations, but con-
centrating on the underlying ideas. In particular, we
taught some basic principles on planning in general, the
basic methods underlying semantic technologies, and
the basics of activity recognition using probabilistic
models like hidden Markov models [14]. The details of
both parts are discussed below.

19

Theory and Practice
As mentioned above, we interleaved theoretical lectures
and practical work. During the first part on multi-agent
systems, the students were taught the basics of MASs
during usual lectures. As assignment, they had to
study different MAS implementations in small teams,
one system per student team. During a presentation
session, each team had to present their system and a
small demonstration showing its usage. For the presen-
tation the students have been asked to describe their
system with respect to the key ideas presented during
the lectures.

The second part of the course has been on smart envi-
ronments in a more general setting. Here, the students
had to implement some new feature for our lab with
the goal to make it smarter or to add a new functional-
ity to it. We did not preselect any topics, but let the
student come up with their own ideas. (Both parts are
further detailed below.)

In both course sections, there was an equal split be-
tween theory and practice: there has been a lecture
(90 minutes) every week and the students has been
asked to spend the same amount on time for their im-
plementations.

Our Smart Environment
Since our smart environment played a central role dur-
ing the course, we provide some details of it here. Our
lab is a smart meeting room, equipped with numerous
sensors and actuators. Furthermore, we have a middle-
ware of our own design, providing an easy to use
access to all devices and their functions.

The lab is equipped with a “fish-eye”-cameras providing
an overview of the whole lab and two pan-tilt zoom
cameras, which can focus on almost all details within
the lab. It also features a Ubisense [5] system to track
the position of the users. The students had also access
to accelerometers [4], Wiimotes [2], and a brain-com-
puter interface [3].

All screens, sun-shades, lamps, some electric plugs,
and the projectors can be controlled remotely. I.e., the
environment can easily be customized to the current
needs. Every wall, screen and sun-shade can be used
as a projection surface and the VGA outputs of all com-
puters can be redirected to any of the projectors. One
of the projectors is furthermore equipped with a re-
mote-controlled mirror, allowing to project a moveable
image onto the floor, the tables and all walls (basically,
it is a kind of everywhere display).

Our middle-ware provides easy access to the infra-
structure of the room. All functions can be controlled
using simple command strings sent to certain sockets.
E.g., sending the string “Lamp 1 toggle on” to this
socket would switch on the first lamp in the lab. Simi-
larly, the user can control all other devices like sun-
shades, screens and projectors.

Theoretical Content
As mentioned above, the focus of the course has been
twofold. On the one hand, we tried to explain the
theory behind smart environments, on the other hand,
we wanted to provide a hands-on experience for our
students. During the (theory)-lectures, we covered the
following topics:

20

Intelligent Agents
In the first lectures, we introduced the notion of an in-
telligent agent. To do so, we basically followed “Artifi-
cial Intelligence: A Modern Approach” [15]. After de-
fining the general notion of an agent, we focused on
properties of agents and their environment. The main
goal of this first part has been to teach the basic prin-
ciples underlying intelligent agents and general ap-
proaches to model them.

Multi-agent systems
After teaching intelligent agents, we moved towards
multi-agent systems (MAS). For this, we used “An In-
troduction to Multi-Agent Systems” [17]. In this part
we focused on two aspects of MASs, namely how com-
munication between agents can be organized and how
agreements can be reached.

Communication between agents
The communication between different agents can of
course be done using different methodologies. In this
course, we showed how it can be realized using Con-
tract Net [1] and Blackboard Systems [9]. We further-
more covered the Speech Act Theory [16] and agent
communication languages like KQML and KIF [8].

Reaching agreements
To show how agreements can be reached we discussed
different forms of auctions and talked about task-ori-
ented domains as a form of “mechanical” negotiation.

After covering the theory of multi-agent systems, we
asked the students to implement a small demo scenario
using a given MAS and, if possible, to integrate it with
our lab environment. This first project work is described
in more details below.

Modal logics
Finally, we introduced modal logic to show how rea-
soning can be done within the abstract agent architec-
tures described previously. Again, this has been done
on a very practical level, not providing the theorems
behind the scenes, but by rather showing how to use
the logic.

Planning
To synthesize a strategy to support the user, the envi-
ronment needs to plan its next actions. Therefore, we
introduced the situation calculus, STRIPS and PDDL,
and discussed typical introductory planning problems
[15].

Semantic technologies
As an outlook beyond the implementation of our smart
environment, we also gave an overview on semantic
technologies. I.e., the core ideas, the problems that
can be approached using those technologies, and the
basic principles behind the scenes.

Activity recognition based on probabilistic models
Finally, we taught the basic principles underlying our
approach for high-level activity recognition, namely
probabilistic models and in particular so called Hidden
Markov Models [14]. Due to a tight integration of this
activity recognition infrastructure with our environ-
ment, it is easy to design such a model for recognizing
activities based on the location of different persons.
Environment reactions can then be triggered be the
recognition of specific activities.

Implementation Work
The practical sessions accompanying the course have
been split into two parts. During the first part, the stu-

21

dents had to study multi-agent systems and during the
second they had to implement their own technology
demonstration within our lab. Both parts are described
in more detail below.

Project Work: Multi-Agent Systems
After discussing multi-agent systems in theory, the
students have been asked to apply them. For this the
students teamed up in small groups with 2 to 3 persons
each. To every team a MAS implementation has been
assigned. The students had to study these system and
to implement a small demonstration showing its capa-
bilities. The following MASs have been studied: The
Open Agent Architecture [7], Jade [6], Jadex [13], MA-
SON [11] and Ascape [12].

The students have been asked to present their system
and if possible a demonstration of it. These presenta-
tions have been scheduled during a single seminar
meeting in the middle of the semester.

One team of students managed to connect their multi-
agent system and our lab, resulting in the demo “Si-
mon Says” as detailed below. The other teams simply
showed how to use the assigned system and presented
simple examples. By studying one system in detail, all
students were able gather experience with the concrete
“look and feel” of multi-agent systems in general and
their usage.

SIMON SAYS
Based on the Jade-System [6], a team of three stu-
dents developed a small multi-agent scenario for con-
trolling our lab’s lighting infrastructure. All lamps in the
room have been represented by an agent. Those agents
have been implemented as simple reflex agents listen-

ing for certain commands, namely the commands to
switch the lamps on and off, or to dim them to a certain
degree. Another agent, “Simon”, has been imple-
mented to send commands to the others using the in-
ternal communication system of the Jade-System.
Those commands to control the lamps have been sent
in more or less random order, resulting in an interest-
ing discotheque-like feeling within the lab.

Even though not that useful in practice, the demon-
stration showed that it is fairly easy to connect a high-
level system with low-level actuators in our lab. And
maybe more important for the course, it motivated the
other teams to come up with a nice demo during the
second practical part.

Project Work: Smart Environments
During the second half of the semester, the students
had to develop a small application running in our lab.
As mentioned above, we did not specify the topics, but
let the students come up with their own ideas. At this
point the students knew how intelligent agent systems
work in practice and how to use our infrastructure. We
furthermore offered to provide any further hardware
imaginable (within reasonable budget limits …). The
resulting demos are detailed below.

WIIMOTE ENVIRONMENTAL CONTROL
The first team designed a room controller based on a
standard Wiimote [2]. Using this controller, the user is
able to simply point at a device and control it. Since our
room is equipped with eight screens that can be moved
up and down and six lamps that can be switched on
and off, a normal remote control for it would need at
least (8 + 6) x 2 = 28 buttons to control those devices.
By simply pointing at the device, we would need only

22

two buttons. For some practical reasons, the student
used 2 buttons for the screens and two different but-
tons for the lamps, but they could show that the con-
troller does indeed work as expected.

This small demonstration could indeed be further re-
fined into a universal remote control for instrumented
environments based on the Wiimote controller. Such a
simple-to-use remote control would provide a simple
and coherent access to complex environments, which is
also cheap to develop.

PLAYING TENNIS IN INSTRUMENTED ENVIRONMENTS
Based on the position tracking in our lab, the second
group developed an interactive tennis game. By moving
from one corner to the other, the students could control
their tennis racket. The movable projector has been
used to project the ball onto the floor. The other pro-
jectors have been used to create a stadium-like atmos-
phere by showing an audience, the referee and the
scoreboard. Furthermore, the students controlled a
pan-tilt-zoom camera to provide a close-up of the cur-
rently active player.

A BRAIN-INTERFACE FOR ENVIRONMENTAL CONTROL
The third team of students bought a simple brain-com-
puter interface, namely the Neural Impulse Actuator
[3]. This interface, measures some electric potential on
the forehead. Those potential include electro-myograms
(potentials arising from muscle control), electro-en-
cephalogram (signals from the nerves in the brain) and
electro-oculogram (signals from eye movement). Using
the controller it is easy to recognize the following ac-
tions: eye movement in general, heavy muscle move-
ment on the forehead or moving the jaw, light muscle

movement on the forehead, heavy thinking, and relax-
ing or closing the eyes.

Although these signal are very noisy and often highly
correlated, they can be successfully used to trigger
simple actions in the room. The students implemented
a simple graphical interface allowing the user to navi-
gate through the room's devices, to navigate through
the actions performable by the selected device and to
finally trigger the selected action. Such a hands-free
controller can for instance be useful for impaired people
in a wheelchair or lying in their beds, where it might
simplify deliberate environment control.

WHITEBOARD INTERACTION USING PEN, CAMERA AND PROJEC-

TOR
As almost all meeting rooms, we have a usual white-
board in our lab. But this whiteboard is also covered by
one of our pan-tilt-zoom cameras and a projector.
Therefore, we can pick up what is being drawn onto it
by video, and we are able augment the “real” drawings
with computer generated projections. Based on this,
two students implemented an enhanced whiteboard
interaction. For the demonstration purpose, two differ-
ent settings have been implemented.

The user can draw lines onto the board and afterwards
place a number of virtual balls onto it. Those (pro-
jected) balls would simply follow the laws of physics
and start to roll down along of the (manually drawn)
lines. This type of interaction would be a nice feature
while teaching physics in school, because it enables the
teacher or students, to interact on a very natural base
with a physical simulation. Of course, systems with
such capabilities have been developed before (e.g.,
[10]), but they are usually based on a special board,

23

able to recognize the drawings of the human and not
on capturing the scene using a normal camera.

The second mode enables the human to draw a maze
onto the whiteboard. Afterwards a number of (pro-
jected) lemmings, as known from the computer game1,
enter the scene and again by following the laws of
physics and those of lemmings, they move through the
maze. Again, this demo is not a computer game which
could be sold, but shows new possibilities for interac-
tion in computer games.

AGENT BASED ENVIRONMENTAL CONTROL
Another group controlled the room's lights by means of
a multi-agent system. Some virtual agents placed in a
simulation of the lab tried to follow the user, i.e., they
tried to move in the room to those positions related to
the user's position in the real world. While moving in
the virtual world, they could switch the lights on and
off, which would switch the real lights too. By trying to
follow the user and by switching on the closest light,
the agents implemented some kind of “follow-me” be-
havior in the room. I.e., the closest light to the user
has always been switched on. Even though this kind of
functionality could have been achieved by simpler
means, it shows again that high-level principles can be
applied to achieve a given goal.

Lessons Learnt
In the introduction we claimed that the course can be
regarded as a successful one. This claim can be justi-
fied by the following observation: All students have
been willingly following the course and the overall mo-
tivation has been very high throughout the whole

1 http://en.wikipedia.org/wiki/Lemmings_(video_game)

course. But the students have not only been motivated,
they have also learnt the basic principles of multi-agent
systems and smart environments.

In particular by mixing theory and practice, the moti-
vation has been kept on a high level. And after imple-
menting their demos, the students knew why they had
to learn the topics covered during the lectures. None-
theless, there are a few points, which can and will be
improved for the following teaching period. Below we
provide a list of things that have been found to be good
while teaching the course and a list of things that can
be improved.

Good Things
The mixture of theory and practice has probably been
the best decision we did while designing the course. We
wanted a well balanced course in which the students
learn the basic principles and on the other hand get the
possibilities to apply them in real-life applications.

Splitting the course into two halves helped also to focus
more on the current part. During the first, more theo-
retical part, the students were taught the fundamentals
of agents and multi-agent systems. Afterwards they
were required to apply their knowledge while preparing
small demonstrations and presentations. These mid-
term presentations did also help to maintain a high lev-
el of attention, because the students had to give a
presentation outside the usual examination periods at
the end of the semester.

The implementations developed during the course have
only been possible due to our simple to use middle-
ware. The salient point here is that our middleware
strives to give a simple and streamlined access to

24

things that should be simple when experimenting with
sensors and actuators in smart environments (in con-
trast to middleware facilities required for delivering a
smart environment to the end user): A simple, socket-
based command environment, using an uncluttered,
human-readable syntax, requiring no fancy graphical
user interface, is highly instrumental for the quick ex-
perimentation with the available devices. Although our
middle-ware is part of our ongoing research projects,
and still in a state of flux, it has been stable enough for
the requirements of the course.

The possibility to develop an own application during the
second part of the course had probably a positive im-
pact on the student's motivation also. The only re-
quirement we imposed was that the application must
do something with the available infrastructure. There-
fore, the student had the free choice while selecting the
sensors and actuators, and while designing their appli-
cation scenario. This resulted, as described above, in a
number of completely different technology demonstra-
tions and in a lot of fun during their presentations.

Things to be Improved
Due to the fact that we did not specify the type of ap-
plication to be developed during the second practical
session, we found a substantial mismatch between
course content and realized applications. Only one team
tried to apply a multi-agent system while controlling
the room. Therefore, it could be better to somewhat
focus the area from which applications might be cho-
sen. As mentioned above, the free choice had a positive
impact on the students’ motivation, but we think it is
possible to acquire more focus without sacrificing too
much motivation.

We believe that focusing the overall scope could im-
prove the course. Some topics covered during the lec-
tures could not be applied while working on the imple-
mentations. E.g., the background information on modal
logics and on planning has not been applied by any of
the teams. Therefore, one could either require that it
should be used while modeling the agents or those top-
ics could be left out.

To prepare the same course for the next term, we will
first fix some minor problems on our middle-ware and
we will probably revise the course content a little. The
middle-ware offers a simple interface to execute ac-
tions, but does not yet allow to access the current state
of the world. Therefore, every agent needs to maintain
an internal representation of the world, which is not
necessarily consistent with the real world itself. But this
can be fixed by adding the appropriate access-
methods. As mentioned above some topics have not
been covered during the practical parts. This could be
enforced by requiring the students to apply the under-
lying ideas within their demos.

Recommendations
To teach a similar course in a different environment, we
propose to equip the environment with a simple to use
middle-ware and to design the course such that the
theoretical content covered during the lectures is ap-
propriate with respect to the available infrastructure.

In particular, the socket-based and human readable
control sequences have simplified the development of
the demonstrations a lot. Without our middle-ware, the
students would probably have spent most of the time
debugging the hardware, which usually results in fru-
stration. More high-level interfaces like web-services or

25

UPNP do also provide a common interface to all availa-
ble devices, but the protocol overhead is much bigger.
Our socket-based interfaces can not guarantee all secu-
rity protocols etc., but those are probably not important
while teaching a beginners course on ubiquitous com-
puting. Those topics could of course be covered but a
simpler interface is probably better since it is easier to
use.

Conclusions
This paper contains a description of our course on
“Smart Environments and Co-operative Ensembles”. In
usual lectures, we covered topics like intelligent agents
and multi-agent systems, logic and semantic technolo-
gies as well as inter-agent communication and negotia-
tion protocols. Small student teams have been con-
fronted with the task to make our instrumented envi-
ronment a little smarter, which resulted in a number of
nice technology demonstration, which are now inte-
grated into our environment.

In this paper we describe both, the theoretical content
covered during usual lectures, and the results of the
practical parts accompanying the course. Probably due
to the mixture of theory and practice and due to the
fact that most parts of the theory had to be imple-
mented in student teams, we observed a constantly
high motivation among all students.

References
[1] FIPA contract net interaction protocol specification.
Technical report, Foundation for Intelligent Physical
Agents, 2002.

[2] http://en.wikipedia.org/wiki/wii remote, JUN 2009.

[3] http://www.ocztechnology.com, JUN 2009.

[4] http://www.sparkfun.com, JUN 2009.

[5] http://www.ubisense.de, JUN 2009.

[6] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa.
Jade - a white paper. Technical report, SEP 2003.

[7] A. Cheyer and D. Martin. The open agent architec-
ture. Journal of Autonomous Agents and Multi-Agent
Systems, 4(1):143–148, March 2001. OAA.

[8] T. Finin, Y. Labrou, and J. Mayfield. Software
agents, chapter KQML as an agent communication lan-
guage, pages 291–316. MIT Press, Cambridge, MA,
USA, 1997.

[9] B. Hayes-Roth. A blackboard architecture for con-
trol. Artificial Intelligence, 26:251–321, 1985.

[10] S. Jeschke, L. Knipping, R. Rojas, and R. Seiler.
Intelligent chalk-systems for modern teaching: in math,
science engineering areas. In Proceedings of ASEE‘06,
2006.

[11] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and
G. Balan. MASON: A multiagent simulation environ-
ment. SIMULATION, 81(7):517–527, July 2005.

[12] M. Parker. What is ascape and why should you
care? Journal of Artificial Societies and Social Simula-
tion, 4, 2001.

[13] A. Pokahr, L. Braubach, and W. Lamersdorf. Multi-
Agent Programming, chapter Jadex: A BDI Reasoning
Engine. Kluwer Book, 2005.

[14] L. R. Rabiner. A tutorial on hidden markov models
and selected applications in speech recognition. Pro-
ceedings of the IEEE, 77(2):257–286, 1989.

[15] S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach. Prentice Hall, 2 edition, 2003.

[16] J. Searle. Speech Acts. Cambridge University Press,
1969.

M. Wooldridge. Introduction to MultiAgent Systems.
John Wiley & Sons, June 2002.

Introducing TU100 ‘My Digital Life’:
Ubiquitous computing in a distance learning
environment

Abstract
In this paper we describe the Open University’s
progress towards delivering an introduction to
ubiquitous computing within a distance-learning
environment. Our work is strongly influenced by the
philosophy of learning-through-play and we have taken
technologies originally designed for children’s education
and adapted them for adult learners, many of whom
will have no formal experience of computer science or
information technology.

We will introduce two novel technologies; Sense, a
drag-and-drop programming language based on
Scratch; and the SenseBoard, an inexpensive hardware
device that can be connected to the student’s
computer, through which they can sense their
environment and display outputs.

This paper is not intended as a detailed discussion of
individual technologies (they will follow in time), rather
it should serve as an introduction to the Open
University’s method of teaching and how we hope to
continue to recruit new computer scientists and
engineers using novel technologies.

Keywords
Ubiquitous computing, distance education, adult
learners, programming

ACM Classification Keywords
K.3.2 - Computer and Information Science Education:
General Terms. Experimentation, Human Factors,
Languages.

Copyright is held by the author/owner(s).

UbiComp 2009, Sep 30 – Oct 3, 2009, Orlando, FL, USA

Mike Richards
Computing Department,
Faculty of Maths, Computing and Technology,
The Open University,
Walton Hall,
Milton Keynes.
MK7 6AA
m.richards@open.ac.uk

John Woodthorpe
Department of Communications and Systems,
Faculty of Maths, Computing and Technology,
The Open University,
Walton Hall,
Milton Keynes.
MK7 6AA
j.woodthorpe@open.ac.uk

27

Distance learning at the open University
With more than 250,000 active students, the Open
University (OU) is Britain’s largest university and is
currently celebrating its 40th Anniversary. The
university offers independently audited qualifications
ranging from introductory certificates, through to
bachelors and postgraduate degrees and doctorates as
well as a range of recognized professional certifications.

All OU undergraduate students study at a distance.
Most courses use printed self-study materials that are
assessed at regular intervals through the course and at
the end. The development of new courses may take a
number of years; with materials going through a large
number of quality assurance procedures in terms of
readability, consistency and accessibility to all students.
This course development process is extremely
expensive and may cost several million Pounds.

Each student belongs to a ‘tutorial group’ that is run by
a part-time, fully-trained ‘associate lecturer’; who in
turn is supported by central academic staff at the
university’s main campus in Milton Keynes. This
scalable approach allows the OU to teach very large
cohorts of students (some courses may have in excess
of 10,000 students during each presentation), whilst
ensuring individual students can receive personalized
professional support.

Unlike most universities, the OU does not require any
previous educational achievements as a condition of
entry; instead offering a range of introductory courses
teaching a basic grounding in subjects as well as key
educational skills which will aid further study. OU
student results compare favourably with comparable
students from conventional universities.

The OU has always been at the forefront of innovation;
not only was it Britain’s first distance education
institution; but it went on to pioneer the use of
educational television and radio programming through
a long-standing relationship with the BBC. During the
1990s the OU trialed many of the Internet
technologies; such as electronic delivery of materials,
computer conferencing and computer marking, which
are now commonplace in other universities [1].

Modernising the open university curriculum
The OU has two, extremely popular entry level courses,
attracting approximately 4,000 students apiece each
year. T175 ‘Network Living’ is an introduction to the
technologies and role of networks in modern society,
whilst Computing offered M150 ‘Data, Computing and
Information’ is a ‘traditional’ computing course
concentrating on acquisition, processing and use of
data.

In mid-2008, a decision was taken to replace the two
courses with a single course reflecting the rapid
technological and societal developments that had taken
place in the last five years. The new course had to fit
into an existing degree programme and to deliver
certain key learning outcomes required for later study;
most notably some experience of computer
programming. However, the method of teaching could
be novel.

Very early on we recognized that ubiquitous computing
would allow us to teach all of our existing learning
outcomes but provide a unique opportunity to
distinguish our introductory offerings from those of any
other university in Britain; where ubiquitous computing
was taught at all, it was only ever taught at a higher

28

level – usually in the final year of study. Ubiquitous
computing provided us with an opportunity to widen
participation in computer science and engineering. If
computers are going to be everywhere and indeed
‘everyware’, then we should attempt to teach the
subject in a manner that would appeal to as large an
audience as possible.

Course development would extend over two years with
the first presentation scheduled for 2011. Creation of
the materials would take approximately one year with
six months given over to developmental testing by
fellow academics, prospective associate lecturers and a
number of existing OU students.

Course Content
From the outset we chose to develop an approachable
course that began when we gave it the name ‘My
Digital Life’. The course team felt that giving students
some sense of ownership would help them engage with
the course materials – and so, the obvious place to
start the six teaching blocks was with the students
themselves and to gradually expand their view until it
encompasses the whole World; showing how ubicomp
has already started to become a reality [2].

Block 1 - Myself

The course starts with a block concerned with our
needs to consume, process and publish information. It
introduces students to the concepts of data and
information and how these are created, distributed and
stored. The concept of personalized information is
central to this block; students will create their own
online ‘home’ and fill it with appealing information that
they want to share with others. In the process they will

learn about the underlying structure of the Internet,
the software that interacts with the Internet and the
way data is encoded into machine-readable forms.

Block 2 - My stuff

The second block expands our view to encompass the
devices we use on a day-to-day basis; from the familiar
personal computer to smart phones, games consoles
and television smart boxes. At their heart each of these
devices is a computer. Uniquely, computers can change
their behaviour depending on what software they are
running.

The block begins by an exploration of the software and
hardware used to create these devices and introduces
students to the principles of computer programming.
The second part of this block is concerned with how we
interact with computers; as well as discussing the
discipline of human-computer interaction (HCI), the
unit explores how smart devices can find and filter
useful information from the overwhelming amount of
material in circulation. Students will learn how to find,
rank and reference information and continue to build
their literacy skills.

Block 3 – My place

Expanding outward again, this block is concerned with
an individual user and how they interact with
computers in a mobile environment. This block provides
an in-depth discussion of ubiquitous computing, using
familiar devices such as mobile telephones and GPS
(Global Positioning System) devices, and exploring
developments including location-based services and
Cloud computing. The block closes with a look at the

29

role of standards and contrasts open and closed source
methods of working, and will provide some examples of
how different business models and ways of working can
co-exist in more than just the area of software
development.

Block 4 – My friends

The second half of the course sees a greater emphasis
on the social aspects of computer technology. This
block discusses how computers allow us to make and
maintain friendships no matter how great the distance
between individuals. The block is devoted to those
relationships we choose to cultivate. It is a discussion
of social computing where information is freely shared
on a consensual basis. It moves on to discuss the more
advanced area of shared spaces that began with multi-
user dungeons and is now epitomized by online virtual
worlds such as Second Life. The block explores what
information people share online and why they wish to
share it. It closes with two explorations; the first being
how social computing is changing the wider world – in
the form of political campaigns fought online; the
second being the explosive growth of online video
games.

Block 5 – My society

Beyond the people we choose to share information
with, there are those with whom we must engage
online whether we choose to or not. This block is
devoted to the growth of the electronic society and how
such a society has positive and negative aspects. Case
studies are used to show how electronic government
can benefit healthcare and to examine the role of the
database in enabling such technologies. This block also
explores the role of the individual in e-society and how

individual rights may conflict with those of the state.
This introduces some of the legal aspects of
computational technology – ranging from protection of
personal data to the importance of copyright. It ends
with a provocative examination of whether the
freedoms created by modern technology are compatible
with the security of individuals and the state. This will
show you how to form arguments from conflicting
evidence and produce your own, researched, opinion on
a controversial topic.

Block 6 – My world

The final block takes the widest possible view of
computing technology and demonstrates how it is
changing the entire world at an unparalleled pace. We
contrast those countries such as Dubai and Singapore
that are wholeheartedly embracing the opportunities of
computer technology with those parts of the world that
face being left even further behind the most developed
countries. Our discussion of this ‘Digital Divide’ is not
just concerned with the divide between countries, but
that found inside countries – between rich and poor,
educated and less educated, old and young. We look at
some projects and technologies that aim to close this
gap. Finally, the course asks opinions; from technology
experts, researchers, science fiction authors and from
students, of what the future holds – will computer
technology lead to a new utopia or to a dystopia?

Teaching ubiquitous computing

We suspected that ubiquitous computing would prove
to be attractive to students – it was new, exciting and
slightly quirky. Unlike longer-established areas of
computing and technology, many of the ubiquitous
technologies being developed are clearly ‘rough around

30

the edges’ and there is the still the possibility that a
newcomer can make a significant contribution to the
field. But we faced two significant challenges;

1. most of our students will come to TU100 without
any computer programming experience – let alone
familiarity with ubiquitous technologies;

2. because all of our students work at a distance, we
cannot offer laboratory sessions where they could use
the expensive electronics components used in most
university ubiquitous computing courses.

Whilst it would be possible to develop a completely
theoretical course, perhaps one supported by video
material, it would be a tragedy if our students could not
get ‘hands-on’ experience of ubiquitous computing
technologies.

Sense
Current first level students studying M150 use
JavaScript for their programming exercises. Whilst this
is a well-supported, relatively powerful, conventional
language; it has proved to be an unsatisfactory choice.
Whilst many students learn to program in JavaScript, a
significant proportion of users either withdraws from
the course or does not progress to more advanced
programming courses citing JavaScript’s pedantic
syntax and relatively poor support for debugging.
Student interviews and feedback from associate
lecturers suggested that most students could design an
algorithm to solve a problem, but lacked the confidence
to turn that algorithm into an executable program.

The OU had previous experience through connections to
the well-developed RoboFesta movement [3], and in
the development of T184 ‘Robotics and the Meaning of

Life’, a robotics course for novices [4][5]. Both of these
used the LEGO Mindstorms™ kit that could be
programmed using the drag-and-drop RCX Code
environment. We had found that children and adults
found drag-and-drop extremely intuitive to use and
were able to build relatively complex programs with
rich behaviours.

A decision was made to extend the Scratch [6]
language from the Lifelong Kindergarten Group at the
MIT media Lab. Scratch is a media-rich programming
environment which is especially notable for its clear
programming structure; individual program blocks –
such as if-else statements, logical operators and
variables can only be assembled in meaningful (not
necessarily correct) manners, and as such helps
remove one of the major frustrations of JavaScript –
syntax and logic is implicit rather than explicit.

Whilst Scratch does not offer students an immediately
useful language for their employment, it does allow
them to learn all of the basic skills needed to succeed in
any programming language; it builds confidence and
offers plenty of encouragement to study further –
unlike most languages, with Scratch ‘you don’t need to
know a lot to do a lot’. Scratch has proved extremely
popular with educators and students alike [7][8].

However, Scratch was not ideal for our purposes; it had
been clearly designed for children and might feel
patronizing towards adult learners, (although our initial
tests with adult volunteers revealed a surprising
number of them enjoyed the environment’s toy-like
appearance). Scratch also lacks some of the richer
programming concepts – such as lists - needed to
satisfy the learning outcomes needed for further study

31

at the OU. Most seriously, Scratch lived in a sandbox –
it could not talk to the outside world – if we were going
to use it to teach ubiquitous computing, Scratch was
going to need network support.

Fortunately it is possible to modify Scratch to suit our
needs; Scratch is programmed in Squeak and the
underlying image file has been made publicly available
for modification. Over the last few months we have
been building our own programming environment,
Sense; which is more suited to adult learners exploring
ubiquitous computing.

Sense retains Scratch’s look and feel, immediacy of
operation and welcoming approach that encourages
experimentation. Wherever possible we have tried to
retain compatibility with Scratch by retaining the
names and functionality of individual blocks; but we
have added a number of new features such as support
for protocols including TCP/IP and RSS, rich data
structures and often-neglected commenting.

Figure 1. An example of a Sense program showing
how program structure is made clear using different
shaped blocks and colour.

32

The SenseBoard
In the past, the OU has provided so-called ‘Home
Experiment Kits’ (HEK) to students but had gradually
abandoned their use because of the expense of
returning and refurbishing boards when they were no
longer needed by students before they could be
dispatched to the next student cohort. We decided that
this problem could be avoided if the TU100 HEK was
made sufficiently cheap that it could be considered
‘disposable’ so far as the University was concerned.
Before committing ourselves to a HEK we assessed a
number of ‘off the shelf’ technologies already used in
computer education.

One of the most popular products used in university
ubiquitous computing courses is Phidgets [9]; kits of
more-or-less plug-and-play electronic components
offering almost unlimited potential for experimentation.
The high unit cost of Phidgets would have affected the
profitability of TU100, but they were finally rejected
after feedback from potential students who found
Phidgets individual electronic components and
breadboards to be extremely intimidating. Further
concerns came from members of the course team who
were worried about the Phidgets’ durability and the
possible high rate of returns.

An alternative was the PicoBoard, originally designed by
the same team as Scratch, but now marketed by Pico
[10]. The PicoBoard is a small printed circuit board that
can be connected to a computer through a USB port.
The board contains a number of analogue inputs, a
light sensor, a microphone, a push button and a slider.
Although quite limited in its capabilities, the PicoBoard
had a number of advantages over the Phidgets; it was
cheap (approximately $50) and robust because of its

surface mount construction. However, we felt it was
lacking in that it did not offer any outputs such as
motors or lights.

With no obvious ‘off the shelf’ option, the OU
commissioned Kre8 Ltd, a company with experience of
designing electronic toys to design a low cost sensor
board for TU100. The eventual design placed inputs and
outputs on a single surface-mount shield that could be
plugged into a near-standard Arduino board. The
SenseBoard offers a wide range of inputs and outputs
for a very low cost (approximately $70 including the
Arduino).

 Figure 2. Schematic of the Version 1 SenseBoard
(June 2009) mounted on its Arduino host. (Legend
below)

33

The SenseBoard will be accompanied by a number of
plug-in sensors such as a thermistor and a motion
detector, a pair of motors, a battery pack (needed
when using the motors), a USB cable and a magnetic
board which allows the SenseBoard and all the
associated equipment to be carried from room to room
or stored without worrying about stray cables or losing
items.

An example of a very early project that can be
constructed by a novice student in a very short period
of time will be to build a simple weather station
incorporating a thermistor and a light meter. Initially
the student can display the results inside the Sense
window on their computer, but after a few more

activities they will be able to use Sense to format data
into an RSS feed and publish their own results to the
Web. They will then be encouraged to look at other
students’ data and plot their results using technologies
such as spreadsheets, online mapping tools or perhaps
displaying other results on their SenseBoard using the
LEDs or using the motor to drive a pointer.

The aim of the course is not to exhaust the potential of
Sense or the SenseBoard, but to demonstrate sufficient
of its capabilities that students will be able to develop
and share their own projects. Indeed when the student
finishes their studies we would be delighted to know
that they were continuing to use the board.

Course materials
As well as the SenseBoard, students will receive their
course materials as a series of full-colour bound
booklets and either one or two DVDs holding all of the
course software (including the Sense environment),
audio and video interviews, example projects and
guided walkthroughs of key tasks. Students will be
introduced to their SenseBoards through a number of
introductory video ‘builds’ (much in the style of the
popular BBC children’s television series ‘Blue Peter’).
We will show them how to plug their board in to their
computer, test it and then begin programming before
moving on to their own projects. All of the bundled
materials will be supported by a course Website,
containing links to Open University resources – such as
technical support, the Library and University’s
assignment handling system. Students will each have
their own personal email box, online file storage area,
study calendar, blog and journal. They will converse
with their fellows using a range of technologies

Key

1 IR detector (remote control)

2 Analogue inputs 1 – 4
(temperature, motion, pressure etc.)

3 Push button

4 Microphone

5 Edge IR emitter / detector
(barcodes etc.)

6 External motor 1

7 Programmable LEDs

8 External motor 2

9 Slider

Table 1. Key for the SenseBoard diagram (Figure 2).

34

including instant messaging and small (20 person)
forums, each run by an associate lecturer.

The course is assessed throughout. Six written
assignments require students to submit a range of
materials ranging from short answers through to
researched essays and Sense programs. The course’s
final assessment takes the form of a short project.
Obviously, we cannot expect students to submit their
SenseBoards as part of their projects, so students will
be graded on their programming code, their
documentation and results and we will be asking them
to contribute photographic and video evidence to
support their conclusions.

Open Source
The developers of TU100 have decided to release much
of their work as open source projects.

1. Whilst much of our teaching material cannot be
made freely available; some of TU100’s content will
be placed on the Open University’s OpenLearn site
[11] for free re-use.

2. The Sense project will be released on a public Web
site on an ‘as-is’ basis.

3. The full specification, layout and component list of
the SenseBoard as well as any necessary driver
software will be published on a public Web site.
Anyone will be able to make their own board
without paying royalties, although the board’s
designers reserve the right to sell their own version
of the SenseBoard.

Accessibility
The OU has a long history of ensuring its course
materials can be used by anyone who wishes to study
its courses. The Sense environment and the

SenseBoard raise profound issues for students with
visual impairments or limited motor skills. UK
legislation requires the OU to make ‘reasonable efforts’
to allow disabled students to access course materials.

The most basic form of provision requires disabled
students to be supported by able-bodied assistants.
This is obviously unsatisfactory; not only do some
students lack an able-bodied assistant, but also
needing to ask for help reduces their independence.
The ultimate form of provision is when all materials are
usable by all people no matter what type of
requirements they have. This is almost always
unobtainable, if only because of the great expense in
designing appropriate materials. Inevitably some
degree of compromise will be required and it is likely
TU100 will become more accessible through time as
new materials are developed.

We hope to include a certain degree of accessibility
support within Sense before TU100 is released. The
OU’s Institute of Educational Technology (IET) has
produced an initial report on Scratch using a range of
different assistive technologies and computer settings.
IET identified a number of issues that can be
summarized as follows:

 People who use a screen reader would not be able
to access the application;

 People who do not use a mouse would not be able
to operate the application easily;

 People with visual impairments or dyslexia may
find some text difficult to read due to low contrast with
the background;

35

 People who require large font size may have
difficulty reading the buttons/text;

 People who use a screen magnifier may have
difficulty reading buttons text;

 People who use voice recognition would not be able
to operate the application easily;

 Hearing impaired people should not have any
difficulties, apart from being aware when a sound is
played in their program;

 People with a manual impairment may find some of
buttons to be small targets;
These issues have been passed to the Sense developers
so that a costing for a more accessible version of the
application can be presented to the University.

The SenseBoard also presents issues of accessibility.
The various connections and input devices obviously
present problems for students lacking motor skills.
Rather than relying customized components (an
approach taken by LEGO with their MindStorms™ kits)
which would increase the cost of every SenseBoard to a
point where the course was no longer viable; the
course team decided to build the board with over-sized
components that are easy to grasp and highly robust.
Individual items such as power and motor plugs have
also been designed in such a way that they can only be
connected in the correct manner.

We have also designed an onscreen SenseBoard; the
push button and slider of which can be manipulated
using the mouse, the SenseBoard’s microphone is
replaced with that on the computer, and where sensor
inputs can be simulated using type-in numeric values.

Visually impaired students do not currently have any
accessibility support on the board. However, the course
team has entered discussion with the SenseBoard
designers to develop a second version of the board. The
new board will use speakers and vibration devices to
replace the LEDs on the current board. Instead of
sequences of light, outputs would be conveyed using
musical notes or pulsed patterns of vibrations. We call
this device the SenseBoard Touch. This may be a
separate board from the original SenseBoard
automatically dispatched to any students registered as
visually impaired. Alternatively, if the board can be
manufactured at a low enough cost, we may issue the
SenseBoard Touch to all students so that all students
receive a more capable device.

Conclusion
TU100 is a typically ambitious project for the Open
University and has required us to develop a number of
new technologies to address the particular needs of
distance learning students. We have developed a
programming environment for adult learners with no
prior experience of computer programming, and a
complementary piece of hardware that will allow them
to begin experimenting with ubiquitous computing.

At a very early stage we realized that a significant
number of students may be unable to use some or all
of our technologies. The biggest unanswered question
remains how we can make ubiquitous computing
devices that are truly useful to everyone. We are
planning further developments of our hardware and
software to not only accommodate, but to actively
welcome those people who are normally excluded from
education in general, and computing in particular.

36

In order to facilitate the exchange of ideas between
educators we will be releasing much of our work as
open-source projects.

ACKNOWLEDGMENTS
We would like to thank everyone on the TU100 course
team for all their work so far and for what they’re going
to do in the future. An especial thank-you to Dr. Chetz
Colwell from IET who conducted the initial usability
tests on our work. Also to Syntropy Ltd. for their work
on the Sense environment. And to Kre8 Ltd., Garry
Bulmer and Robert Seaton for the design and layout of
the SenseBoard.

References
[1] Carswell, L., Thomas, P.G., Petre, M., Price, B.,
Richards, M. (1999) Understanding the 'Electronic'
Student: Analysis of Functional requirements for
Distributed Education. Journal of Asynchronous
Learning Networks, vol. 3 issue 1 pp. 7-18 Sloan
Consortium.

[2] Bell, G., Dourish, P. (2007) Yesterday’s tomorrows:
notes on ubiquitous computing’s dominant vision.
Personal and Ubiquitous Computing, Vol. 11, No. 2. (1
February 2007), pp. 133-143.

[3] RoboFesta Europe (Britain)
http://www.robofesta-europe.org/britain/

[4] Price, B., Hirst, A., Johnson, J., Petre, M., Richards,
M. (2002) Using robotics for teaching computing,
science, and engineering at a distance. Proceedings of
the 5th IASTED International Conference on Computers
and Advanced Technology in Education (CATE),
Cancun, Mexico pp. 154-159 IASTED.

[5] Price, B., Richards, M., Petre, M., Hirst, A.,
Johnson, J. (2003) Developing Robotics e-teaching for
Teamwork. The International Journal of Continuing
Engineering Education and Lifelong Learning, vol. 13
issue 1-2 pp. 190-205 Inderscience.

[6] Scratch at MIT http://scratch.mit.edu/

[7] David J. Malan, Henry H. Leitner.(2007) Scratch
for budding computer scientists, Proceedings of the
38th SIGCSE technical symposium on Computer science
education, March 07-11, 2007, Covington, Kentucky,
USA.

[8] John H. Maloney , Kylie Peppler , Yasmin Kafai ,
Mitchel Resnick , Natalie Rusk, Programming by choice:
urban youth learning programming with scratch,
Proceedings of the 39th SIGCSE technical symposium
on Computer science education, March 12-15, 2008,
Portland, OR, USA.

[9] Phidgets http://www.phidgets.com/

[10] PicoBoard (ScratchBoard)
http://www.picocricket.com/picoboard.html

[11] Open University OpenLearn
http://openlearn.open.ac.uk/

Public Digital Note-Taking in Lectures

Abstract
Note-taking during lectures is a predominant activity
among students. Making notes public allows all
students to benefit from solitary actions, while making
notes digital minimizes cost of sharing. We hypothesize
that public digital notes (1) do not significantly change
ingrained note-taking practices and existing classroom
dynamics, (2) support pedagogical practices, and (3)
consider the student perspective. Public digital notes
are democratic in nature and motivating to students.
We explore the breadth of this design space with three
different projects. (1) NoteBlogs are notes taken by a
few self-selected students using Tablet PCs on top of
instructor prepared slides. These notes are shared
instantaneously during lecture. (2) Collaborative
SearchNotes bring outside resources into the lecture.
All students can search for lecture terms on the Web
and view their peers' findings. (3) Integrative Notes are
written with a digital pen on digital paper and imitate
traditional student note-taking as closely as possible.
This project explores the benefits of superimposed
versus juxtaposed notes shared publicly after lecture.
User studies of each of these projects suggest that
some students will produce content, while the majority
will consume the content. Yet, we find that the process
of sharing is beneficial to both producers and
consumers, whether as a means of explanation, self-
expression, or reassurance.

Copyright is held by the author/owner(s).

UbiComp 2009, Sep 30 – Oct 3, 2009, Orlando, FL, USA

Roshni Malani
UC San Diego
9500 Gilman Drive, MC 0404
La Jolla, CA 92093-0404 USA
rmalani@cs.ucsd.edu

William G. Griswold
UC San Diego
9500 Gilman Drive, MC 0404
La Jolla, CA 92093-0404 USA
wgg@cs.ucsd.edu

Beth Simon
UC San Diego
9500 Gilman Drive, MC 0404
La Jolla, CA 92093-0404 USA
bsimon@cs.ucsd.edu

38

Keywords
Student Note-Taking, Lecture, NoteBlogs, SearchNotes,
Integrative Notes, Ubiquitous Presenter

ACM Classification Keywords
K.3.1 [Computers and Education]: Computer Uses in
Education – collaborative learning.

Introduction
The practice of writing information on paper while
listening to lecture is universally perceived as an
important skill for students, the responsibility of
students, and the key to academic success [3]. Faculty
and students alike hold this perception [9]. Note-taking
serves two main functions: (1) the process of encoding
information during lecture and (2) the product that
stores information for later review [7]. Although
student note-taking is such a ubiquitous activity, most
students are not explicitly taught how to take notes. A
survey of 223 University of Georgia students revealed
that 99% of them took lecture notes but only 17% had
received any formal instruction in note-taking [15]. As
a result, students generally capture a relatively small
percentage of critical lecture ideas [5,13]. Salient
theories of cognition and learning [4,8,18] indicate that
many pedagogical opportunities exist for improving the
metacognitive skills of student note-takers by involving
the community in the note-taking activity and by
encouraging the social construction of knowledge.

The design of Web-enabled note-taking technologies
must support capture during lecture and access after
lecture. Orthogonal functions of manipulation (adding,
deleting, editing, organizing, and searching notes) and
collaboration across time and space must also be
supported. The design of these technologies face some

challenges: (1) ubiquitous, inexpensive hardware
technologies must be used, so that all students can
afford to use it, (2) the technology must be simple to
learn and easy to use, because students are already
cognitively overloaded with the task of comprehending
new lecture material, and (3) technologies that involve
the aggregation of student-generated content must
scale well.

The pedagogical opportunities inherent in extant note-
taking practices and the technological design challenges
motivate what we call public digital note-taking. Digital
notes, that is, notes recorded using a computing
device, such as a Tablet PC, a PDA, or a digital pen,
provide affordances, such as editing, reorganizing,
searching, and copying, and enable sharing of
individual notes with little overhead. Public notes may
benefit all students in the classroom by using
networked technologies to share notes. We hypothesize
that these notes should be embedded in lecture
materials to minimize distraction and may extend
beyond the content presented during lecture to provide
a broader context for learning.

In this paper, we define the design space for public
digital notes, review prior work, and present three
projects that explore this space. Data gathered from
deploying each of these projects in live lectures is
presented, followed by a comparative analysis focused
on changes to prevailing practices and pedagogical
benefits. We conclude with some design guidelines and
implications for instruction.

Design Space
The design space of public digital notes consists of at
least the following four major dimensions: (1) form

39

factor, (2) time of sharing relative to lecture, (3)
percentage of students generating content, and (4)
direction of information flow.

The form factor of public digital notes includes the
physical size, shape, and weight of the hardware
technology used, and power consumption and network
connectivity. For example, a Tablet PC in comparison to
a digital pen consumes a lot more power and is
significantly heavier, but provides more computational
power and wireless network access. A more generic
laptop might tend to be smaller, but does not provide
the affordances of a handwritten interface. Form factor
is a very important dimension to consider because most
students often carry the technology all day and use it in
the confined space of modern lecture chairs, which are
bolted in neat rows, have small desks, and limited or no
access to electrical outlets.

When the notes are shared relative to lecture is another
design dimension of public digital notes. Most notes,
with some amount of effort, can be shared after
lecture. For example, notes captured with a digital pen
can easily be transferred to a computer connected to
the Internet. In contrast, technologies that provide
easy access to wireless networks during lecture, such
as laptops and Tablet PCs, can enable the
instantaneous sharing of notes. The time of sharing,
that is, when the digital notes are made public, may
influence the content and nature of the notes
themselves.

The percentage of students in lecture who are
generating public digital notes can vary. This
percentage depends on the affordability and ubiquity of
the note-taking platform, as well as the nature of

notes. For example, small Post-It-sized notes generated
by all students may be more feasible to review
compared to lengthy freeform notes from all students.
Additionally, the relative percentage of students
generating content affects the design of how software
aggregates and presents the public digital notes.

The final design dimension to consider is the direction
of information flow relative to lecture. Traditional note-
taking involves the transfer of information from inside
the classroom to outside: students capture content
during lecture and review it later outside of the
classroom. Another possible flow of information may
occur from outside the lecture to inside, for example,
when students read the textbook prior to lecture and
reference it during lecture. Furthermore, information
can flow from student to student within lecture, for
instance, when students communicate with each other
during lecture.

Prior Work
Research on technologies that explicitly support note-
taking activities in lectures has focused on providing
notes that are either superimposed on or juxtaposed
with prepared lecture slides. Most of these technologies
have focused on individual note-taking, some have
explored taking small Post-It sized notes, and a few
have supported small group note-taking. For example,
eClass and Classroom Presenter support individual
student annotation superimposed on lecture slides
[1,2]. LiveNotes allows each student to take their own
superimposed notes, while concurrently viewing the
annotations of a small group of their peers [12]. This
system provides no explicit division of labor or
management of space conflicts. NotePals enables
students to take small notes during lecture. Afterwards

40

these notes are juxtaposed with the lecture slides and
are shared with the entire class [6]. In contrast to
LiveNotes, students using NotePals are unaware during
lecture of other students' notes, which minimizes space
and content conflicts but may result in duplicated
effort.

Interesting research has also been done on different
types of note-taking activities, such as while reading or
brainstorming, and technologies to support these
activities can be adapted easily into the ecology of
traditional lectures. Papiercraft involves pigtail gestures
on physical paper to indicate computing commands
(such as copy, paste, link, search, and email), which
are later executed on the digital version of the
document [14], whereas InkSeine focuses on
immediate feedback for in situ search for related
material [10]. In contrast to these systems for
individual note-taking, GroupScribbles provides explicit
mediation of collaborative exercises. This system is
based on the metaphor of each student holding a pad
of Post-It notes and contributing thoughts to a shared
whiteboard [16]. In addition, Steve Whittaker’s work on
social summaries (using handwritten annotations and
photos to tag different parts of lecture recordings)
found that students prefer social tagging systems and
rely on popular tags [11].

Most of these systems support individual note-taking in
novel ways. Only NotePals supports public notes, which
are limited in size and shared after lecture. What
happens when notes are shared during lecture? How
can technology encourage students to gather and share
different resources during lecture? What is the tradeoff
between affordable, lightweight technology and the
time at which notes are shared?

System Implementation
NoteBlogs are primarily based on the concept of blogs,
which are ongoing narratives or personal diaries that
are published on the Web. Blogs provide a medium for
communicating thoughts and feelings, and a forum for
reflecting on experiences. We recognize that traditional
notes can similarly be viewed as ongoing personal
narratives and that pedagogical benefits may emerge
from publishing these notes instantaneously on the
Web. The NoteBlogging application, designed for a
Tablet PC, enables a small percentage of self-selected
students to share notes taken on top of instructor
prepared slides immediately. These notes are shared
live during lecture, and all students can view them
during class, creating a flow of information amongst
students within lecture. Thus, all students can benefit
from the thoughts and reflections of a few students.

Collaborative SearchNotes are based on the metaphor
of collecting relevant resources in a shared place when
investigating a new topic. This technology aims to
integrate resources that are easily accessible and
searchable on the Internet as part of the lecture
content. All students can cooperate to find and share
relevant resources. Collaborative SearchNotes enables
all students who have a laptop or other Web-enabled
device to bring outside resources into lecture.

Finally, Integrative Notes aims to mimic traditional
student note-taking as closely as possible, using the
familiar form factor of digital pen and paper (using the
Livescribe technology). Individual notes taken by self-
selected students are shared after class in the context
of lecture slides. This technology explores the tradeoff
between form factor and time of sharing.

41

NoteBlogs Data
In-depth information about the implementation,
deployment, data gathering and analysis of NoteBlogs
is provided in [17]. The system was used in a quarter
long introductory computer science course, with a mid-
quarter reelection of bloggers. From semi-structured
interviews with the students, we evidenced changes in
student behavior and perception of note-taking. The
bloggers clearly had an audience in mind, because they
“tr[ied] to make things clearer for other people” [B1].
Bloggers provided alternative explanations, because
“people don't want to look at the same exact thing for
each blogger, they want to read different stuff” [B2]
Bloggers tried to give hints or suggestions for solving
in-class active learning exercise. As B1 explained,
“some of the in-class problems, like, if you're
completely new to computer science, like it would take
you way longer than the professor gave you time for in
order to solve the problem, [so] if, just the few hints of
from, like, where to start, like, what to focus on, could
help them write the program a little faster, if they
choose to read it.” Bloggers valued NoteBlogs as a
means of self-expression and communication, because
“it's just like a cool way to get your opinion out there
for everyone to see” [B2].

Students reading the blogs (called watchers) sought
assistance and reassurance in the blogs. One watcher
found that “they won't like give you like the answer
directly, as much as they'll [...] give you [...] hints or
like how to solve it or the logic behind like solving it”
[W1]. Another watcher explained that “when [he tries]
to solve a problem, [he's] not sure if [he's] doing it
right, not sure if the blogger is either, but it gives you a
feeling that you're probably going the right way” [W2].

Collaborative SearchNotes Data
An example of searching a term and viewing the results
in the context of lecture is demonstrated in Figures 1
and 2. In a semester long modern physics course with
15 students, 36% of the search actions were searching
new terms, 53% were viewing search results, and 11%
were deleting automatically saved search tabs. Of these
search actions, 86% were performed during lecture. As
shown in Figure 3, over 80% of the search queries were
on topic and related to the course and 20% of the
students created 51% of the new search queries.

In a quarter-long social research methods class, semi-
structured interviews with the students indicated that
they had many reasons to search the Web for class
related content. One student reported searching “terms
that [she] didn’t quite understand” and “terms [that]
are really similar to each other, like the different types
of sampling” [S2]. Another student used the system
“just to see if on the Internet it’s explained differently”
[S1]. This student acknowledged that “the book is more
related to the class,” but the Internet provides “another
perspective […] without any bias” [S1]. Students
recognized that searching online can be faster,
especially “if things in the book were spread out and
weren’t clear” [S5].

Did students value the automatic saving and sharing of
search results? A student in the physics course
explained why he looks at what others have searched:
“It’s quite possible that they are searching for

42

Figure 1. Example of searching a term.

Figure 2. Example of viewing a search result.

something I had not thought of and this would be
information that I may not have ever found out about”
[S4]. A student in the sociology course said that
“usually [she ends] up using other people’s searches
because they usually beat [her] to it” [S2]. Students
also found reassurance in reviewing their peers’
searches. As S1 said, “It is helpful to see what [my
peers have] done too, because I can see I need that
term too and it makes me feel better that they looked it
up too cause it’s not just me that didn’t understand.”

These interviews also revealed that Collaborative
SearchNotes appeals to students who are already
confident in their search abilities, while encouraging
others to engage in this novel, discovery-based activity.
One student explained, “I’ve always been the kind of
person that will look up stuff outside of class if I’m
interested in it or if I didn’t understand it well enough. I
mean I will go home and I’ll search it or I’ll ask other
people about it. So I mean that’s something I’ve always
done” [S2]. This student indicated that she doesn’t
“generally bring [her] computer in to class ever,” but
she does bring her laptop “just for this class for the
purpose of using the program.” This self-reported claim
is confirmed by in situ observations during the course.

Taking SearchNotes was an emergent behavior
amongst a few students. As one student explains, “Just
for this class, I do search. I started to look for [terms],
because it’s really easy to access. I never thought of
looking up terms on the Internet, you know. It’s just
like you read your notes and that’s it. But then, I’m like
oh, you can see what Wikipedia or Google says. I never
thought of looking for extra information” [S1]. This
student concluded that SearchNotes “really helped,

43

because it gives you another perspective of [the
lecture].”

Figure 3. SearchNotes Content.

Observations of the system during lecture indicated
that the current SearchNotes implementation limited
students’ ability to express themselves. Students could
choose and refine the search terms, but they had no
place to record reflections on what they discovered
from a given Website. We were reminded that students
value the opportunity to paraphrase what they are
hearing and reading, as a way to reinforce their own
understanding. Also, a slow rate of adoption of
SearchNotes was observed during lecture. The purpose
of the work was not to revolutionize the note-taking of
all students, but rather to leverage the search efforts of
a few students to benefit their peers. The data indicates

that instructors and researchers should model good
search behavior, and that sometimes a small incentive,
such as a few extra points, can make the long-term
benefits of inquiry-driven learning appear more
immediate.

Integrative Notes Data
An example of Integrative Notes juxtaposed to the
lecture slides is shown in Figure 4. This system was
used in two different quarters of the same introductory
programming course. Both versions of the course had
approximately 50 students, and two students
volunteered to take Integrative notes in the first
quarter and four in the following quarter.

Figure 4. Example of juxtaposed Integrative Notes.

44

Interviews
When asked how do you feel participating in this
experiment benefits you, one Integrative note-taker
responded, “I feel that since others are going to look at
them, I should take good notes which makes it easier
for me to study, because my notes are that much
better” [I2]. Thus, the social pressures of performing
well in front of others enhanced the quality of his notes,
which in turn improved his understanding of the
material. On the other hand, another student claimed
that “I wouldn't say it helped ME more, (maybe
subconsciously), but I hope it helped others” [I1]
(emphasis not mine). Interestingly, this student
professed that he usually does not take notes: “I
usually don't take good enough notes to the point
where other people can understand them, and on top of
that I didn't normally take notes in [this] class, because
we were encouraged to bring our computers and
participate thru clickers or on UP.” Despite his natural
inclination not to take notes in this class and his
worries about “how atrocious [his] handwriting could
be,” this student continued to participate in the
experiment. Another student who volunteered to
participate in the experiment only took notes for one
lecture, and then declined to continue participating for
similar reasons. He told us that he likes the idea, but
would rather spend lecture time discussing verbally
with his classmates during the active learning
exercises.

Previously, in the NoteBlogging study, we found that
students are aware consciously of an audience of other
students who would be reading their notes. Is the
pressure of other students reading your writing
diminished when the sharing is not live but delayed
until after the lecture? We asked the Integrative

notetakers whether they are consciously aware of an
audience when writing notes or if they simply continue
to write notes as they normally would. One student
responded, “Yes, I consciously took better notes
because I knew people would be reading them,” adding
that “I tried to write/illustrate concepts in a different
way from the teacher to give people a different
perspective” [I1]. Another student said that, “At first I
was just taking notes for myself, things that I thought I
need to know, then when I saw that my notes were
possibly going to be shown to everyone, I started
taking more precise notes, and things that I thought
would help them, because it helped me out” [I2]. Thus,
sharing after lecture only delays the realization of an
audience, but does not eliminate it over the duration of
the course.

In this study, we also found that the Integrative note-
takers appreciated having other students share their
notes as well. For one student, it alleviates some of the
performance anxiety: “I think its good to have more
than one person share notes, I wouldn't want all that
pressure" [I1]. This student also made an interesting
point about number of students sharing notes: “it
would be like being a TA if I were the only one
providing notes.” Another student modestly
recommended that “I just want the best notes to be
shown, whether they are mine or one of the other note
takers, it does not matter” [I2]. Thus, students
explicitly recognize that they want high quality
Integrative notes.

Are there any costs to the Integrative note-takers in
sharing their notes with all the students in the course?
The student concerned about his handwriting
conjectured that “maybe having to write more legibly

45

made me miss things” [I1]. Another student speculated
that “the only thing that I imagine losing is shorthand,
but even then I don't use it often enough for it to be a
big deal” [I2]. We asked these students whether they
feel that other students (especially the ones that didn't
show up to class) benefitted from the sharing of their
notes more than they did. One student replied,
“perhaps they might have, but it's not something that
really bothered me. I'm not competitive to the point of
avoiding helping a classmate understand (plus it just
solidifies my knowledge when I do)” [I1]. Another
student's response is unexpectedly positive: “I would
hope so, I try to write notes as though someone that
does not know anything is going to read my notes. This
makes it easier for me to understand the notes to a
better degree, and also come back to it later on” [I2].
This student states that “If someone needed my notes,
they I would give it to them. I just want everyone to
succeed”. Thus, this evidence suggests that some
computer science students are not competitive and
willing to help their fellow peers.

In situ Observations
Observations of the Integrative note-takers indicate
that they are avid note-takers, often writing notes even
if no other student in the class is. For example, both
Integrative note-takers were the only students writing
notes when the concept of enumerations was
introduced. These students are often writing when the
instructor is explaining the solution to an active
learning exercise, and especially so when the student
answered the question incorrectly. The student who
takes Integrative notes superimposed on the lecture
slides is often shifting his gaze between the projected
slide and his paper notes: “R3C7: taking notes (look
back and forth between paper & slide), Prof asked ? &

he attended to her, clicked answer & now taking more
notes”. Also, these self-selected students are
responsible for their own learning, and they bring
additional resources to the lecture: “R2C4: looking
through book to find answer to clkr ? “.

The most interesting observation is how the two most
active Integrative note-takers would frequently tag-
team to make sure all the important content was
captured. For example, one day in lecture, “R2C4: Took
break from notes & looked at R3C7 while Prof started
talking really fast” and then “R3C7-C8: wrote notes like
crazy about new concept”. Another day, at one point:
“R3C7: taking notes on what [Prof's] saying, R2C4:
wasn't taking notes while [R3C7] was  Now both
taking notes” and then they switch at another point:
“R2C4: Taking notes R3C7 wasn't, but wrote at end of
Prof narrative - Both stop for new [clicker] ? ”.

Surveys
All the students in the course were asked to fill out a
short survey. The first two questions on the survey
asked students whether they used the Integrative
Notes system to prepare for the exam and how much of
the handwritten student notes they read. Of the 111
students total that responded to the survey, a total of
55 students used the system and read any of the
Integrative Notes. Approximately 20% of the students
did not use the system to study before the exam. In
the open response portion, one student reported “I
downloaded the slides” and another student said “I'll
check them out next time, I was too busy this time.”
Some students were not aware of the availability of
student-written notes on the UP website, despite
repeated announcements and demonstrations during

46

lecture. One student commented “We have student
notes on UP!?” on the survey.

Figure 5. Integrative Notes Survey Summary.

The next three questions of the survey asked students
about how useful, how interesting, and how distracting
the handwritten student notes were. The answers to
these questions, given by students who read any of the
notes, are summarized in Figure 5. More than 80% of
the students reported that Integrative Notes were
somewhat, mostly or very useful, and a similar
percentage reported that the notes were interesting.
22% of the students found the notes to be very useful.
60% of the students indicated that the Integrative
Notes were not distracting at all.

The general feedback varied from positive responses
such as “cool idea” and “very useful, especially [the]
feature that allows me to toggle instructor ink on/off”
to mixed responses such as “student notes wasn't that
bad” and “the notes were not much different from what
was covered in lecture.” Students recognized that the

Integrative Notes were a “good supplement” because
“it came in handy when I couldn't read [the
instructor's] slides” and because the Integrative note-
takers “were able to write down the important things
said in lecture that would take too long for professor to
write.” Also, one student indicated a learning curve: “I
just need to get more familiar with it and I will take
more advantage of it.”

Changes to Prevailing Practices
Collaborative SearchNotes was the most radical project,
in the sense that even if students are accustomed to
having access to Web-enabled devices during lecture,
they do not perceive gathering resources as a form of
note-taking. Students highly value paraphrasing,
summarizing, and expressing new ideas in their own
words, because this encoding process reinforces their
learning. Even though SearchNotes greatly simplified
and empowered the storage function of note-taking by
automatically archiving resources in the context of
lecture, it did not provide much room for encoding and
self-expression. Students were able to select the query
terms and phrases, but had no opportunity to reflect on
what they found. No students abandoned their own
note-taking (either on paper or electronically) to rely
solely upon SearchNotes.

In contrast, Integrative Notes was the most similar to
conventional note-taking, in that the form factor was
natural to all students and the learning curve was
negligible. The interface for taking notes during lecture
(pen and paper), the interface for sharing notes after
lecture (USB dock and email), and the interface for
viewing the shared notes (Ubiquitous Presenter
website) were all different, but each individual interface
was familiar to students. Due to the disconnect in the

47

interfaces and the delay between the time notes were
written and shared, the realization of the consequences
of shared notes was not as evident to some of the
students. Thus, some students did not significantly
change their note-taking practices, while those that
changed their practices focused on providing clear,
precise explanations and illustrating concepts in
different ways.

Changes required by NoteBlogging lie somewhere
between these two extremes. The form factor is mostly
familiar: a laptop with a handwriting interface.
However, using a pen to navigate the functionalities of
the computer (like pressing command or shift keys)
and to write (finding the correct angle and pressure,
and becoming comfortable with resting a hand on the
screen) take a little while to adjust to. After that initial
learning curve, the note-taking also differs in that, as a
student is writing notes superimposed on the prepared
slides, the instructor's annotations also start showing
up, sometimes causing space conflicts. Most bloggers
resolved this by waiting until the instructor had moved
on to the next slide before writing their comments.
Finally, since the notes were shared live during lecture,
bloggers were aware of an audience of watchers and
strove to provide helpful hints and suggestions during
active learning exercises.

Pedagogical Benefits
The pedagogical benefits of all three forms of digital
note-taking arose primarily from the public aspect.
Shared notes allowed students to see what their peers
thought was most important during lecture, and
encouraged them to learn from each other. Without
explicitly being told to do anything different than they
normally would during lecture, students determined

how to maximize new utility given the new affordances
of the technologies.

In Collaborative SearchNotes, many students reviewed
the pertinent search results of only a few other
students. A few students felt confident in their abilities
to search for related content on the Web, and thus,
engaged in exploratory and inquiry-based learning.
Their selfish actions had a side effect of introducing
new material and different explanations to other
students and indirectly teaching their peers how to
formulate good search queries.

In Integrative Notes, students focused on providing
clarity and organization to the material covered in
lecture. The most common behavior was to capture the
verbal explanations of the active learning exercise
given by the instructor. However, since different
students paid attention to different aspects of what the
instructor said and since they have different prior
knowledge, students often wrote different things. One
student decided to structure her juxtaposed notes in an
outline format, highlighting at a quick glance all of the
important concepts covered during that lecture.

NoteBloggers clarified, organized, and explained
differently the concepts presented in lecture, and also
provided hints and suggestions to active learning
exercises live during lecture. The affordances of
immediate sharing allowed watchers to attempt to
solve an active learning exercise, where they might not
have been able to otherwise.

In addition to motivating students to generate public
digital notes, all three systems created interesting,
class-related content for other students to consider.

48

Rather than forgoing an in-class problem solving
exercise or becoming distracted, students had a
resource such as NoteBlogs to check for hints and
suggestions from their fellow students. Rather than
opening a new tab to check email or read RSS feeds,
students using SearchNotes had search tabs along the
top of the lecture slides to read first. If students
became frustrated with illegible instructor ink gestures,
students could check if their peer bloggers or
Integrative note-takers had explained the same
concept in a similar manner. All students found
assistance and reassurance in the public digital notes.

The addition of public digital notes to the lecture
material did not distract the students. In Integrative
Notes, 60% of the students in an introductory
programming course reported not being distracted by
the posting of individual notes of a few students to the
lecture slides, where as more than 80% found the
public notes to be useful and interesting. Over 80% of
the search queries were related to the course, and thus
automatically saving and sharing the search results was
not distracting to the students. More than 90% of the
noteblog content in an introductory programming
course was about programming, and even expressions
of mental state or empathy were reassuring to the
watchers.

Conclusion
Note-taking during lectures is a pervasive practice
amongst university students. The objective of this work
has been to exploit the solitary practice of traditional
note-taking to benefit mutually all students in the
course without significantly altering the learning
ecology. We have demonstrated how notes taken
solitarily can be shared with all the students in the

context of lecture materials. In particular, we built,
deployed, and evaluated three different systems to
facilitate public digital note-taking: one based on the
metaphor of blogging, another guided by the idea of
incorporating lecture-related resources found on the
Web, and a third exploring the tradeoff between form
factor and time of sharing.

These three projects span the breadth of the public
digital note-taking design space, exploring aspects of
communication and sharing that have not been
researched extensively yet. Figure 6 presents the
communication aspect of public digital note-taking. The
horizontal axis is how many students are producing, or
taking, notes and the vertical axis is how many
students are consuming, or reviewing, those notes. As
the figure demonstrates, the projects presented in this
work span the space of public notes, that is, the space
where all students in the class consume and review the
notes. Furthermore, all three projects use different
form factors, which in turn, affects the number of
students who can produce notes.

Figure 7 presents the sharing aspect of public digital
note-taking. The horizontal axis represents when the
notes are made available for sharing, whether delayed
until after lecture or live during lecture. The vertical
axis depicts whether the collaboration around the
shared notes is explicit or implicit. Explicit collaboration
is when the notes of one student directly affect the
content of another student's notes, whereas implicit
collaboration is when a student takes note of what
he/she thinks is important, with little concern for the
effect that note may have on other students. Most prior
work has studied explicit collaboration, whereas the
work here is more concerned with means of implicit

49

Figure 6. Communication aspect of public digital notes.

Figure 7. Sharing aspect of public digital notes.

collaboration. Another thing to note about this chart is
the red straight and circular arrows. In traditional note-
taking, information generally flows from within lecture
where it is captured and stored to outside of lecture for
later review. In contrast, InkSeine and SearchNotes
emphasize and encourage the opposite flow as well,
that is, the bringing in of information from outside
lecture to within lecture. LiveNotes and NoteBlogs allow
students to share their own interpretation of lecture
material, creating a new circular flow of information
amongst students during lecture.

Design Guidelines

1. Minimize perceived changes to existing practices.
Students are already cognitively overloaded during
lecture, and students should perceive the introduction
of new technologies into this constrained environment
as not significantly changing their natural behavior. The
interactions supported by the interface should be
familiar and easy to learn. For example, students are
already familiar with formulating search queries and
finding relevant content on the Web and viewing these
results as tabs in their browser. SearchNotes simply
brought this familiar interaction with one click into the
lecture notes, while seamlessly adding automatic
archiving and sharing.

2. Support choice in note-taking styles. Students have
many different learning styles and note-taking habits.
Some with fast handwriting may have developed a
strong sense of paraphrasing and organizing, while
others with slower handwriting might rely on providing
clarifications and other useful annotations on top of
prepared lecture slides. As Integrative note-taking
demonstrated, both juxtaposed and superimposed
notes are valuable resources when shared. NoteBlogs

50

appealed to one student who often brought many
colored pens to lecture and was accustomed to using
color to disambiguate and organize her notes.

3. Provide outlets for student self-expression.
Students like to express their own thoughts in their
own words. Collaborative SearchNotes limited this
expression, with only the ability to express search
terms, and ultimately was not as valuable to the
students as the other forms of public digital notes.
Expressions of self, even something as trivial as an
expression of hunger during a lunch-time course or as
mundane as an admission of making the common
novice mistake, are reassuring and valuable to peers
who can commiserate.

Implications for Instruction

1. Encourage voluntary participation. The process of
self-selection automatically filters students to match
their interest and abilities with the technology. For
example, only those students who felt confident in their
search abilities produced SearchNotes, and those
students who were comfortable trying new note-taking
methods volunteered to NoteBlog and to write
Integrative Notes. Both NoteBloggers and Integrative
note-takers felt a sense of social responsibility to their
peers. All three public digital note-taking tools have the
potential to engage high performing students, taking
advantage of this selection bias to aid all students.

2. Select more than one student to participate. From
the pool of volunteers, select a small group of students
to participate in public digital notes. As one Integrative
note-taker said, there is too much pressure to be
thorough and correct if he is the only one sharing
notes. A small group of students sharing allows
everyone to benefit, including those generating

content. The more students generating public digital
notes, the greater the variety of viewpoints and
alternate explanations. For example, the bloggers in
one course clarified the difference between static and
final keywords in Java in two distinct yet
complementary ways. Similarly, of the three
Integrative note-takers in another course, one explicitly
defined the terms this and super in a constructor,
another discussed default behavior, and a third
explained the debugging advantages.

3. Offer immediate rewards to help students achieve
long-term pedagogical benefits. Students may not
recognize the long-term benefits of peer learning and
inquiry-based learning, especially if the note-taking tool
is perceived as altering current practices. Incentives,
such as a negligible amount of bonus points toward
their grades or contests, motivate students to try the
novel application for perhaps enough time to get
accustomed to and eventually adopt it. In the NoteBlog
study, a re-election of bloggers halfway through the
course bolstered spirit and pride in the bloggers and
encouraged excellent note-taking.

Thus, we find that students are more likely to embrace
technologies that they perceive as minimally changing
their existing practices, such as Integrative Notes and
NoteBlogs. Even though students perceived minimal
changes, these systems enabled peer learning and
enhanced the sense of community amongst students.
Those generating public digital notes endeavored to
add clarifications, organizational structure, and
alternative explanations, while most students found the
shared notes to be useful, interesting, reassuring, and
not distracting. Appealing to student’s intrinsic
motivation is essential to this work. Students feel a
sense of social responsibility for their note-taking work

51

and are rewarded with recognition amongst their peers.
The challenge for public digital note-taking systems is
to maximize student choice and control and provide
some feedback mechanisms that scale.

Acknowledgements
This work was supported by equipment donations from
Hewlett-Packard and Livescribe, by a gift from Microsoft
Research External Research and Programs (MSR ER&P),
and by a NSF CCLI grant (DUE-0618511). We thank the
instructors and students who participated.

References
[1] Anderson, R., McDowell L., and Simon, B. Use of
classroom presenter in engineering courses. In
ASEE/IEEE Frontiers of Education 2005, T2G:13-18.

[2] Brotherton, J.A. and Abowd, G.D. Lessons Learned
From eClass: Accessing Automated Capture and Access
in the Classroom. In TOCHI 2004, ACM Press, 121-155.

[3] Carrier, C.A., Williams, M.D., and Dalgaard, B.R.
College students’ perceptions of notetaking and their
relationship to selected learner characteristics and
course achievement. Research in Higher Education,
28(3):223–239, 1988.

[4] Cole, M. Cultural Psychology: A Once and Future
Discipline. Harvard University Press, 1996.

[5] Crawford, C.C. The correlation between college
lecture notes and quiz papers. Journal of Educational
Research, 12(4):282–291, 1925.

[6] Davis, R.C., Landay, J.A., Chen, V., Huang, J., Lee,
R.B., Li, F.C., Lin, J., Morrey, C.B., Schleimer, B., Price,
M.N., and Schilit, B.N. Notepals: lightweight note
sharing by the group, for the group. In CHI 1999, ACM
Press, 338–345.

[7] DiVesta F.J. and Gray, G.S. Listening and note
taking. Journal of Educational Psychology, 63(1):8–14,
1972.

[8] Engeström, Y. Learning by expanding: An activity-
theoretical approach to developmental research.
Orienta-Konsultit Oy, Helsinki, Finland, 1987.

[9] Hartley J. and Davies, I.K. Note-taking: A critical
review. Programmed Learning and Educational
Technology, 15(3):207–224, 1978.

[10] Hinckley, K., Zhao, S., Sarin, R., Baudisch, P.,
Cutrell, E., Shilman, M., and Tan, D.. Inkseine: In situ
search for active note taking. In CHI 2007, ACM Press,
251–260.

[11] Kalnikaité, V. and Whittaker, S. Social
Summarization: Does Social Feedback Improve Access
to Speech Data? In CSCW 2008, ACM Press, 42-51.

[12] Kam, M., Wang, J., Iles, A., Tse, E., Chiu, J.,
Glaser, D., Tarshish, O., and Canny, J. Livenotes: a
system for cooperative and augmented note-taking in
lectures. In CHI 2005, ACM Press, 531–540.

[13] Kiewra, K.A. Notetaking and review: the research
and its implications. Instructional Science, 16(3):233–
249, 1987.

[14] Liao, C., Guimbretière, F., and Hinckley, K.
Papiercraft: a command system for interactive paper.
In UIST 2005, ACM Press, 241–244.

[15] Palmatier, R.A. and Bennett, J.M. Notetaking habits
of college students. Journal of Reading, 18(3):215–218,
1974.

[16] Roschelle, J., Tatar, D., Chaudhury, S.R.,
Dimitriadis, Y., Patton, C., and DiGiano, C. Ink,
improvisation, and interactive engagement: Learning
with tablets. Computer, 40(9):42–48, 2007.

[17] Simon, B., Davis, K.M., Griswold, W.G., Kelly, M.,
and Malani, R. Noteblogging: taking note taking public.
In SIGCSE 2008, ACM Press, 417–421.

[18] Vygotsky, L.S. The Collected Works of L. S.
Vygotsky: Problems of General Psychology, Volume 1.
Plenum Press, New York, second edition, 1987.

	PerEd-2009-Proceedings-Frontmatter
	PerEd-2009-Proceedings-Body
	1-ContextLearningKiddy
	2-UbiBot-Griswold-PerEd09
	3-iuke_hro
	4-Ubicomp2009-Richards-Woodthorpe
	5-PerEd-UbiComp09-malani-cameraready

